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We propose to Floquet engineer Dirac cones at the surface of a three-dimensional topological insulator. We
show that a large tunability of the Fermi velocity can be achieved as a function of the polarization, direction,
and amplitude of the driving field. Using this external control, the Dirac cones in the quasienergy spectrum
may become elliptic or massive, in accordance with experimental evidence. These results help us to understand
the interplay of surface states and external ac driving fields in topological insulators. In our work we use the
full Hamiltonian for the three-dimensional system instead of effective surface Hamiltonians, which are usually
considered in the literature. Our findings show that the Dirac cones in the quasienergy spectrum remain robust
even in the presence of bulk states, and therefore, they validate the usage of effective surface Hamiltonians to
explore the properties of Floquet-driven topological boundaries. Furthermore, our model allows us to introduce
out-of-plane field configurations which cannot be accounted for by effective surface Hamiltonians.
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I. INTRODUCTION

During the last two decades, new Dirac materials such as
topological insulators, graphene, and other carbon-based ma-
terials have emerged. These are foreseen to surpass the reach
of semiconductors. Apart from their robustness to defects,
stemming either from topological protection or symmetry,
their linear dispersion is very much like that of photons,
except for their quantum statistics and their much lower
velocities. Different mechanisms have been put forward to
modify the properties of these cones. For instance, breaking
time-reversal symmetry in graphene leads to the quantum
anomalous Hall effect, a system introduced by Haldane [1]
in the 1980s and experimentally realized very recently using
ultracold atoms [2]. In this case, band gaps open up in
the otherwise gapless spectrum. and the system becomes a
topological insulator that can host chiral edge states. Other
alternatives put their emphasis towards modifying the Fermi
velocity [3-8], a crucial parameter in quantum transport [9].
As an example, applying static, uniform electric, and mag-
netic fields to three-dimensional topological insulators such as
Bi,Se; widens the cone elliptically, so that the Fermi velocity
is reduced in an anisotropic fashion [10-13].

Remarkably, however, the use of periodic drivings is dra-
matically expanding the possibilities in these Dirac materials.
Indeed, examples are now found not only in solid-state sys-
tems [14] but also in photonics [15] or even acoustics [16].
All these make use of what is known as Floquet’s theorem.
Although the words are now mainstream in the scientific
community, Floquet’s theorem is most well known in its real-
space version, that is, Bloch’s theorem. Indeed, the discrete
periodicity of a lattice in real space leads to the concepts of en-
ergy bands and Brillouin zones. The same knowledge can be
directly transferred to the domain of discretely time-periodic
systems. In this case, there are quasienergies, in analogy
to the quasimomentum of Bloch’s theory, Floquet-Brillouin
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zones, and so forth [17-20]. In regard to the study of Dirac
cones on the surface of a topological insulator, it has been
experimentally observed [21] and theoretically discussed [22]
that these can be notably altered by applying time-periodic
in-plane fields.

In our work we use a model that was introduced in a series
of seminal papers starting with by Volkov and Pankratov
[23-27] in the 1980s and that is regaining much interest
lately in the context of surface states in three-dimensional
topological insulators [28,29]. We will show that different
orientations of the applied field with respect to the surface,
as well as different polarizations, lead to a variety of situ-
ations. It is worth noticing that it has already been shown,
for example, that an in-plane, circularly polarized field leads
to gap openings [21], a feature that has also been observed
in graphene [22,30-35]. In view of previous studies based
on graphene [36,37], phosphorene [38], «-T3 materials [39],
and three-dimensional topological insulators [40], other in-
plane configurations are expected to preserve the Dirac point,
isotropically or anisotropically widening the Dirac cone. In
this paper, we will confirm these results on the surface of a
topological insulator, and furthermore, we will extend pre-
vious studies with a detailed characterization of (i) Dirac
cones on the topological surface when a time-periodic out-
of-plane field is applied and (ii) the dependence of the main
magnitudes of interest, the Fermi velocity, and the gap on
the field parameters. The aforementioned references focus on
the effective Hamiltonian for the surface states, performing
perturbation theory in the high-frequency limit. In Ref. [41],
the three-dimensional Hamiltonian is mentioned to comment
on the gap openings that occur when considering thin films
of topological insulators, although the interplay between bulk
and surface states is not discussed. In our case, we will
consider the high-frequency limit as well, although we shall
consider throughout the whole paper the full Hamiltonian of
the topological boundary. The usage of the full Hamiltonian
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allows us to observe the interplay with bulk states, which are
not accessible to the effective surface Hamiltonian.

