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Tuning magnetism in graphene nanoribbons via strain and adatoms
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We investigate the impact of strain and adsorbed H adatoms on the magnetic properties of zigzag graphene
nanoribbons (ZGNRs) using a combination of tight-binding and density functional theory methods for both
ferromagnetic (FM) and antiferromagnetic (AFM) edge configurations. We focus on the metallic FM edge
configuration of the ZGNRs to better exploit the tuning of its properties. We find that the magnetic configuration
of H adatoms is strongly influenced by the edges, with an AFM coupling between edges and the H adatom. In
fact, the magnetic spatial pattern of the H adatom differs from that found in graphene due to this edge coupling.
Importantly, we find robust discrete plateaus of integer magnetic moment as strain is varied in the defected
ZGNRs, which we relate to changes in the band structure, namely, a half-metallic character or the opening of a
gap. This behavior can be of interest for magnetic applications of carbon-based nanostructures.
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I. INTRODUCTION

Partially filled d and f orbitals are responsible for the
magnetic order of transition metals and rare earth ions in
common magnetic materials. However, their environmentally
harmful nature has boosted the quest of alternative routes to
achieve magnetic order in solids. In this context, p-orbital
magnetism has arisen in the last two decades as a possible way
to realize sustainable spintronic devices [1]. It can emerge in
low-dimensional carbon-based materials such as nanostruc-
tured graphene, nanoflakes, or nanoribbons. At the edges or
vacancies of such nanomaterials, the p, orbitals of carbon
atoms give rise to m-electronic states, in which electron-
electron interactions induce magnetic ordering, referred to as
7 magnetism [2,3].

Magnetic graphene nanostructures are particularly promis-
ing for spintronics [4,5]. Graphene exhibits weak spin-orbit
and hyperfine couplings [6—8], which are the main physical
mechanisms for relaxation and decoherence of electron spins.
This, in addition to the high electron mobility in this material,
results in the longest spin diffusion length achieved at room
temperature [9]. These characteristics are fundamental for the
application of graphene-based materials in spintronic devices.

Bulk pristine graphene is intrinsically nonmagnetic. How-
ever, there are two main scenarios in which magnetism may
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emerge in this material. The first one is related to the presence
of point defects in the graphene lattice, specifically vacancies
and adatoms [2]. This type of magnetism has been extensively
studied [10-12] and experimentally observed in irradiated
graphite samples [13—15]. While these early studies lacked
precision over the distribution of defects, advancements in
experimental techniques have allowed for the controlled cre-
ation of defects. The adsorption of adatoms, particularly
hydrogen, represents one of the most effective methods for
modulating the magnetic properties in graphene with atomic
precision [16]. The second scenario involves certain graphene
nanostructures, namely, graphene nanoflakes [2] and zigzag
graphene nanoribbons (ZGNRs), which present intrinsic mag-
netic ordering without the need of other defects than the
edges. As it is well known, these nanoribbons develop low-
energy states localized at the zigzag edges [17,18], which are
predicted to be spin polarized due to electron-electron interac-
tions [19-21]. ZGNRs can present half-metallicity, producing
fully spin-polarized currents [22]. Moreover, magnetoresistive
devices [23], spin valves [24], spin diodes [25], and field-
effect transistors [26] based on ZGNRs have been proposed
to exploit their magnetic edge states, constituting the building
blocks of prospective graphene-based spintronics.

The lack of atomic precision in early synthesis methods of
ZGNRs, such as solution-phase chemistry [27] or top-down
approaches [28], hampered the experimental verification of
magnetism in these systems, mainly because magnetic order-
ing is very sensitive to edge roughness [29]. However, the
development of on-surface synthesis techniques for ZGNRs
has provided the observation of energy gaps and local density
of states consistent with the existence of edge magnetism
[30]. Although the direct experimental evidence of magnetism
in ZGNRs still remains elusive [31], the atomic precision
achieved both in synthesis and in defect creation in graphene

Published by the American Physical Society
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nanostructures is a powerful motivation to explore the inter-
play of these two sources of magnetism in ZGNRs and the
possible ways to modify it [32].

Another way to tune the electronic and magnetic proper-
ties of pristine graphene and graphene nanosystems, such as
nanoribbons, is by means of strain. This method to modify
the physical properties of a material has been proved to be
effective and tunable, originating the term straintronics [33].
With respect to graphene, a gap may open [34], and pseu-
domagnetic fields due to strain give rise to valley-polarized
states [35,36]. In ZGNRs, either flat or helicoidal, mechanical
deformations have an impact on their magnetic properties.
However, few studies have explored this effect. In flat ZGNRs,
an increase of the magnetic susceptibility with applied strain
in pristine samples has been reported [37]. Nevertheless, its
consequences on the electronic structure, such as changes in
the band structure and electronic distribution, were not been
addressed therein, and a more comprehensive understanding
is still lacking. Also, helicoidal ZGNRs have been recently
shown to present fully polarized edge states [38], although
this geometry presents structural difficulties for practical ap-
plications compared to their flat counterparts. To the best of
our knowledge, the interplay between edge magnetism and
localized magnetic moments induced by point defects, such as
vacancies or hydrogen adsorption, located inside the ribbon at
finite distances from the edges (edge-point defect interaction),
remains largely unexplored. Even less attention has been de-
voted to the possibility of modulating this nontrivial magnetic
coupling via mechanical strain. These are the focal points of
the present study.

