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Robustness of type-II Dirac cones in biphenylene: From nanoribbons to symmetric bilayer stacking
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The electronic properties of one- and two-dimensional biphenylene-based systems, such as nanoribbons and
bilayers, are studied within a unified approach. Besides the bilayer with direct (AA) stacking, we found two
additional symmetric stackings for bilayer biphenylene that we denote by AB, in analogy with bilayer graphene,
and AX, which can be derived by a small translation (slip) from the AA bilayer, with distinct electronic band
structures. We combine first-principles calculations with a long-range tight-binding model to provide a realistic
effective description of these biphenylene materials. Our approach provides a global framework to analyze
realistically the robustness of the characteristic type-II Dirac cones present in all the bilayers studied and of
the nanoribbons. In particular, we capture the opening in the Dirac cone for certain nanoribbons, which we
relate to the symmetries of the system, as well as the variations caused by different stackings. We expect that
these structures will constitute an avenue to explore novel physics, as they occur with bilayer graphene and the
one-dimensional derivatives of graphene, such as nanoribbons and nanotubes.
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I. INTRODUCTION

Carbon-based two-dimensional (2D) crystals, particularly
those structured with hexagonal (benzene) rings, have gar-
nered significant interest beyond graphene systems. These
new allotropes include monolayer structures such as those
synthesized in recent studies [1], bilayer structures [2,3], and
graphdiyne [4], which is characterized by the insertion of sp
acetylenic bonds within the carbon lattice. Other carbon ma-
terials without hexagonal carbon rings have been theoretically
proposed, such as pentaheptite [5], completely composed
of pentagons and heptagons; a semiconducting planar sheet
formed by four- and eight-atom carbon rings [6]; and even
a buckled 2D material made of distorted pentagons, known
as pentagraphene [7,8]. The two latter examples attract in-
terest for being semiconductor planar forms of carbon which
could complement graphene. Additionally, structures combin-
ing hexagonal and other n-carbon rings have been proposed
[9,10]. Among them, biphenylene stands out due to its recent
experimental synthesis via the dehydrofluorination fusion of
benzenoid polyphenylene chains [11]. This planar sp2 carbon
network structure was proposed long ago [12]. It exhibits
an intricate geometry, comprising four-, six- and eight-fold
rings. The electronic stability of biphenylene systems was
also studied before its synthesis by means of first-principles
calculations, including ribbons and tubes of different widths
and morphologies [13].

*Current address: Nanotechnology Group, USAL – Nanolab, Uni-
versity of Salamanca, 37008, Salamanca, Spain.

After its experimental discovery, many works have ex-
plored the physical and chemical properties of biphenylene
[14–18]. Density functional theory (DFT) calculations identi-
fied a type-II Dirac cone with metallic character which could
be useful for valleytronics due to the existence of two bands
with the same sign of the carrier velocity [19–21]. However,
a band gap can be achieved by applying strain or doping
the lattice [22,23]. Another way of producing a band gap
is by doping with fluorine atoms; this technique can also
be applied to tune the Dirac cone and change its character
[24]. Theoretical results predict semiconductor behavior for
armchair nanoribbons for small sizes (<2 nm) and metallic
behavior for both zigzag and larger armchair ribbons [11,13].
Regarding bilayer systems, the AA stacking was modeled
within a DFT approach, predicting a stable configuration with
enhanced elastic characteristics compared to its monolayer
counterpart [25]. Further studies revealed that biphenylene
may have properties of practical interest, such as being an
anticorrosion coating material with exceptional oxygen atom
adsorption and reasonable hydrophobicity [15] and thermo-
electric applications in the 2D system [26] and in nanoribbons
[27,28]. With biphenylene nanoribbons as the building block,
a new porous three-dimensional metallic carbon structure was
also reported [29]. More recently, the topological properties of
biphenylene were studied by means of a simple tight-binding
model, which allowed the verification of topological phase
transitions and exploration of the higher-order topological
properties of this material [30].

