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Electron hydrodynamics encompasses the exotic fluidlike behavior of electrons in two-dimensional
materials such as graphene. It accounts for superballistic conduction, also known as the Gurzhi effect,
where increasing temperature reduces the electrical resistance. In analogy with conventional fluids, the
Gurzhi effect is only expected in the hydrodynamic regime, with the decrease in the resistance occurring at
intermediate temperatures. Nonetheless, experiments on electron fluids consistently show that super-
ballistic conduction starts at close-to-zero temperature. To address this paradox, we study hydrodynamic
flow, and we find that replacing the conventional dynamics with tomographic dynamics gives rise to an
accurate low-temperature description. The latter strengthens superballistic conduction, with potential
applications in low-dissipation devices, and explains its differences with the Molenkamp effect and
conventional fluid dynamics. Our study reveals that the superballistic paradox is resolved by considering
the peculiarities of electron-electron collisions at the Fermi surface.
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The pursuit of miniaturization of electronic devices faces
the inherent challenge of energy dissipation [1], and further
optimizing the devices relies on our ability to mitigate the
increased electrical resistance. A feasible strategy to
achieve this goal is to use the Gurzhi effect, exploiting
electrons’ hydrodynamic behavior [2–4]. Electron hydro-
dynamics substitutes ohmic transport in many two-
dimensional (2D) materials, such as graphene and gallium
arsenide heterostructures [5–10], or PdCoO2 [11]. Electron
fluids exhibit exotic signatures [12,13], from Poiseuille’s
flow [14,15] to the formation of whirlpools [16–19]. These
features have potential applications in 2D devices, includ-
ing high-frequency operation [20,21] and the Gurzhi effect
[22,23]. This effect exploits the collective motion of
electrons to evade scattering against the device’s edges.
Therefore, the resistance is lower than the ballistic limit,
resulting in superballistic conduction and enabling devices
with reduced dissipation [24–28].
The Gurzhi effect involves a decreasing electrical resis-

tance at intermediate temperatures, as depicted schemati-
cally in Fig. 1(a). The flow is mostly ballistic at low
temperatures, but increasing temperature favors electron-
electron collisions and leads to viscous electron flow. Thus,
the Gurzhi effect would only occur at intermediate temper-
atures [22], once the distance that electrons travel before
colliding with other electrons is shorter than the size of the

device, namely, lee < d. More precisely, as Gurzhi later
suggested for 2D systems [29], when lee

ffiffiffiffiffiffiffiffiffiffiffiffi
T=TF

p
< d,

where TF is the Fermi temperature. Since lee ∼ 1=T2 [3],
both conditions imply that the Gurzhi effect is expected to
occur above a finite threshold temperature. Except for
collisions with phonons, which raise the resistance at even
higher temperatures, most of the Gurzhi effect would
resemble the behavior of a conventional fluid: at low
collision rates, the resistance increases with collisions
until it reaches a maximum or, equivalently, a minimum
current, known as the Knudsen minimum in conventional
fluids [30,31].

FIG. 1. Superballistic paradox scheme. (a) Inspired by conven-
tional fluids, Gurzhi suggested a decrease in the electrical
resistance of metals with increasing temperatures. The latter
would only occur above a finite threshold temperature, where the
Knudsen minimum of the current (i.e., maximum of the resis-
tance) arises [22]. (b) On the contrary, experiments with electron
fluids show that the decrease starts at close-to-zero temperature
[7,8,26,32–35].
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Progress in 2Dmaterials has enabled the realization of the
superballistic effect predicted by Gurzhi. However, experi-
ments performed in graphene and gallium arsenide hetero-
structures show a different behavior: The decrease in the
resistance starts at close-to-zero temperatures [7,8,26,32–
35], as shown schematically in Fig. 1(b), and no signatures
of the Knudsen minimum of the current are observed. Thus,
experimental evidence supports the prediction of resistance
reduction due to electron-electron collisions [36]. Still, such
reduction is already effective at temperatures much lower
than estimated by Gurzhi.
In this Letter, we investigate this superballistic paradox