In this work, we explore the strain tunability of the mag-
netic response of ZGNRs via the presence of point defects,
namely, adsorbed H atoms, located inside the ribbon. Note
that we do not consider defects located at the edge, which
amount to an edge modification, as reported in Ref. [32], nor
reconstructed vacancies, such as those studied in Ref. [39].
In fact, we are interested in systems without the sublattice
mixing produced by the reconstruction, with a net mag-
netic moment, where a controlled defect engineering can be
achieved via adsorption, avoiding random disorder or uncon-
trolled defects. We will mainly focus on the ferromagnetic
(FM) edge configuration, which we find to be optimal for
achieving tunability.

In order to elucidate the origin of the physical responses
found, we first analyze the role of induced strain as a way
to modify the electronic properties of ZGNRs [33,40]. Using
first-principles and tight-binding (TB) methods, we consider
uniaxial strain along the zigzag direction of a ZGNR, resulting
in a smooth, albeit important, enhancement of its magnetic
response. We attribute this increase to modifications in the
band structure produced by the strain field. Second, we in-
vestigate the role of adsorbed H atoms and its coupling to
the edge states of the ZGNRs, modifying its properties via
strain. With these previous studies at hand, we are in the
position to explore the optimal scenario for the tuning of mag-
netic properties. For the FM configuration, we find that the
magnetic moment varies with strain yielding robust discrete
integer plateaus in the defected ZGNRs. These plateaus can
be explained by resorting to the band structure, being related
to the half-metallic character of the gap opening with strain,

—— longitudinal direction

FIG. 1. (a) Atomic arrangement of an unstrained §8-ZGNR. The
unit cell and the lattice parameter are displayed. (b) The same ZGNR
with induced longitudinal strain. The strain-modified lattice and hop-
ping parameters are also shown.

which can be relevant for magnetic applications of graphene
nanoribbons. Additionally, we have verified that the Ander-
son impurity model gives an excellent description of the H
adatom, much better than the commonly employed vacancy
model, yielding an excellent agreement with ab initio results.
We consider that these results clarify the nature of edge-point
defect coupling and provide another avenue to change in a
detectable, stepwise fashion, the magnetic properties of these
systems.

The article is organized as follows. Section II describes the
system under consideration and outlines the computational
methods employed. Specifically, we detail the tight-binding
model in Sec. Il A and the density functional theory (DFT)
calculations in Sec. II B. Our results are presented in Sec. III,
divided into three main parts. First, Sec. IIl A investigates
the effects of strain on pristine ZGNRs. Second, Sec. III B
examines the adsorption of H adatoms, and finally, Sec. III C
studies the role H adatoms in combination with strain on
ZGNRs. Section IV concludes with a brief summary of our
main findings.

II. SYSTEM AND COMPUTATIONAL METHODS

The system under consideration consists of an infinitely
long ZGNR, with a lattice parameter a = J3 ap, ag = 1.42 A
being the C—C distance. We label the nanoribbon according to
its width, W-ZGNR, where W indicates the number of zigzag
chains of atoms across the width of the nanoribbon. Thus, the
nanoribbon has N = 2W C atoms in its translational unit cell
[see Fig. 1(a) for further details].

We consider that a uniform and uniaxial strain is applied
along the zigzag direction of the nanoribbon. The crystal
structure of the nanoribbon is modified in this direction, al-
tering the interatomic distances and thus the lattice parameter,
denoted as a’. As further discussed later, we assume that the
width of the ZNGR remains unchanged after uniaxial stress.
Figure 1(b) shows this structural modification. For a ZGNR
with this applied uniaxial strain, the size change corresponds
directly to the modification of the lattice parameter in that
direction. Thus, we quantify the strain as
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a

033255-2



TUNING MAGNETISM IN GRAPHENE NANORIBBONS ...