Motivated by these works, we propose two symmetric bi-
layer configurations, obtained by lattice displacements of one
of the layers and with minimal translational unit cells. We de-
nominate these bilayer stackings AB, in analogy with bilayer
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graphene, and AX, which is found by displacing one layer
along the x direction starting from the direct stacking AA.
Importantly, the relaxed DFT calculations of the proposed bi-
layer structures yield a similar total energy. Our main findings
are the following: (1) We propose two symmetric stackings
for bilayer biphenylene, AB and AX, with comparable total
energies with respect to the AA case, which indicates their
experimental feasibility. (2) A type-II Dirac cone is repro-
duced by adopting our tight-binding parametrization. We have
verified that the Dirac cone is robust and persists in bilayer
biphenylene AA, AB, and AX stackings. (3) In armchair
nanoribbons with an odd number of hexagons across their
width, the Dirac crossing is preserved; for even widths, a gap
opens in the cone. We relate this even-odd effect to the mirror
symmetry of the wave function with respect to its longitudinal
axis. (4) A different number of in-gap topological edge states
for wide armchair nanoribbons are obtained with our model
compared to simpler parametrizations, which is related to the
inclusion of hopping energies between atoms up to 3 Å apart.

We believe that our proposal of different stackings can
stimulate the experimental search for these bilayers and the
study of their physical properties. Additionally, we expect
that our tight-binding model will be of interest for further
explorations of complex biphenylene structures with hybrid
geometric structures.

II. SYSTEMS AND METHODS

In order to describe all biphenylene structures, we start
by performing a DFT relaxation of the geometries. With
the relaxed coordinates, we perform a general tight-binding
parametrization intended to be valid for all structures, i.e.,
applicable to the monolayer and also to nanoribbons and
bilayers. Due to the low atomic number of carbon, we do not
include spin-orbit coupling (SOC) effects, expecting a very
small value, as in graphene [31]. We have verified that the
SOC splitting in biphenylene is of the order of meV, so it is
also negligible unless one is seeking very low temperature
effects.

A. Geometry of monolayer biphenylene

Different from graphene, monolayer biphenylene belongs
to the Pmmm space group. It is described by a rectangular unit
cell of orthogonal lattice vectors �a1 and �a2 of unequal lengths
a1 �= a2 with a six-atom basis, as depicted in Fig. 1(a). Note
that the hexagon is not regular, and neighboring atoms are
at two different distances, d1 and d2. Repeating this pattern,
octagons and four-atom rings are distinguished in Fig. 1(a),
so four different distances between atoms are required. The
relaxed geometries obtained by DFT for the monolayer are
the following: The lengths of the lattice vectors are a1 = 3.82
Å and a2 = 4.54 Å, with octagon angles θ1 = 125◦ and θ2 =
145◦. The four distances between atoms with primary covalent
bonds, defined in Fig. 1(a), are given by d1 = 1.42 Å, d2 =
1.44 Å, d3 = 1.50 Å, and d4 = 1.47 Å, as given in Table I. The
basis vectors can be written as �a1 = (2d1 sin(π − θ2) + d3, 0)
and �a2 = 2(0, d1 cos(π − θ2) + d2). The first Brillouin zone,
also rectangular, is depicted in Fig. 1(a), with the four high-
symmetry points labeled, namely, � = (0, 0), X = ( π

a1
, 0),

Y = (0, π
a2

), and S = ( π
a1

, π
a2

).

FIG. 1. (a) Left: 2D biphenylene lattice with primitive vectors �a1

and �a2 along the x and y directions, respectively. Right: first Bril-
louin zone of biphenylene with special symmetry lines and points.
(b) Schematic depiction of the three bilayer stackings studied in this
work.

B. Geometries of bilayers with symmetric stackings

The geometric stackings for bilayer biphenylene defined
as AA, AB, and AX are depicted in Fig. 1(b), belonging
to space groups Pmmm in the AA case and P2/m for AB
and AX. Bilayer AA is the trivial, direct stacking, obtained
by placing two biphenylene layers one on top of the other,
studied in a previous work [25]; we also model this bilayer
for completeness. We obtain the AB stacking from an AA
bilayer, displacing one of the layers a distance d2 along the
�a2 direction [see middle panel of Fig. 1(b)]. We choose this
denomination (AB) because one atom belonging to a hexagon
of the upper layer is in the center of the hexagon of the bottom
layer, thus resembling the AB stacking of bilayer graphene.
Finally, we derive the AX bilayer by starting from the AA
configuration and displacing one layer by a distance d3 along
the �a1 direction; it resembles the so-called slip stacking visible
in graphene moiré patterns, as can be seen in the right panel
of Fig. 1(b) [32,33].