and sort it out by considering the electron microscopic dy-
namics. The unexpected superballistic conduction observed
at low temperatures affects the fundamentals of the Gurzhi
effect, and it supports the tomographic description [37],
which we analyze in the limit of close-to-zero temperature.
Let us consider the polar distribution function gðr; θÞ that

accounts for the excess of electrons above the Fermi
distribution at position r moving in the direction of θ. It
satisfies the following steady state Boltzmann transport
equation [36,38–44]:

�
cos θ

sin θ

�
·∇r

�
g −

eV
ℏkF

�
¼ −

g
lmr

þ Γee½g�; ð1Þ

where kF is the Fermi wave number, VðrÞ is the electric
potential, and, according to experiments, a constant carrier
density n is set [8,26,34]. This description, although
approximate at temperatures that are a fraction of the
Fermi temperature, is reliable in the low temperature limit
where we aim to characterize the initial increase or decrease
of the resistance. The Fermi liquid approach is also

consistent with experimental evidence [26], obtained at
intermediate carrier densities where the superballistic effect
can be distinguished from a thermal activation mechanism
[45]. It is worth mentioning that the Boltzmann transport
equation not only enables the description of the hydro-
dynamic regime but also the ballistic one. Staying away
from charge neutrality also avoids energy-dependent scat-
tering, as in the explanation proposed for the Wiedemann-
Franz law’s violation [46]. Therefore, we consider a
momentum-relaxing scattering against defects and phonons
through the mean free path lmr, as well as electron-electron
collisions via the collision operator Γee [47–50]. Once we
solve Eq. (1) by the finite element method with the proper
boundary conditions [41,44,51,52], we can compute the
drift velocity as uðrÞ ¼ ð1=πÞ R 2π

0 gðr; θÞðcos θ; sin θÞdθ to
get the electric current and the resistance R of a device. We
simulate constrictions of width d, where R0 ¼ ℏkF=ne2d,
and crenellated channels of average width d, where R0 ¼
ℏkFL=ne2d2 and L ≫ d is the length of the channel, long
enough to ignore the contacts.
In analogy with ordinary fluids, let us first consider

electron conventional dynamics, where two electrons can
collide regardless of their momentum orientation, as
depicted in Fig. 2(a). Hence, the collision operator reads

Γee½g� ¼ −
g − gee
lee

; ð2Þ

where lee is the electron-electron mean free path and gee ¼
ux cos θ þ uy sin θ is a polar distribution with the average
velocity of the electrons [41]. It is important to remark that
Eq. (2), which accounts for Callaway’s ansatz [53],

FIG. 2. Conventional dynamics. (a) Electrons can collide regardless of their direction of movement, allowing for the relaxation of the
even and odd parity modes. (b) Resistance of a uniform channel as a function of the collision rates, lee and lmr. The gray line shows
typical values for a graphene channel of width d ¼ 200 nm at n ¼ 0.5 × 1012 cm−2 [18,26]. (c) Resistance as a function of l−1ee ∼ T2. At
low temperatures, the resistance first increases with temperature, but after a threshold, it decreases. Therefore, conventional dynamics
predict a significant increase in the resistance for lee ≳ d, not observed in the experiments. We show the results for a constriction and
uniform and crenellated channels with increasing corrugation at lmr=d ¼ 5.
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assumes the relaxation of all modes with m ≥ 2 in the
expansion g ¼ P

m ðcm cosmθ þ sm sin mθÞ.
Figure 2(b) shows the simulated resistance of a channel of