PHYSICAL REVIEW RESEARCH 7, 033255 (2025)

(@)
0.60
0.55
0.50
0.45
0.40
0.35
0.30
0.25
0.20
0.15
0.10

m (us)

—e— AFM with TB
—Oo— AFM with DFT

-0.20 -0.15 -0.10 -0.05 0.00 0.05 0.10 0.15 0.20

0.60
0.55
0.50
0.45

0.40{ ¢
0.35
0.30
0.25
0.20
0.15
0.10

m (us)

—e— FM with TB
—o— FM with DFT
—— FM with DFT relaxed

-0.20 -0.15 -0.10 -0.05 0.00 0.05 0.10 0.15 0.20
&

FIG. 2. Spatial distribution of the magnetic moments in a 8-
ZGNR (radii of the circles are proportional to the magnetic moment
at each site, with red circles indicating positive values and blue
circles indicating negative ones) and value of the magnetic moment
of the edge atoms as a function of strain in (a) the AFM configuration
and (b) the FM configuration.

Admittedly, this assumption does not accurately describe the
atomic rearrangement in a real situation, where the ZGNR
would also be relaxed in the transverse direction due to the
Poisson effect [40]. However, the Poisson effect is relatively
small in graphene, with Poisson ratios ranging from 0.14
to 0.19 [41,42]. Furthermore, we have performed DFT cal-
culations that account for Poisson relaxation (see details in
Sec. IIB) and found that it does not substantially alter the
magnetic response [see Fig. 2(b)]. Consequently, we have
chosen to focus on the simplified description, which aims to
clarify the main underlying physics related to magnetism.

We also consider H adatoms adsorbed onto the ZGNR.
It is well established that H adatoms form covalent bonds
with C atoms, where the 1sH orbital hybridizes with the
2p. C orbital. However, the presence of H adatoms does not
lead to significant deformation of the graphene lattice. It only
induces a slight out-of-plane relaxation in the surrounding re-
gion [2,10]. Our DFT calculations confirm that this relaxation
does not result in noticeable changes of the electronic struc-
ture. Consequently, in this study, we neglect the out-of-plane
relaxation when modeling the occurrence of H adatoms and
focus on the magnetic changes induced in the system.

A. Tight-binding model

The TB approach followed in this work employs a
one-orbital mean-field Hubbard model, a well-known and
extensively used approximation to describe magnetism in car-

bon materials [2]. Its results have been demonstrated to be
in good agreement with first-principles calculations [43—46].
The Hubbard model only considers the nonhybridized p, or-
bital of each C atom, which contributes with one electron to
the resulting w band. For undoped or unbiased graphene that
we considered, the ZGNR is half filled. The Hamiltonian of
the system splits into two parts, H = Ho + Hy, where Hy
corresponds to the noninteracting TB Hamiltonian and Hy
represents the electron-electron interaction. Here, the non-
interacting TB Hamiltonian only includes nearest-neighbor
couplings,

_ ,
Ho=— > t'c,c;, +He., )
(i,)),0

where H.c. stands for Hermitian conjugate and the summation
in (i, j) runs over nearest-neighbor C atoms. The origin of
energy is set at the energy of the p, orbital. Here, c;r and c¢; are
the creation and annihilation fermion operators at atoms 7 and
Jj, respectively. The parameter ' denotes the nearest-neighbor
hopping energy and o =1, |, indicates the electron spin.

In a TB model, the hopping parameter depends on the
interatomic distance; in this case, it is altered due to the
strain. Among the three possible first-neighbor hoppings, the
transverse one remains unchanged, since the distance between
atoms remains constant in this direction. However, the other
two hoppings between bonds with a longitudinal component
are modified due to the variation on the atomic separation in
the direction of strain. We denote these as ¢’ [see Fig. 1(b)]. We
account for this effect by modifying the hopping parameters
with the distance according to the expression [34]

t/ =t e—ﬁ(r/flo—l)’ (3)

wheret = 2.5V is the hopping in the strain-free case, r is the
distance between the atoms, and 8 = 3.1. The parametrization
(3) has been successfully validated with DFT results [47].

The magnetic response of the ZGNR is modeled with the
second term of the Hamiltonian, ;. The Hubbard model
introduces these interactions by means of an on-site Coulomb
repulsion. Thus, electrons with opposite spin occupying the
same site experience a repulsion quantified by the energy
U > 0, known as the Hubbard parameter. The interaction
Hamiltonian is

Hy=U Zni,¢ni,¢, (€)]

where n; ; = cia ¢; , is the number operator, which gives the
spin-resolved electron density at atom i. We set the value
of U =3eV in our numerical calculations. To deal with
the many-body interaction Hamiltonian #;, the restricted
Hartree-Fock mean-field approximation is adopted. The re-
sulting Hamiltonian is approximated as

Hy =U Z(m,Mm,Q +ni (nig) — (i) my)).  (5)

Here, the spin-up and spin-down matrix elements at site i
depend on (n; ) and (n;4), respectively, which represent
the average electron population with opposite spins at that
site. These numbers are the expectation values of the spin-
resolved electron densities obtained from the eigenvectors of
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‘H, which are initially unknown. The Hamiltonian is solved
self-consistently, using the following procedure: Starting from
an initial guess of (n; ,) chosen randomly, (1) the 2N x 2N
matrix representation of the Hamiltonian is obtained. (2) The
Hamiltonian #H(k) is diagonalized in the reciprocal space,
and the corresponding spin-polarized eigenvectors ¢, ; (k)
are computed, where v is the band index. (3) The updated
spin-resolved densities are obtained as follows:

1 N
<ni,a> = E Z
v=1

where the summation runs up to the Nth band since the system
is half filled. We employ a fine grid of 5000 £ wave numbers
over the Brillouin zone to perform the numerical integration
in Eq. (6). Given the (n; ) values, steps (1)—(3) are repeated
iteratively until convergence is reached for the values of the
electron densities. A more detailed explanation can be found
in Ref. [48] for a similar self-consistent algorithm.

From the imbalance of the obtained spin-polarized densi-
ties of electrons, a local site-resolved magnetic moment arises:

w/a

¢!y ()b (k) dk, (6)

—r/a

m; = up({(ni4) — (i), @)

where up is the Bohr magneton. Finally, the total magnetic
moment per unit cell of the system is given by M =), m;.
We will present these magnitudes in Sec. III.

Finally, we employ the TB model to address the effect of
hydrogen adsorption. A commonly used approach consists of
substituting the H adatom by a single vacancy defect, neglect-
ing lattice relaxation. This is motivated by the minimal lattice
distortion produced by the H adatom and the hybridization of
the C orbital, which effectively removes the orbital from the
low-energy spectrum. These two factors make it possible to
assume that a vacancy in an undistorted lattice is equivalent
to an H adatom. Within this approximation, the vacancy is
modeled as empty atomic site, removing the corresponding
hopping terms in the electron Hamiltonian [12,46]. For com-
parison, we have also implemented a more realistic Anderson
model, where the H adatom is treated as an impurity [49-51].
In this case, an additional term in the Hamiltonian is added
to describe the impurity states and their interaction with the
graphene lattice, given by

Himp = UnhLhyhhy + " eghlhe —ty Y (¢} ho +H.e),
®)

where ] and h, are the creation and annihilation operators
for an electron in the 1s orbital of the H adatom, respectively.
The C atom bonded to the H adatom is located at the atomic
site i = 0. We set the on-site energy ey = 1.7¢eV, the intra-
atomic Coulomb repulsion Uy = 1.3eV, and the hopping
energy between the C and the H adatoms is set ty = 5.2¢eV.
These values are obtained by fitting to our DFT calculations
presented below.

B. First-principles calculations

We have performed first-principles calculations within
the DFT framework using the SIESTA code with spin po-
larization [52]. The crystal structures were optimized with

the revised Perdew-Burke-Ernzerhof functional [53]. The
electron-ion interactions are modeled with norm-conserving
nonlocal Troullier-Martins pseudopotentials described with a
double-¢ singly polarized basis set. The energy cutoff is set
to 400 Ry. The structure was relaxed by conjugate gradient
optimization until forces were smaller than 0.005 eV/A. This
provides enough precision to obtain reliable strain proper-
ties. Periodic boundary conditions were applied along the
longitudinal axis of the ZGNR, so we use sufficiently large su-
percell parameters (20 A) in the perpendicular and transverse
directions to prevent spurious interactions between adjacent
nanoribbons. All C atoms at the edges were passivated by hy-
drogen. Finally, we have employed a Monkhorst-Pack scheme
withn x 1 x 1 k points sampling of the Brillouin zone, where
n is set to 5000 k points. This large number is essential to
avoid a nonphysical magnetic response of the nanoribbon.

To obtain the strain properties, we employ the following
scheme: (1) We perform a fully relaxed calculation with the
FM and antiferromagnetic (AFM) guess configurations for
each ZGNR. (2) From the relaxed structure, we apply strain
to the supercell along the longitudinal direction. (3) To check
how to address the transverse strain, we perform a relaxation
on the transversal direction. This allows us to widen or nar-
row the nanoribbon depending on the compressive or tensile
strain induced along the longitudinal direction. In this way,
elastic properties such as the Poisson ratio can be obtained.
In each case, we extract the total magnetic moments from the
Mulliken spin-split populations for each orbital and atom.

II1. RESULTS

In order to clarify the effect of point defects in strained
ZGNRs, we analyze first the role of strain separately, in both
FM and the AFM solutions. This allows us to highlight the im-
pact of atom adsorption in these systems, assess the changes
induced by the point defects, and elucidate the origin of the
observed effects.

The maximum strain that graphene can withstand is ap-
proximately 25%, according to both theoretical [41,54] and
experimental [55,56] studies. In our study, we primarily con-
sider strain values up to 20%, unless stated otherwise. It is
worth mentioning that most experiments make use of local
probe microscopes to induce strain in graphene. Previous nu-
merical studies revealed breaking of valley degeneracy due
to a nonuniform strain produced by out-of-plane deformation
[35,36]. However, in this work we assume uniform strain and
neglect valley polarization.