The proposed stackings AB and AX have total energies
similar to that of the reportedly stable AA stacking within our
DFT calculations, as detailed in Table II. In fact, they are so
close that it may be possible to change stacking by sliding one
layer on top of the other. In all these cases the unit cell has

TABLE I. Lattice parameters for the monolayer and bilayer ob-
tained from DFT (GGA-PBE) relaxation and fitted parameters for
the TB calculations.

Lattice parameters 2D TB parameters

d1 = 1.42 Å t1 = −3.3 eV
d2 = 1.44 Å t0 = −0.33 eV
d3 = 1.50 Å α = 1.45
d4 = 1.47 Å β = 2.2
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TABLE II. Energy differences �E relative to AA stacking (in
meV/atom) obtained from DFT relaxed structures within the GGA-
PBE, vdW-DF, and vdW-DF2-equivalent functionals.

Functional �E (AB-AA) �E (AX-AA)

GGA-PBE 1.031 0.846
vdW-DF 0.453 0.105
vdW-DF2 0.038 −0.422

12 atoms, 2 times more than that of the monolayer; the ideal
(unrelaxed) lattice vectors are initially chosen to be the same
as for the monolayer and change after relaxation, as expected.
The interlayer distance is close to that of graphene, and we
obtained slightly different values after relaxation, which will
be discussed later. The interlayer distances also depend on the
functional employed, see Supplemental Material Ref. [34].

C. DFT calculations

The SIESTA first-principles code [35,36] is employed to
perform electronic structure calculations, using the gen-
eralized gradient approximation (GGA) and the Perdew-
Burke-Ernzerhof (PBE) exchange-correlation functional [37].
This is our functional of choice for the monolayer sys-
tem. For the bilayer geometries, additional van der Waals
density functionals (vdw-DF) following Dion et al. [38]
with different improvements were used. Namely, the Dion-
Rydberg-Schröder-Langreth-Lundqvist (DRSLL), equivalent
to vdW-DF [39] and Lee-Murray-Kong-Lundqvist-Langreth
(LMKLL), equivalent to vdW-DF2) [40] flavors. For all cal-
culations, a double-ζ singly polarized basis set was employed.
The reciprocal space was mapped by means of an 8 × 8 × 1
Monkhorst-Pack grid for all systems. All structures were re-
laxed until the forces were below 0.01 eV/Å. We do not
include SOC effects in the reported results, although we veri-
fied that they are negligible (1–2 meV) for practical purposes,
unless very low temperatures (below liquid nitrogen) are con-
sidered.

D. Tight-binding approach

Our goal with the tight-binding approach is to provide a
unified description of all biphenylene structures. Since we
focus on the bands around the Fermi energy, a single pz orbital
tight-binding (TB) Hamiltonian is used to describe the bilayer
and monolayer systems, given by

H =
∑

i,a

εa
i c†a

i ca
i +

∑

i,
ja

t a
i jc

†a
i ca

j +
∑

i,
ja �=b

t⊥ab
i j c†a

i cb
j + H.c., (1)

where εa
i is the on-site energy for each atom located at site

i in layer a and the operator ca†
i (ca

i ) creates (annihilates) an
electron on site i in layer a. The second term describes the
intralayer couplings, with t a

i j being the corresponding hopping
energies within layer a. Obviously, for monolayers a = 1, and
the third summation is omitted; for bilayers we consider two
values, a (b) = 1, 2, as well as the interlayer interactions,
given by the last term (a �= b) and denoted as t⊥ab

i j . They
depend on the stacking configuration between the top and
bottom biphenylene layers.