widthd.Notice that experiments typically studysuperballistic
conductionwhen lmr > d, reaching up to lmr=d≳ 10 [26,44].
Moreover, the resistance drop also enhances for the smallest
devices, so the regionwith lmr ≲ d cannot be used to solve the
superballistic paradox.For lmr ≳ d, it is not until lee ≲ dwhen
transport is collective and parallel electrons no longer
dominate, that the Gurzhi effect would occur. In such a fluid
regime, collisions between electrons keep them from collid-
ing with the edges. Although in the absence of electron-
electron collisions, electrons travel a distance d, in their
presence, they move in shorter steps of length lee. Thus, on
average, they propagate a distance d2=lee before reaching the
edge, reducing the resistance [22].
Figure 2(c) shows the resistance for a constriction,

uniform, and crenellated channels, where the bending of
the electron trajectories triggers the dependence of the
resistance on electron collisions [8]. While the curves
reproduce the behavior for ordinary fluids, experiments
on electrons show no initial increase nor plateau, giving rise
to the superballistic paradox. This rise is conspicuous when
the device has well-defined transport directions, since
electron-electron collisions deviate the electrons from
them, contributing to the resistance. In addition, we can
also prove that the initial resistance increase would arise, or
even worsen, for other edge scattering mechanisms [54,55]
and lmr=d ratios [44]. As we will discuss, the superballistic
paradox originates in the properties of electron-electron
collisions.
We now discuss the experimental evidence demonstrating

that a lackofmeasurements at lowenough temperature cannot

be responsible for the observed paradox [44]. For a typical
size d∼0.2μm and a density of carriers n¼0.5×1012 cm−2,
the temperature at which the original Gruzhi condition for
superballistic conduction fulfills (lee < d) is 200 K in gra-
phene devices [26,34]. Similarly in gallium arsenide hetero-
structures at n ¼ 0.25 × 1012 cm−2, it is not until 10 K that
we reach llee ∼ 1 μm, the characteristic size of the device [8].
However, in both 2D electron systems, experiments have
observed a decrease in the resistance due to the superballistic
effect for temperature far below the Gurzhi threshold esti-
mated above. Additionally, no increase in resistance was
observed at close-to-zero temperature, where measurements
were performed. This behavior has been confirmed in several
experimental setups [7,8,26,32–35]. Hence, the observed
paradox is not exclusive to a particular material or geometry
that prompts us to seek a proper explanation.
Now, let us get a deeper insight into the differences

between conventional and electron fluids to settle the
superballistic paradox. Indeed, unlike molecules in
classical fluids that follow aMaxwell distribution, electrons
are fermions governed by the Fermi-Dirac statistics. The
conservation of energy and momentum in a 2D system and
the need for occupied initial and unoccupied final states in
scattering events highly restrict collisions. At low temper-
ature, these are predominantly head-on collisions among
electrons facing each other, resulting in the tomographic
dynamics [29,37,56–63] depicted in Fig. 3(a). To restrict
our model to tomographic dynamics, we need to split the
collision operator as follows

Γee½g� ¼ −
X
m

gðmÞ − gðmÞ
ee

lðmÞ
ee

; ð3Þ

FIG. 3. Tomographic dynamics. (a) Only head-on collisions are allowed between electrons, so odd parity modes do not relax.
(b) Resistance as a function of the collision rates in the limit of close-to-zero temperature levenee =loddee ¼ 0 [44]. The gray line shows typical
values for a graphene channel of width d ¼ 200 nm at n ¼ 0.5 × 1012 cm−2 [18,26]. (c) The resistance decreases with electron-electron
collisions in a constriction and uniform and crenellated channels, for lmr=d ¼ 5, even for close-to-zero temperature in agreement with
the experiments.
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where lðmÞ
ee is the decay length corresponding to the mth

mode of the expansion of g. The even modes have a
characteristic length levenee . However, at low temperature, the
odd-parity modes m ¼ 3; 5… have a decay length such as