A. Strain on pristine ZGNRs

The Hubbard model predicts two possible magnetic so-
lutions in a ZGNR depending on the relative orientation of
spins at opposite edges. Due to the strong coupling between
neighboring atoms, the spins within an edge are ferromagnet-
ically coupled. However, edge-to-edge interaction is weaker
and decays as 1/W? with the ribbon width W, so two solutions
can be explored. When the spins on one edge are antiparallel
to those on the opposite edge, the solution is AFM, as de-
picted in Fig. 2(a). If the spins at both edges are parallel, the
solution is FM, as shown in Fig. 2(b). An analysis of the total
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energy of both configurations reveals that the AFM solution
is the ground state. However, since the energy difference with
respect to the FM state is only a few meV even for narrow
ribbons (W = 8) as those studied here [19], it is easy to switch
between the two configurations, for instance, by flipping the
spins with a small magnetic field [23]. Therefore, in view of
this, we study both AFM and FM states.

In Fig. 2, we show the magnetic moment of the C atoms
at the edges as a function of strain for the AFM and FM con-
figurations. The edge atoms are the most relevant, since they
provide the main contribution to the total magnetic moment.
Positive (tensile) and negative (compressive) strain values are
considered, following Eq. (1). Note that compressive strain
in graphene usually produces out-of-plane deformations like
ripples or bending; for the sake of clarity, these effects are not
considered in this work. The magnetic moments are computed
using both the TB approach and DFT calculations. The edge
magnetic moment is found to increase gradually and smoothly
with strain, presenting the same trend in both magnetic con-
figurations. It increases by 41% (42%) with respect to the
strain-free situation when the strain is 4+-0.10 in the AFM (FM)
configuration, according to DFT results. For an induced strain
of 4+0.20, the magnetic moment is 102% (101%) higher than
the strain-free ZGNR in the AFM (FM) configuration. This
effect shows that the magnetic response of a strained ZGNR
can be selectively enhanced.

The excellent agreement between the TB and DFT results
in Fig. 2 is remarkable. The difference is slightly higher in the
case of compressive strain, but this condition is less common
in actual experiments. For tensile strains, the maximum differ-
ence between both methods arises in strain-free samples and
corresponds to a deviation in magnetic moment of 7.1% and
6.5% in Figs. 2(a) and 2(b), respectively. Furthermore, using
DFT we examine the effect of the relaxation in the transverse
direction due to the Poisson effect in the FM configuration
[see black crosses in Fig. 2(b)]. Interestingly, there is no
significant difference between this result and the nonrelaxed
situation. For instance, the magnetic moment differs only by
6.1% between the relaxed and the TB nonrelaxed cases when
the strain is 40.10. This demonstrates the validity of our
assumption that relaxation effects are negligible.

We also study how the magnetic moment varies with the
width of the ZGNR. Figure 3 depicts the edge magnetic
moment plotted against the width expressed in number of
zigzag chains W, for the strain-free and +0.10 strain cases.
The AFM solution yields slightly higher values than the
FM solution when the ZGNR is narrow. In both cases, the
magnetic moment increases as the width increases. The TB
calculations enable us to explore very wide ZGNRs, where
the magnetic moment reaches saturation, with both the AFM
and FM solutions converging to the same value. Additionally,
the results obtained with DFT for narrow ZGNRs are also
shown for comparison. However, scaling to large widths with
this approach is time-consuming. In such cases, the TB model
offers a much more efficient way to obtain reliable results in
the case of wide ZGNRs.

To elucidate the enhancement of the magnetic moment
with strain observed in Fig. 2, we analyze the band disper-
sions of the 8-ZGNR. Figure 4 shows the band structures
for the AFM configuration with both the TB (solid line) and

0.50
0.45 A
0.40 1 o—o—0o—0o—0o—0—0—9
~ 0.35 1
m
2
(e=0.00)

S 0.301 *—0—0—0—0—0—0—0
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—e— FM with TB

| —O— FM with DFT

0.20 —e— AFM with TB
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0.15 r -

10 12 14 16 18 20 22 24 26 28
width (number of chains)

4 6 8

FIG. 3. Magnetic moment of the edge atoms against the width
W of the ZGNR. The graph includes data for two strain values, 0.00
and 4-0.10.

DFT (dotted line) approaches for two strain values. In the
AFM configuration, up and down spin-polarized bands are
degenerate, and a gap opens between the edge bands. The
edge states open a gap, with the Fermi level in between.
Figure 4(a) corresponds to the strain-free case, while Fig. 4(b)
shows the behavior when the ZGNR is subjected to +0.10
strain. Strain does not change the overall aspect of the bands.
However, two differences are apparent. First, the bands be-
come significantly flatter with strain, as expected, since the
bandwidth is proportional to the hopping parameter and this
decreases with increasing distance between C atoms. Second,
the portion of the band edge states that exhibits flat character
becomes larger compared to the dispersive region of the band,
extending over a wider range of momentum in the Brillouin
zone. As a consequence, a larger number of the states of the
band are edge-localized, leading to an enhancement of the
edge magnetic moment.