FIG. 2. (a) Biphenylene electronic structure: DFT (blue dotted
curves) and TB (orange bands) results with on-site energies ε1 =
−2.2 eV and ε2 = −1.85 eV for sites (1) and (2) in (c), respectively,
t1 = −3.3 eV, and β = 2.2. The DOS for the TB bands is shown
on the right. (b) Two-dimensional TB energy bands highlighting the
type-II Dirac cone (orange). (c) Zoom along the Y -� line focusing
on the type-II Dirac cone, with LDOS for the two bands on the right.
Atomic positions in the unit cell are marked with white dots; red and
purple indicate maximum and minimum probability densities.

To find a suitable hopping parametrization we consider an
intralayer hopping energy described by a decaying exponen-
tial function [33],

t a
i j = t1e−β

(
ri j
d1

−1
)
, (2)

with ri j being the distance between the i and j lattice sites,
t1 being the hopping related to the first-nearest-neighbor dis-
tance d1, and β being a fitting parameter that controls the
range of the interaction. As the ratio ri j/d1 is always larger
than 1 beyond the first nearest neighbors, small β values allow
us to increase the number of neighbors with non-negligible
hoppings in the description.

For the interlayer connection we also consider a decaying
exponential function for the hopping energies given by

t⊥ab
i j = t0e−α

(
ri j
d⊥ −1

)
, (3)

where d⊥ is the interlayer distance; t0 is the direct stacking
hopping value, i.e., when the atoms are exactly one above the
other; and α modulates the strength of the interlayer hopping
with increasing distance.

III. TWO-DIMENSIONAL BIPHENYLENE SYSTEMS

A. Monolayer biphenylene

We present in Fig. 2(a) a comparison between DFT GGA-
PBE (dotted blue curves) and the fitted tight-binding (solid
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orange lines) band calculations. The agreement is very good
for the fitting parameters shown in Table I, especially in the
energy range close to the Fermi level. The density of states
(DOS) obtained from the TB approach is displayed to the
right of the electronic bands. The peculiar type-II Dirac cone
appearing in the middle of the Y -� path can be clearly seen
in Fig. 2(a), and it is correctly described by the TB model
by adjusting the in-plane parameter β. A 2D plot of the band
structure is depicted in Fig. 2(b), where the type-II cone is
highlighted in orange.

A zoom of the bands along Y -� constituting the type-II
Dirac cone, labeled 1 and 2, is presented in Fig. 2(c). The
local density of states (LDOS) of the respective bands, calcu-
lated at the � point, is depicted to the right of the electronic
bands. Note that the LDOSs of the two bands are localized in
different regions of the unit cell, having maxima at different
atoms. The two atoms with maximum LDOS in the top right
panel of Fig. 2(c), corresponding to band 1, are related by a
mirror symmetry of the system. Likewise, the four atoms with
maximum LDOS in the bottom right panel, corresponding
to band 2, are also related by mirror symmetries of the 2D
crystal. However, there is no symmetry operation that relates
these two sets of atoms [41]. Therefore, these states do not
interact, and the bands cross, as seen in the left panel of
Fig. 2(c). At the crossing energy (not shown here), all sites
have a nonzero density. Since these two sets of atoms are
not related by symmetry, a small variation in their respective
on-site energies can be included to fit with our DFT results:
ε1 = −2.2 eV and ε2 = −1.85 eV for the respective sets.

We also corroborate that there is a crossing at the Dirac
cone by checking that the bands constituting this cone along
the symmetry line connecting the Y and � points belong to
different irreducible representations [42,43] when no SOC is
included, as previously reported [30]. We should mention,
however, that if SOC is included, these bands belong to the
same irreducible representation and present a very small anti-
crossing due to the weak SOC in biphenylene.

It is important to emphasize that the use of a tight-binding
parametrization with an exponential decay which includes
hoppings between atoms up to 3 Å is crucial in our model
to obtain the predicted type-II Dirac cone in biphenylene and
similar materials, in agreement with DFT calculations. The
overall picture of the hopping decay parametrization with
the neighbor distances is shown in Fig. 3, with the hopping
scheme given in the inset, where each group of neighbors is
highlighted by colored regions labeled I, II, and III. Region I
corresponds to hoppings between atoms with primary bonds
(black solid lines), region II is for intermediate distances
(colored solid lines), and region III corresponds to long-range
hoppings (colored dashed lines). The slope of the bands is
determined by the β parameter, and altering it affects carrier
velocities. This adjustment can be tuned to achieve the desired
characteristics of the bands. Additionally, it is essential to take
into account a sufficient number of neighbors. To achieve the
desired type-II Dirac cone we must include hoppings up to
region III, which is equivalent to considering distances greater
than those marked by the green dashed lines (>3 Å) in the
schematic inset. Not considering enough hopping parameters
results in a completely flat energy band along the Y -� di-
rection in one of the branches of the Dirac cone, changing