lðmÞ
ee ∼m4ðTF=TÞ2levenee [44,64]. Therefore, in the low-
temperature limit, loddee ≫ levenee . As a first approach to
distinguish whether the resistance increases or decreases
at close-to-zero temperature, we will consider levenee =loddee ¼
0 as a limiting situation of tomographic dynamics. This
approach allows us to circumvent an explicit treatment of
the functional dependence of the decay lengths on the ratio
T=TF. At intermediate temperatures the electrical response
would result from the combination of conventional dynam-
ics and the limiting situation where the odd modes do not
relax. Therefore, a separate evaluation of each mode would
be required to describe the full temperature range of
experiments [26,44,65,66]. Under tomographic dynamics,
head-on collisions do not relax the odd modes, and it is not
trivial to determine their impact on the macroscopic
properties. Hydrodynamic models akin to the Navier-
Stokes equation are blind to the distinction between even
and odd parity modes [41,44], and thus, enable us to
account for the tomographic dynamics. However, the
Boltzmann equation distinguishes them, resulting in a
crucial theoretical tool to explain the paradox.
The resistance map in Fig. 3(b) shows key differences

from its conventional counterpart of Fig. 2(b), and Fig. 3(c)
shows the resistance curves. The Landauer-Sharvin limit
for a constriction R ¼ 1.57R0, together with the Ohmic
contribution of the whole device, gives the total simulated
resistance of Fig. 3(c) [26]. The consideration of the full
collision operator (3), with different relaxation rates for the
odd modes, is needed to reproduce quantitative results.
Still, levenee =loddee ¼ 0 qualitatively captures the decrease in
the resistance at close-to-zero temperature [44]. Tomo-
graphic dynamics predict no increase in the resistance but a
decrease starting at close-to-zero temperature, consistent
with the experiments, thus solving the paradox. Since the
electric current is mainly associated with the odd-parity
modes, it is no wonder that tomographic dynamics do not
exhibit the initial increase in the resistance characteristic of
conventional dynamics. Indeed, head-on collisions cannot
bring the electrons out of their trajectories parallel to the
channel [43] and increase the resistance.
Theoretical studies predict how tomographic dynamics

correct current injectors [67], thermoelectric properties
[68], or the Poiseuille flow [37]. However, experiments
have explained Poiseuille’s flow without noticing the subtle
difference yet [14]. The search for experimental evidence of
tomographic dynamics includes the analysis of magneto-
transport in ultrapure devices [39,69] and of the scaling
d lnR=d lnT [64]. The latter changes with the transport
regime [66] and depends on a previous assumption of
the mean free path temperature scaling, lee ∼ T−2 [3] or

lee ∼ T−2 lnðTF=TÞ [26], as well as for the odd parity
modes [26]. Our proposal to solve the superballistic para-
dox results in clear experimental evidence of the tomo-
graphic dynamics that only assumes that temperature favors
collisions between electrons, a direct consequence of the
Pauli blockade [3]. Furthermore, our approach is not based
on a change in the peculiarities of the scaling behavior of
RðTÞ. In contrast to previous studies [64], under a proper
description of edge scattering beyond the nonphysical no-
slip boundary condition [44,55,70,71], we demonstrate that
conventional dynamics lead to an initial increase in the
resistance, in agreement with standard fluids [30,31].
We have already demonstrated that conventional and

tomographic dynamics yield a Gurzhi effect in 2D elec-
tronic systems. However, in the first case, the superballistic
effect arises at intermediate temperature. In contrast, in the
second scenario, it already starts at close-to-zero temper-
ature. Since electron dynamics is tomographic at low
temperature, we have confirmed that the reduction of the
resistance starts at zero temperature, in agreement with
experiments [7,8,26,32–35]. However, a different behavior
was found in Molenkamp’s experiment [21,72–74], where,
instead of increasing temperature, high electric currents
were used. In such a case, the rate of electron-electron
collisions rises due to the applied current. We schematically
show Molenkamp’s experimental results in channels in
Fig. 4(a). Remarkably, and contrary to the measurements
obtained for increasing temperature, Molenkamp’s work
reported an initial increase in the resistance at low currents,
namely, at low electron-electron collision rates. After this
experiment, Gurzhi adapted their original predictions for
the superballistic effect in a metal (lee < d), for a 2D
tomographic electron system to demonstrate a decrease in
the resistance for an easier condition to fulfill, namely,
lee