(a) £€=0.00 (b) €= +0.10

E—Ef (eV)
E —Ef (eV)

up (TB)
down (TB)
up (DFT)

down (DFT) ]

up (TB)
down (TB) -

0.75 1.00

k (m/a) k (r/a)

FIG. 4. Band structure of the 8-ZGNR obtained with the TB
(solid line) and DFT (dotted line) approaches in the AFM config-
uration for (a) strain-free and (b) strain of +0.10 cases.
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FIG. 5. Band structures of the 8-ZGNR obtained with the TB
(solid line) and DFT (dotted line) approaches in the FM configuration
for (a) strain-free and (b) strain of +0.10 cases.

We proceed analogously with the FM configuration of the
8-ZGNR. The band structure for the strain-free case is shown
in Fig. 5(a). In the FM solution, the degeneracy of the up
and down spin bands is broken. Now the system is gapless
and the spin-up polarized edge band lies below the Fermi
level, giving rise to a nonzero magnetic moment. The strained
40.10 case is shown in Fig. 5(b). Once again, the overall as-
pect of the bands remains similar with applied strain, with the
bands becoming flatter. Remarkably, the edge bands are more
separated in the strained situation compared to the strain-free
case. The Fermi level lies always symmetrically between the
edge bands. Consequently, this separation, along with the fact
that the flatter portions of the bands are larger, implies that
more spin-up states are occupied than in the strain-free case,
thereby increasing the net magnetic moment.

B. H adatoms in pristine ZGNRs

We now consider the effect of H atoms adsorbed onto the
ZGNR. For numerical calculations, an adatom is placed in
a supercell that is three times wider than the basic unit cell,
corresponding to a concentration of approximately 2% for
W = 8. Additional concentrations will be considered later. In
graphene, H adatoms are well known to induce a magnetic
moment in the surrounding C atoms of the opposite sublattice,
resulting in a characteristic triangular or ~/3 x +/3 pattern
around the defect [10]. Consequently, the magnetic moment
of the system is modified.

We compute the adsorption of H adatoms using three
methods: the vacancy-model approach, the Anderson impu-
rity model, and DFT calculations. Both the vacancy-model
approach and the Anderson impurity model are implemented
within the TB framework, described in detail in Sec. II. Fig-
ure 6 presents the results obtained with these three methods,
including the spatial distribution of the magnetic moment in
the supercell and the corresponding band structure. Here, the

(a) Vacancy model
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FIG. 6. Spatial distribution of the magnetic moment with an H
adatom located at the fourth chain in 8-ZGNR supercell (with FM
configuration at the edges) and the corresponding band structure
computed using (a) the vacancy-model approach, (b) the Ander-
son impurity model, and (c) DFT calculations. Radii of the circles
are proportional to the magnetic moment at each site, scaled by
a smoothing factor to enhance visualization. Red circles indicate
positive values and blue circles indicate negative ones.

033255-6



TUNING MAGNETISM IN GRAPHENE NANORIBBONS ...

PHYSICAL REVIEW RESEARCH 7, 033255 (2025)

H adatom is located at the central fourth chain and belongs to
the sublattice opposite to that of its nearest (lower) edge. All
methods reveal a very similar electronic spatial distribution,
characterized by a noticeable triangular pattern of magnetic
moments with negative values at the C atoms surrounding
the H adatom, specifically those in the sublattice opposite to
the defect, as anticipated. In both the Anderson model [see
Fig. 6(b)] and the DFT results [see Fig. 6(c)], the H adatom
also holds a prominent magnetic moment at the center of the
triangle, differing from the empty space of the vacancy-model
approach [Fig. 6(a)]. In these cases, the magnetic moment
from the bonded C atom is hidden by the top H adatom.
However, we have confirmed that no magnetic moment arises
in this atom, making it irrelevant to the overall magnetic
structure. Our choice of the fourth chain and edge-opposite
sublattice for placing the H adatom is only motivated for a
better visualization of the magnetic pattern. We have also
explored other configurations with the H adatom at different
positions and have found that the results are consistent with
those presented here. Additionally, we show in Fig. S1 of
the Supplemental Material [57] the case with the H adatom
located at the fourth chain but same edge sublattice. Regarding
the chain position, only when the H adatom is located just at
the edges, and depending on its sublattice, it strongly interacts
with the edge states, but this situation is in fact an edge
modification, beyond the scope of our work.