FIG. 3. Illustration of in-plane hopping energies as a function
of the atomic lattice distances for different values of the decay
parameter β. Colored circles illustrate hoppings at different lattice
distances, matching the color code employed in the schematic lattice
geometry shown in the inset. The distances and hoppings are grouped
by shaded regions, labeled I, II, and III.

its character to type III [24,30]. Therefore, a careful choice
of both the β parameter and hence the range of neighbors
included is critical to obtain the desired band features. We
believe that this parametrization approach will also be helpful
in other systems in which intricate symmetries and numerous
hopping distances may hinder the derivation of optimal physi-
cal parameters for theories based on a TB model theory of the
structure.

B. Bilayer biphenylene: AA, AB, and AX stackings

For bilayer biphenylene systems, we include the van der
Waals interaction in the DFT calculations by means of a
vdW-DF2-equivalent functional. As in the case of the mono-
layer, the lattice parameters included in TB calculations were
obtained from previous DFT relaxations. We find that the
intralayer and the internal angles are the same as for the
monolayer.

Table II displays the energy difference �E (meV/atom)
between stackings AB and AX relative to AA. We take the
AA bilayer as a reference because its stability was previ-
ously established [25]. Besides the fact that for vdW-DF2 this
energy difference is negative for AX, the AA stacking has
the smallest energy for GGA-PBE and vdW-DF functionals;
remarkably, we have found that AX is more stable if the
DF2-equivalent functional is employed. Since the energy dif-
ferences in biphenylene bilayers are close to meV, our results
point to the experimental feasibility of all these stackings and
the possibility to change from one to another.

The unit vectors in the bilayer predicted by DFT are
a1 = 3.84 Å and a2 = 4.54 Å. Previous DFT calculations
[25] predicted a biphenylene interlayer distance of 3.36 Å
in the AA stacking, a value notably close to that of bilayer
graphene (3.42 Å). However, our calculations yield a larger
distance for the AA stacking. The values for the three studied
stackings reveal a small variation for the interlayer distances.
In our calculation, the AB stacking has the smallest inter-
layer spacing. The smallest interlayer distances for the AA,
AB, and AX stackings correspond to the vdW-DF2-equivalent
functional and are 3.51, 3.39, and 3.43 Å, respectively. In
the Supplemental Material [34] we show a comparison of the
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FIG. 4. Bilayer biphenylene band structures for the three stackings considered: (a) AA, (b) AB, and (c) AX stackings. The corresponding
unit cells are shown in the insets, marked with dashed lines. DFT bands are shown by blue dots, and TB are shown by orange curves; the
parameters chosen are α = 1.45, β = 2.2 t0 = −0.33 eV, t1 = −3.3 eV, ε1 = −2.2 eV, and ε2 = −1.85 eV. (d) Zooms of the bands at the split
Dirac point showing the crossing/anticrossing behavior. Left panel full crossings characteristic of the AA/AB geometries, labeled tic-tac-toe.
Right panel partial anticrossing corresponding to the AX stacking, named butterfly wings.

energy bands computed using different DFT functionals, in
particular, GGA-PBE, vdW-DF, and vdW-DF2 equivalents.
The TB parameters used are α = 1.45 and t0 = −0.33 eV for
the interlayer coupling; the same intralayer parameters used
in the case of the monolayer are adopted.