II. TOPOLOGICAL BOUNDARY

Topological materials can be characterized by an integer
that is related to discrete symmetries of the bulk. For instance,
Chern insulators are characterized by nonzero Chern numbers
that arise when breaking time-reversal symmetry [42]. The
words topological insulators are usually reserved for systems
that do preserve time-reversal symmetry and are generally
classified according to Z, indices [42]. Since an integer
cannot change continuously, if two insulators of different
topological indices are placed together, at their interface there
must be gapless modes. Otherwise, both systems would be
connectable in a continuous way, implying that their invariants
must be the same. As a result, the edge in two dimensions
or surface in three dimensions formed in the contact region
between these materials is known as a topological boundary
[43]. In this section, we will consider Bi,Ses, an outstanding
candidate for the foreseen applications of these materials. This
is in part because of its wide band gap, which allows it to
perform even at room temperature [42], and also because it
is a well-known thermoelectric material and its experimental
growth and characterization are now almost routine. The
model is based on k - p theory; it was put forward by Volkov
and Pankratov in the 1980s, and it is currently recapturing a
great deal of attention [23,28,29].

In the orbital-spin basis, {r, o}, the bulk Hamiltonian of
Bi,Sejs is a Dirac-like Hamiltonian of the form [28,43]

H=a (k+A)+ B, (1

where a = (o, oy, r;), with o; =7, ® 0; with j =x,y,z;
B = 7. ® 1, are the Dirac matrices; 7; and o; are the Pauli ma-
trices; and 1, is the d-dimensional identity matrix. Hereafter,
we will set 7 = 1. Energies will be expressed in units of half
the bulk gap, A = Eg/2, and there is a natural length scale,
d = vp /A, where vp is the Fermi velocity. Momentum k is
therefore expressed in units of 1/d, and the vector potential
A is expressed in units of 1/ed, where e is the elementary
charge. In Bi,Se3, Eg >~ 350 meV, and vy >~ 25eV nm, lead-
ing to d >~ 2nm. The spectrum of this Hamiltonian in the
absence of driving fields, that is, if A = 0, corresponds to that
of a massive Dirac fermion, E (k) = £+/1 + k2, with k = |k|,
with the two bands being doubly degenerate. In addition, the
eigenstates of Eq. (1) are characterized by a nonvanishing Z,
topological invariant given by v = sgn(A) [43].

In this case, a topological boundary is formed by introduc-
ing a position-dependent gap. This allows the system to have
opposite band gaps on each side of the boundary, changing
the value of the Z, topological invariant. The actual meaning
of this is that the gap, defined as the difference between
band edges of a certain orbital character or parity, changes
sign because of a band inversion. Therefore, if we form
a boundary between two systems with opposite band gaps
described by this Hamiltonian, there will be a change in the
topological index, and as a result, there will be gapless modes
at the boundary. Indeed, in the simplest case of a symmetric

junction, the Hamiltonian above is modified to
H=a-(k+A)+ Bsgn(z), (@)

where z is the coordinate along the growth direction. It is not
particularly difficult to show that in this case there is a midgap
state, localized at the boundary with a localization length of
d and extended along the boundary plane. The dispersion in
that plane is that of a single Dirac cone, E(k, ) = k. Here
the subscript | indicates that the z component of a vector is
zero. These cones can coexist with doubly degenerate massive
Volkov-Pankratov states if the interface is sufficiently smooth
[28], in contrast to the sharp interface considered in this
paper. Interestingly enough, applying static external electric
and magnetic fields, it is possible to anisotropically widen
the cone, therefore leading to an effective reduction of the
Fermi velocity [10-13]. In fact, it is straightforward to obtain
analytic expressions for small enough fields. For instance, it
can be explicitly shown that the Fermi velocity decreases with
the applied field in a quadratic manner [10]. As we will show
below, specific configurations of the irradiated samples share
this exact same characteristic.