We focus in this work on the FM configuration between
the edges, since its metallic behavior offers a more suitable
platform for studying and manipulating defect states by me-
chanical deformation of the ZGNR, in contrast to the gapped
AFM solution. This solution in the presence of the H adatom
is shown in Fig. S2 of the Supplemental Material [57] for
completeness. The influence of edge states on the magnetic
pattern of Fig. 6 is highly significant; they affect the defect
state around the H adatom. To be specific, note the absence
of a significant magnetic moment at the lower vertex of the
triangular magnetic pattern. In an infinite graphene sheet, we
would expect a negative magnetic moment at this atom, com-
pleting the well-known triangular magnetic pattern around the
defect. This pattern is distorted due to its proximity to the
lower edge of the ZGNR, where the electron exhibits spin-
up polarization. Actually, the influence of the edge states is
even more profound, determining the overall magnetic pat-
tern. In contrast to the results for an isolated H adatom in
bulk graphene, where the magnetic pattern typically exhibits
spin-up polarization [2,10,49], here the pattern is forced into a
spin-down configuration. We have found that this spin-down
state is energetically the most favorable solution, differing by
approximately 0.27 eV/atom from a solution with a spin-up
defect pattern. Thus, the defect state is antiferromagnetically
coupled to the edge states of the ZGNR, resulting in a ground
state with a spin-down polarization.

With respect to the band structure, all models provide
the same low-energy bands for |E| < 1eV. For instance, in
Fig. 6(a), two spin-up bands appear below the Fermi level,
merging and flattening as k is closer to the boundary of the
Brillouin zone. These bands correspond to the two spin-up
edge states. Similarly, two equivalent spin-down bands are lo-
cated above the Fermi level. Additionally, a single spin-down
band near the Fermi level is related to the localized defect

pattern, with its corresponding unoccupied counterpart. These
six bands appear in all the models and methods chosen for this
work. However, it is observed that the vacancy-model solution
differs notably from DFT results, presenting an insulating gap
and symmetric behavior around the Fermi level, in contrast to
the metallic and asymmetric character of the DFT bands. In
contrast, the bands obtained from the Anderson model exhibit
a remarkable agreement with the DFT results. Then, we come
to the conclusion that the common approach of simulating
H adatoms as a vacant atomic site in the graphene lattice is
not reliable enough [12,46,58]. As we have demonstrated, this
approximation accurately describes the spatial distribution of
magnetism, but fails to provide an accurate description of
the band structure, most importantly, predicting an insulating
behavior instead of metallic. In contrast, the Anderson im-
purity model, which is computationally less demanding than
DFT calculations, offers a more accurate description of the
electronic bands.

C. H adatoms in strained ZGNRs

Finally, we investigate the magnetic behavior of the H-
adsorbed ZGNR in combination with strain. Due to the spatial
symmetry breaking introduced by the adatom, it is more ap-
propriate here to analyze the total magnetic moment M rather
than focusing only on the edge magnetic moment, as we
presented in Fig. 2. In Fig. 7(a), we show the total magnetic
moment as a function of strain, from —0.05 to +0.30. The
reason for this choice is to prevent out-of-plane deforma-
tions caused by high compressive strains, while providing an
ample window for tensile strain. The figure shows that the
magnetic moment increases under strain. Interestingly, unlike
the smooth growth observed in Fig. 2, the magnetic moment
exhibits a stepped behavior, characterized by plateaus where
it remains constant. Remarkably, the magnetic moment has
exactly odd integer values at these plateaus, with three distinct
steps at M(up) = 1,3, and 5. This behavior is observed in
both the Anderson model and DFT calculations, with a rea-
sonable good agreement between them.

To analyze the origin of the steps in the magnetic moment
as a function of strain, we present the band structure for three
representative strain values of —0.03 [see Fig. 7(b)], +0.03
[see Fig. 7(c)], and +0.17 [see Fig. 7(d)], which correspond to
the first plateau, the transition region, and the second plateau,
respectively. Again, the good agreement between the band
structure obtained from the Anderson model and the DFT
calculations is apparent. At strain —0.03, the bands exhibit
half-metallic behavior. A half-metal is characterized by being
an insulator for one spin orientation, while remaining metal-
lic for the other [59]. As observed in Fig. 7(b), for spin-up
polarization, the bands are filled and separated by a bandgap
from the unoccupied bands. In contrast, the spin-down bands
are partially occupied, showing a metallic behavior for this
spin polarization. A central characteristic of the half-metallic
systems is the quantized value of magnetization [59], which
in our system manifests as the M = pup plateau. This arises
because the system contains an integer number of N; spin-up
electrons due to the filled bands, as well as an integer total
number of electrons N = N; + N, in the supercell, where N
is the number of spin-down electrons. Consequently, there
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FIG. 7. (a) Total magnetic moment as a function of strain in the H-adsorbed 8-ZGNR supercell. Band structures obtained from DFT
(dashed line) and TB (solid line) methods for strain values of (b) —0.03, (¢) +0.03, and (d) 4+0.17, corresponding to the first plateau, the

transition region, and second plateau, respectively.