In Figs. 4(a)–4(c) we compare the DFT and TB band struc-
tures of the three stacking configurations, AA, AX, and AB,
respectively. We verify that the agreement between the TB and
DFT bands is very satisfactory. Notice that, due to interlayer
coupling, the type-II Dirac cones are doubled, as expected.
Moreover, one of the cones crosses the Fermi energy for the
three proposed stackings. This is an important feature for
transport applications. Notice that the split bands forming the
Dirac cones are more separated in the AA case, whereas for
AB and AX there is clear asymmetry in the splittings: The
flat bands are rather separated, but the bands with a larger
slope are much closer in energy. An energy zoom allows us
to distinguish two types of crossings, as depicted in Fig. 4(d).
Notice that the bands have either a tic-tac-toe shape, with
four Dirac points, like for AA and AB stackings, or a partial
anticrossing, with only two bands crossings, like for AX. We
denote the latter band crossing shape as “butterfly wings.”

IV. ARMCHAIR NANORIBBONS

In what follows, we perform biphenylene nanoribbon (NR)
calculations to verify the effectiveness and convenience of the
proposed TB parametrization in such quasi-one-dimensional
(quasi-1D) systems. The atomic coordinates are obtained from
the relaxed DFT (GGA-PBE) calculations of the monolayer
without performing further relaxations to take into account
edge effects. We verified by comparison to other DFT cal-
culations [11] that the edge effects are not important in such
nanoribbons; in fact, our results are quite similar to the relaxed
ones reported therein. We focus on the armchair edges, which
are known to have a semiconductor nature for smaller widths.
We denote the ribbons by n-NR, where n denotes the width

of the ribbon given in dimer chains, as it can be seen in the
right panels of Fig. 5 for two cases, 18-NR and 25-NR. To
facilitate the comparison to the 2D case, we label the first
Brillouin zone of these ribbons using the same label, �-Y .
The optimal parametrization has the same in-plane hopping,
t1 = 3.3 eV, as that used for the 2D system and an adjusted
on-site energy ε and exponential parameter β, ε = −1.3 eV
and β = 2.6, respectively. Note that the nanoribbon bands
computed with this parametrization are in good agreement
with the relaxed DFT nanoribbons calculated by Fan et al.
[11]. This indicates that edge effects are not important for
small widths, so it is not necessary to include them in the

FIG. 5. Electronic band structures of armchair nanoribbons with
(a) even (6-NR, 12-NR, and 18-NR) and (b) odd (9-NR, 15-NR, and
21-NR) widths. Wave function ψk=� values and signs for the 18-NR
and 21-NR are represented by the sizes and colors of circles within
the unit cell, respectively, for bands 1 and 2. The TB parameters are
t1 = −3.3 eV, β = 2.6, and ε = −1.3 eV.
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FIG. 6. (a) The 9-NR armchair nanoribbon geometries for three edge configurations: symmetric closed hexagons (SCHs), antisymmetric
(AS), and symmetric open hexagons (SOHs), shown in blue, red, and green, respectively. (b) Electronic bands of 50-NRs for the three edge
configurations (β = 2.6 and ε = 0). Zoom of the electronic bands of the (c) SCH and (d) AS 50-NRs and projected LDOS for different ka
values over the nanoribbon sites highlighted in black in (a). Parameters are t1 = −3.3 eV, β = 2.6, and ε = −1.3 eV.

tight-binding nanoribbon calculations, especially for large
widths.

A type-II Dirac cone is also observed for nanoribbons with
an odd number of hexagons across their width. However, for
those with an even width, a gap opens, destroying the cone.
This behavior is highlighted in Figs. 5(a) and 5(b) by black
circles at the anticrossing or crossing regions for even and odd
ribbons, respectively. The projected wave functions inside the
unit cells at the � point for the 18-NR and 21-NR are depicted
on the right side of the respective band structures in Fig. 5.
The sign of the wave function is represented by the different
colors, and the amplitude is indicated by the disk size. Notice
that the wave functions of the low-lying band at �, labeled 1,
presents two mirror symmetries with respect to the horizontal
(Mh) and vertical (Mv) planes marked with black lines, as
well as inversion symmetry I . However, the wave function
of the upper band, labeled 2, has fewer different symmetries,
which vary with the nanoribbon width. In the case shown in
Fig. 5(a), the 18-NR, it is Mh; for Fig. 5(b), corresponding to
21-NR, it is Mv . The horizontal mirror symmetry is important
for the confined wave functions; note that the probability
density is symmetric with respect to the longitudinal axes
of the ribbons. Therefore, if the wave functions of bands
1 and 2 share this symmetry (for even widths), their bands
anticross, whereas for odd ribbons, for which these bands do
not share this reflection symmetry, the bands cross and the
Dirac cone is preserved. This even-odd behavior is identical
to the parity change of wave functions for successive states in
textbook quantum wells with respect to their centers. Here, the