III. FLOQUET ENGINEERING

If we apply a time-periodic driving to the system instead
of static fields, a wider range of situations occurs. It is known
from the use of surface effective Hamiltonians that a circularly
polarized field will lead to gap openings [22]. However, only
in the case of graphene has it been shown that the Dirac cones
become strongly anisotropic in the case of linearly polarized
fields [36]. In the following, we shall show that these two
features arise when the topological boundary Hamiltonian
above is considered. More importantly, it allows us to consider
out-of-plane configurations, which are not accessible to the
aforementioned surface effective Hamiltonians.

Hereafter, we consider the system size to be small enough
to ignore any spatial dependence of the field [44]. In that case,
we can choose the vector potential components to be

Aj(t) = aje +ale ™, 3

where a; = (f;/2w) exp(if;). Here, f; are the components of
the electric field; F (t) = —0;A(t), measured in units of A/ed;
w is the driving frequency measured in units of A; and 0; are
phases which can be tuned to obtain different polarizations.
The symmetries of this problem allow us to introduce three
good quantum numbers. On the one hand, as a consequence
of continuous translational symmetry in the XY plane, the in-
plane momentak = (k,, ky, 0) are good quantum numbers. On
the other hand, discrete translational symmetry in time leads
to the quasienergies, a central concept in Floquet theory. The
discreteness of this symmetry restricts the quasienergies to
the first Floquet-Brillouin zone, ¢ € [—w/2, w/2], very much
like the quasimomentum in a lattice. All in all, it is possible
to express the envelope function upon which the Hamiltonian
acts as follows:

W(r, 1) =e ek ®(z, 1), 4)

where ®(z,¢t) = ®(z,t +T) and T = 27 /w. Notice that the
problem is now very much simplified. Indeed, there is now
only a z dependence, and the problem is reduced to a unit cell
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of size T along the time axis. Hence, the equation to be solved
for ®(z, r) is given by

e®(r,t) = (H —i0,)®(r,1). )

Taking advantage of the periodicity of ®(z, ¢), we can Fourier
expand

Oz =) @, (©6)

l=—00

Indeed, it is possible to find straightforwardly an equation for
the Fourier components

e9,(2) = [ - k + Bsgn(z) — lolsle,(2)
+J0 @)+ 0, (), (7

where J = a - a, with a being a vector whose components are
the previously defined a;’s.

Several comments are in order before continuing. The first
is that, if we remove the field by setting J = 0, the result
is similar to that of free electrons when we imagine folding
the energies by artificially introducing Brillouin zones. That
is, the spectrum in the first Floquet-Brillouin zone can be
obtained by repeatedly folding the spectrum for the driving-
free case. For instance, for the topological boundary, the first
Floquet-Brillouin zone displays evenly spaced cones, where
the separation between consecutive Dirac points is w. Similar
to the free electrons’ case where the presence of a potential
may open up energy gaps at the edges of the Brillouin zone,
the presence of a nonzero J leads to avoided crossings at
the edges of the Floquet-Brillouin zone [21]. The second
point to notice is that, in the absence of boundary, that is, if
there is no z dependence, the equation is similar to that of
a nearest-neighbors tight-binding problem with four orbitals
per lattice site and a site-dependent on-site energy due to the
factor lw. This case is readily solved by diagonalization of
a block-tridiagonal matrix. Third, time-reversal symmetry is
broken only if a circularly polarized laser field is applied.
Indeed, if the laser is linearly polarized, we can always
choose the phases to be zero, and as a result, J would be
Hermitian. Alternatively, we can write J = exp(if )J, where
J is Hermitian, and the phase factor can be eliminated via
a gauge transformation of the form ¢, — exp[—i(l — 1)0]¢;.
Therefore, it is expected that a circularly polarized field will
lead to gap openings, whereas a linearly polarized field will
not. We shall see in the following that this is indeed the case
when the field is properly oriented.