must be an integer number N of spin-down electrons even
if the corresponding bands are partially filled. Comparing the
DFT bands from Fig. 7(b) with the DFT strain-free adatom
case depicted in Fig. 6(c), we observe that the bands are very
similar. The key difference is that in the unstrained DFT case
the spin-up defect band crosses the Fermi level near k£ = 0, de-
parting from the half-metallic behavior. Therefore, the system
undergoes a transition from half-metallic to being metallic
for both spins, which explains why the magnetic moment
deviates from the plateau at zero strain in Fig. 7(a) for the
DFT calculation. In the strain-free TB results from Fig. 6(b),
the spin-up band does not cross the Fermi level and the system
remains half-metallic, where the transition to metallic occurs
at +0.01 strain.

The region of noninteger growing magnetic moment be-
tween the first and second plateaus in Fig. 7(a) indicates the
metallic behavior of the system at those strains, which is
confirmed by the 4+0.03 strain bands [see Fig. 7(c)], where the
Fermi level is crossed by both spin bands. The second plateau
is explained with the help of Fig. 7(d), which depicts the
bands for the strained ZGNR with € = +0.17, for which an

integer M = 3 ugz magnetic moment is found in both the DFT
and the TB model. The band structures obtained with both
approaches display a bandgap for the two spins. The origin of
this second quantized plateau differs from the previous one
and stems from the integer number of occupied bands for
both spin polarizations: The imbalance between the number
of filled spin-up and spin-down bands gives rise to the integer
value of the magnetic moment. The same situation occurs
for the M = 5 u plateau. In the latter case, DFT calculations
do not reach the plateau predicted by the TB approach for
large strains, probably due to the substantial distortion effects
caused by the huge strain values required to reach this plateau.

This steplike behavior in the magnetic moment also ap-
pears for other adatom concentrations, indicating that it is
a general feature of H-adsorbed strained ZGNRs. Figure 8
presents the cases with lower H densities of 1.5% and 1.2%,
in comparison with the previously discussed 2% case. The
plateaus and the transition regions between them persist in all
densities. Notably, the emergence of plateaus occurs at lower
strain values as the H adatom concentration decreases. As a
result, the lower M = up plateau is not observed in the 1.5%
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FIG. 8. Total magnetic moment as a function of strain in the H-
adsorbed 8-ZGNR with different H concentrations.

and 1.2% cases within the strain range considered here. In
contrast, an M = 7 u, plateau emerges at the lowest density
of 1.2%.

The previous results present intriguing possibilities for the
systems studied in this work. First, half-metallic materials
are highly desired for spintronic applications as a means to
generate completely spin-polarized currents. The realization
of half-metallicity in ZGNRs has already been predicted in
different setups, such as the use of electric fields [22], edge
modification [60], substitutional doping [61,62], or magnetic
atom adsorption [63], typically transition metals. However,
these situations tend to be experimentally more complex than
the adsorption of H adatoms. Second, the appearance of
quantized magnetic moments may hold potential for future
magnetic applications, given that the required conditions are
not exceedingly challenging, namely, the use of H adatoms,
which are among the most common dopants. Furthermore, the
observed dependence of the plateau positions on H density can
be exploited to access the plateaus without requiring excessive
strain values.

IV. CONCLUSIONS

In summary, we have investigated the effects of strain and
H adatom adsorption on the magnetic properties of ZGNRs

using a combination of TB models and DFT methods. A
longitudinal strain applied along the ZGNRs makes the mag-
netic moments in both FM and AFM configurations increase
progressively with strain, achieving a significant growth rate.
This enhancement in magnetic moment is attributed to strain-
induced modifications in the band structure and has a smooth
behavior. Our TB model shows excellent agreement with DFT
calculations and enabled us to study much larger systems with
reduced computational effort compared to DFT calculations.
We have explored the effects of H adatoms on ZGNRs with
different computational approaches. We found that modeling
H adatoms as vacancies does not accurately capture the band
structure, leading to misleading conclusions. The Anderson
impurity model, however, yields excellent agreement with the
DFT-derived band structure. The magnetic configuration of
H adatoms is largely influenced by the edges of the ZGNR,
where the ground state exhibits AFM coupling between the
defect and the edges. Interestingly, H adatoms induce a half-
metallic character in ZGNRs. When combined with strain, it
induces robust, quantized magnetic moments, characterized
by distinct plateaus of integer values with varying strain.
While the first plateau induced by smooth strain arises from
the half-metallic character, subsequent plateaus observed at
higher strains emerge due to the transition to a gapped state.
These findings offer valuable guidelines for the manipulation
of magnetism in ZGNRs and advance our capabilities for
tuning magnetic properties in two-dimensional materials.
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