wave functions change differently with respect to the different
mirror reflections; however, the important mirror symmetry
for this even-odd behavior is the reflection with respect to
the longitudinal axes. Similar symmetry arguments have suc-
cessfully explained even-odd effects in other graphene-based
nanoribbons [44] and slabs of topological materials [45,46].
The same parametrization was also employed for the study of
wide ribbons.

In Fig. 6(a) we present three edge configurations in the
armchair features: symmetric closed hexagons (SCHs), an-
tisymmetric (AS), and symmetric open hexagons (SOHs),
represented by blue, red, and green edges, respectively.
Using the same color scheme, the electronic bands for each
edge configuration are shown at Fig. 6(b) with parameters
t1 = −3.3 eV, β = 2.6, and ε = −1.3 eV. The energy states
are, on average, the same for the three geometries considered.
However, distinguishable isolated states located between the
bulk energy bands, within the pseudogaps, are found for each
of the three edge symmetries.

A zoom of the twofold degenerate SCH band structure
(blue curves) is shown in Fig. 6(c). The LDOS is computed for
this specific state between ka = 0 and ka = 0.5. At ka = 0,
we note that the charge density is spread over all the nanorib-
bon because at this point the edge bands meet the bulk bands.
A change in the charge distribution happens, however, as
shown for ka = 0.1 up to ka = 0.5, at the Brillouin zone
boundary. Highly localized states emerge at the nanoribbon
edges for ka �= 0. Compared with the other symmetric edge
nanoribbon SOH, such in-gap edge states emerging in the
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electronic bands are also degenerate like for the SCH case.
With respect to the AS nanoribbon, the twofold degeneracy
is broken in such localized states, resulting in complementary
edge states for bands 1 and 2, respectively, at ka = 1.5, as
shown in the LDOS of Fig. 6(d). At the band crossing (ka =
2.8), the charge densities are localized at both edges, as seen
in the 1+2 LDOS case. Recently, a two-hopping tight-binding
parametrization found via Zak phase calculations that such
edge states are topological [30]. Actually, by employing our
exponential hopping parametrization we have verified that
those edge states may change in number and energy, suggest-
ing different Zak phases in the involved cases.

V. CONCLUSIONS

We introduced two biphenylene bilayer stackings, AB and
AX. The bands are split due to the interlayer interaction, and
one of the type-II Dirac cones is placed at the Fermi energy,
suggesting different transport responses. The AB and AX
stackings present total energies similar to that of AA bilayer
biphenylene, which is reported to be stable. This indicates that
AB and AX stackings might be experimentally achievable as
well.

We derived a robust tight-binding parametrization based on
DFT calculations to describe the electronic structure of vari-
ous biphenylene systems, including monolayers, bilayers, and
nanoribbons of different widths. We confirmed the presence
of a type-II Dirac cone in both monolayer and bilayer geome-
tries, in agreement with previous works. By means of DFT
calculations, we obtained relaxed structures that allowed us to
fit our TB model, successfully capturing the electronic proper-
ties of biphenylene-based structures. The TB parametrization

preserves essential symmetries and ensures the type-II nature
of the Dirac cone by extending hopping up to third-neighbor
group distances (>3 Å).

Our combined approach correctly describes the type-II
Dirac cone in both 2D and quasi-1D biphenylene structures,
revealing crossings and anticrossings in the Dirac cone for
nanoribbons depending on their width due to the different
symmetries in their corresponding wave functions. Addi-
tionally, for wider nanoribbons, our calculations allow the
identification of robust edge states localized at the edges of
the unit cell. We expect that our findings will motivate fur-
ther theoretical and experimental work. Moreover, the present
study is also applicable to other carbon-based systems with
hybrid geometric symmetries, like pentacomposites and other
allotropes such graphenylene.
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