In order to make further progress in the topological bound-
ary case, it becomes necessary to discretize the Hamiltonian
in the z direction. Following Ref. [45], it is convenient to
perform an alternate sampling of the components of ¢,. That
is, we will consider the discrete lattice in the z direction to be
composed of two sublattices, one for the even sites and one
for the odd sites. The first and fourth components of ¢, will
be sampled in the even sites, whereas the second and third
components will be sampled in the odd ones. This is explained
in further detail in the Supplemental Material [46]. Generally
speaking, in our numerical approach the system is placed in
a box of size L > 1 in the z direction such that the real-
space variable is discretized in a one-dimensional lattice. In
addition, we imposed a cutoff to the sideband or Fourier index

and took great care to separate the bulk to the surface physics.
Indeed, since we have placed the system in a box, the bands
in the continuum will form subbands, and they will enter
the first Floquet-Brillouin zone upon band folding. In order
to establish whether the Dirac state remains localized at the
boundary despite the application of the external field, a careful
analysis of the effect of the box size and the discretization step
was performed. Indeed, if the box size (discretization step) is
increased (decreased), more bulk quasienergies within the first
Floquet-Brillouin zone will arise. However, if upon doing so
the Dirac state remains unaltered, then we will conclude that it
is localized at the boundary, and therefore, it is well separated
from the bulk states. Thus, in such a case no hybridization
between the Dirac and bulk states is demonstrated. As a final
remark, let us stress that our final objective is to characterize
the reshaping of the Dirac cones under a small field per-
turbation. Thus, two requirements are fulfilled in our study:
(1) driving frequencies are larger than any other energy scale of
the problem, and (ii) driving amplitudes are small (f /o < 1),
so that the perturbations a; are also small.

IV. RESULTS AND DISCUSSION

In this section, we shall discuss four different cases of
orientation and polarization of the incident field: In- and out-
of-plane, linearly and circularly polarized fields. Hereafter,
nonzero field amplitudes will be the same in all directions,
and we shall denote them collectively by f.

Before considering every case in detail, we would like to
comment on some common features. First, in all cases the
resulting Dirac cones, or the double-sheeted hyperboloid in
the case of a circularly polarized in-plane field, widen isotrop-
ically or anisotropically, depending on the orientation and
polarization, upon increasing the field. Second, we will see
below that it is possible to perfectly fit the change in the Fermi
velocity as a quadratic function of the form vg(f)/vr(0) =
1 — y(f/w)?*, where y depends on the orientation, the polar-
ization, and the frequency of the driving field.

A. In-plane fields

Having said that, let us start analyzing those orientations
that have already been reported in the literature for graphene
and for effective surface Hamiltonians of topological insula-
tors [22,36]. That is, we consider in-plane fields with linear
and circular polarizations.

First, in order to accurately assess the localization of the
surface state, we will perform the numerical calculations for a
box of size L = 3 and two different grid spacings of 0.375 and
0.300. Additionally, we set w = 4 and a cutoff to the sideband
index at / = 3. Figure 1 shows the resulting quasienergy
spectra in the linearly and circularly polarized cases.

There are a number of features to observe in Fig. 1.
First, upon increasing the discretization step, the number
of subbands in the bulk states increases. Blue corresponds
to the smaller discretization step. However, the Dirac state
is unchanged upon increasing the step, and the dispersions
overlap. Next, we can observe that there are avoided crossings
at the edges of the Floquet-Brillouin zone, except for the
Dirac state in Fig. 1(a). According to Ref. [47], this can be
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FIG. 1. Quasienergy spectra for in-plane fields as a function of
the momenta «, and «,. In all cases, w =4 and f = 2. Black lines
indicate the Dirac cone replicas in the absence of perturbation (there
would be bulk states as well). Blue and orange lines correspond
to lattice spacings of 0.375 and 0.300, respectively. In all plots,
avoided crossings occur at the Brillouin zone edges for the bulk
states. (a) and (b) correspond to linear polarization with the field
along the X direction. (c) and (d) correspond to circular polarization.
A gap opens up at the Dirac point, and a widened massive dispersion
occurs, as observed in the inset.

understood from the fact that the perturbation f,«, commutes
with e; - k when k, = 0, whereas it does not when «, = 0.
Hence, the perturbation does not couple the Dirac sidebands
in the first case. Another observation that can be made is the
fact that, due to the need to perform avoided crossings at the
edges of the Floquet-Brillouin zone, the slope of the Dirac
spectrum is reduced for low momenta. Hence, the dispersion
is an anisotropic cone, widening in the direction perpendicular
to the perturbation. This result is similar to what has been
found for graphene in Ref. [36]. In our case, however, we are
proving that this also occurs in topological insulators, despite
the presence of bulk states. Hence, our results confirm that
an effective surface Hamiltonian can be used to model the
physics discussed here since the bulk states and the surface
states remain uncoupled. In the following we will analyze in
detail the reshaping of Dirac cones in topological boundaries
under in-plane fields.