ffiffiffiffiffiffiffiffiffiffiffiffi
T=TF

p
< d [29]. The latter would lead to a decrease in

the resistance for lower temperature consistently with
Molenkamp’s experiment. Once again, for graphene at n ¼
0.5 × 1012 cm−2 the new condition lee

ffiffiffiffiffiffiffiffiffiffiffiffi
T=TF

p
∼ d ∼

0.2 μm would be valid above 70 K [18,26]. However

FIG. 4. Molenkamp effect scheme. (a) Resistance as a function
of the current. (b) The Fermi electron distribution. (c) The
nonthermal electron distribution has many electrons traveling
parallel to the channel. The collisions are now closer to conven-
tional dynamics, resulting in an increasing resistance.
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experiments do not reveal any data compatible with a
Knudsen minimum in the electric current at such temper-
ature neither. Remarkably, our simulations under the tomo-
graphic approach demonstrate that the resistance decreases
regardless of the condition lee

ffiffiffiffiffiffiffiffiffiffiffiffi
T=TF

p
< d, which was not

possible to spot by analytic calculations [29].
The peculiarity of the Molenkamp effect, with a starting

increase in the resistance, lies in the lack of thermal
equilibrium. When the device’s temperature rises, electrons
still follow the Fermi distribution. However, if a high
current is applied, it mainly accelerates those electrons
traveling parallel to the channel, and their distribution is no
longer thermal. Tomographic dynamics is derived under the
assumption of 2D electrons within the Fermi distribution,
as shown in Fig. 4(b). Thus, it is no wonder its failure to
describeMolenkamp’s results where the distribution is non-
thermal, like the one depicted in Fig. 4(c). Notice that an
arbitrary electron will mostly collide with another electron
moving parallel to the channel since the distribution is
much broader in that direction [44]. Indeed, these new
collisions overshadow the head-on tomographic ones for
sharper distribution functions. To support our analysis we
solve the collision integrals [59,62] for the non-thermal
distribution and demonstrate that levenee and loddee are com-
parable in that case, so that tomographic dynamics
(loddee ≫ levenee ) no longer applies [44]. Instead, the obtained
behavior is close to the one described by conventional
dynamics that gives rise to an initial resistance increase, as
previously demonstrated.
The application of even higher currents and the activa-

tion of more electronic collisions eventually lead to the
thermalization of the Fermi distribution. The latter and the
increase in d=levenee contribute to the decreasing resistance
observed in Molenkamp’s experiment. The Molenkamp
effect, which seemed to be an exception in our theory,
reinforces our analysis. Physical scenarios without thermal
equilibrium opened a window for conventional dynamics.
In conclusion, we demonstrate that even details of

electron dynamics dramatically alter their electrical proper-
ties. At low temperature, conventional dynamics lead to an
increase in resistance upon rising temperature, while tomo-
graphic dynamics, in the limit where the odd modes do not
relax, lead to a decrease in resistance. Experiments show a
decrease in the resistance even at close-to-zero temperature,
with no signature supporting the so-called Knudsen mini-
mum of electric current, which is consistent with our
tomographic simulations. Therefore, this electron’s
anomaly signals the occurrence of tomographic dynamics,
strengthening the superballistic effect and enabling its
application to low-dissipation devices. Our theory explains
the different behavior between electrons and conventional
fluids and, by considering current-driven nonthermal phe-
nomena, it provides a plausible explanation of the
Molenkamp effect. We ultimately solve the superballistic
paradox, which is a consequence of the peculiarities of
electron-electron collisions at the Fermi surface.
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