Indeed, for linearly polarized fields, the Dirac cones be-
come anisotropic such that the cone widens only in the
direction perpendicular to the field, therefore leading to an
effective reduction of the velocity in that direction. This is
shown qualitatively in Fig. 2(a) and quantitatively in Fig. 2(b).
Our study establishes that in this situation the reduction of
the Fermi velocity is quadratic as a function of the field
magnitude, as mentioned previously. Remarkably, a similar
result was obtained in the context of static, crossed electric,
and magnetic fields [13].
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FIG. 2. (a) Dispersion relations in a topological boundary with
no field and with an in-plane linearly polarized field. The Dirac cone
widens anisotropically, and the slope decreases quadratically with the
field amplitude. Widening occurs only in the direction perpendicular
to the applied field. (b) Velocity as a function of f/w for different
values of w. Solid lines correspond to a quadratic fit of the form
1 — y(f/w)?, with y being a fitting parameter.

If the in-plane field is circularly polarized, a gap 28 opens
up, in agreement with previous studies [21,22], as shown
qualitatively in Fig. 3(a). Furthermore, our results provide a
quantitative description of the variation of the gap and the
Fermi velocity as a function of f/w [see Figs. 3(b) and 3(c)].
Notice that Fig. 3(c) also shows that the resulting double-
sheeted hyperboloid widens isotropically. Indeed, both the
velocity and the gap can be fitted to quadratic power laws of
the form 1 — y(f/w)? and A(f/w)?, respectively, with y and
A being two fitting coefficients.

More importantly, we demonstrate that the gap that opens
up can be tuned by modifying the relative phase between the
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26
vr (f) / vr (0)

0.1

0.0

00 02 04 06 08 1.0 .
fle fl o

FIG. 3. (a) Dispersion relations in a topological boundary with
no field and with an in-plane circularly polarized field. A gap opens
up, and the massive Dirac spectrum widens isotropically, with the
slope decreasing quadratically with the field amplitude. (b) Gap as a
function of f/w for different values of w. Solid lines correspond to a
quadratic fit of the form A(f/w)>. (¢) Velocity as a function of f/w
for different values of w. Solid lines correspond to a quadratic fit of
the form 1 — y(f/w)?. A and y are two fitting parameters.
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FIG. 4. Density plot of the energy gap 2§ as a function of the
ratio f/w and the dephasing 8., between the x and y components for
an in-plane configuration in a topological boundary for w = 5.

x and y components, §¢,, = ¢x — ¢y, and by increasing the
field, as seen in Fig. 4. Indeed, if the phase difference is set to
zero or 1, the gap must close, but even the smallest nonzero
phase difference breaks time-reversal symmetry, and a gap
opens up. Therefore, it is expected that the maximum gap will
be at 6¢x, = 7 /2 and will increase with the field.

B. Out-of-plane fields

Now, we now turn our discussion to those cases where
there is at least one out-of-plane component of the field. In
this case, we expect the Dirac point to be robust since there
is no time-reversal symmetry breaking. However, as shown
in Fig. 5, there is hybridization with states in the bulk for
large momenta. This can be understood by appealing to the
static case, where hybridization is more likely to occur closer
to the band edges due to proximity to the bulk states. As
the number of bulk states increases due to decreasing of the
lattice spacing, the avoided crossings with the Dirac state
occur closer to the Dirac point. Therefore, in order to continue
with the continuum description and avoid considering the
microscopic details, the spacing cannot be too small. For
instance, grid spacings of 0.300 and 0.375 correspond to small
values that are sufficiently large to ignore the microscopic
details. Therefore, one may argue that the Dirac cone remains
unaltered for low momenta, except for a widening of the slope.
This is, in fact, consistent with the observation that, for low
momenta, the Dirac dispersion for 0.3 and 0.375 overlaps.
Within these considerations, let us begin with the detailed
study of reshaping Dirac cones under out-of-plane fields.

In the case of linearly polarized fields along the z direc-
tion, the cone widens isotropically, therefore leading to an
isotropic reduction of the velocity. Moreover, the velocity
decreases with the field following a quadratic power law of
the form 1 — y(f/w)?, as mentioned earlier in the text. This
is displayed schematically in Fig. 6(a) and quantitatively in
Fig. 6(b). Similar results were found in the static case where
the field is perpendicular to the boundary [10,11]. For the
circularly polarized out-of-plane field, however, we observe
that the cone widens anisotropically, as shown qualitatively

w/2

w/2

—w/2 =

w/2 w/2

—w/2 — —w/2

FIG. 5. Quasienergy spectra for out-of-plane fields as a function
of the momenta k, and «,. In all cases, w = 4 and f = 2. Black lines
indicate the Dirac cone replicas in the absence of perturbation (there
would be bulk states as well). Blue and orange lines correspond
to lattice spacings of 0.375 and 0.300, respectively. In all plots,
avoided crossings occur at the Brillouin zone edges for the bulk
states. (a) and (b) correspond to linear polarization with the field
along the Z direction. (¢) and (d) correspond to circular polarization
with the field contained in the Y Z plane. In this case, the dispersion is
anisotropic, with the Dirac cone widening more along the X direction

in Fig. 7(a) and quantitatively in Figs. 7(b) and 7(c). This
can be explained by the results from the linearly polarized
in- and out-of-plane fields. Indeed, the in-plane component
leads to a reduction in the direction perpendicular to that of
the field, leaving the parallel direction untouched. However,
the out-of-plane component widens the cone isotropically,
therefore leading to a reduction in the direction that had

op (f) / vr (0)

T T
0.0 02

T T T T
04 06 08 1.0

fle

FIG. 6. (a) Dispersion relations in a topological boundary with
no field and with an out-of-plane linearly polarized field. The Dirac
cone widens isotropically, and the slope decreases quadratically with
the field amplitude. (b) Velocity as a function of f/w for different
values of w. Solid lines correspond to a quadratic fit of the form 1 —
v (f/w)?, with y being a fitting parameter.
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FIG. 7. (a) Dispersion relations in a topological boundary with
no field and with an out-of-plane circularly polarized field. The Dirac
cone widens anisotropically, and the slope decreases quadratically
with the field amplitude. (b) Perpendicular and (c) parallel velocities
to the in-plane field projection as a function of f/w for different
values of w. Solid lines correspond to a quadratic fit of the form
1 — y(f/w)?, with y being a fitting parameter.

not been widened before and increasing the reduction in the
direction that had already been affected.

V. CONCLUSIONS

In this work we have shown that the Dirac cones arising at
the surface of topological materials can be altered by using
a periodic driving beyond previous experimental evidence.
Remarkably, within our approach we have been able to prove
that some predictions based on effective surface Hamiltonians

and perturbation theory [22] are confirmed when using a full
Hamiltonian that includes bulk states. In fact, it was known
that in-plane circularly polarized light breaks time-reversal
symmetry and therefore opens up a gap in the otherwise
gapless Dirac cones [21,22]. Here, we have discussed the
case of a topological boundary in such a way that we can
consider other configurations for the fields. Indeed, we can
apply out-of-plane fields and show that the cone can widen
isotropically or anisotropically, depending on the polarization.
Moreover, we have observed that the reduction in the velocity
squares with the applied field, a feature that was recently
found also in the case of static fields [10,11]. Our study
provides a more promising experimental set up in order to
obtain an anisotropic renormalization of the velocity based
on a time-periodic driving and no need for a magnetic field
[13]. All of our findings should be straightforwardly probed
by means of time- and angle-resolved photoemission spec-
troscopy, as discussed in Ref. [21]. We believe that our results
could have an impact also in transport measurements since
a change in the velocity can lead to important reductions
of the transmission. This is known to occur for other Dirac
materials such as graphene on top of a patterned substrate
that effectively changes the Fermi velocity [9]. Using external
fields, this could be achieved and lead to more control than
the aforementioned setup since the fields can be changed
dynamically, whereas the patterned substrate is unalterable.
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