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Spin-polarized electric current in silicene nanoribbons induced by atomic adsorption
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We investigate the nonequilibrium transport properties of a silicene armchair nanoribbon with a random
distribution of adsorbed atoms in apex positions. A ferromagnetic insulator grown below the nanoribbon splits
spin-up and spin-down electron bands and gives rise to a spin polarization of the conductance. The conductance
vanishes when the Fermi energy matches the adatom levels due to the coupling of adatom localized states with
the continuum spectra of the nanoribbon. This is the well-known Fano effect, resulting in a spin-dependent
antiresonance in the conductance. The different antiresonance energies of spin-up and spin-down electrons give
rise to a full spin polarization of the conductance in a broad energy window. This spin-dependent Fano effect
opens the possibility to using it in spintronics as a tuneable source of polarized electrons.
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I. INTRODUCTION

The field of spintronics is rapidly developing from its
roots in magnetic metal multilayers. In recent years, two-
dimensional (2D) materials came to the forefront in spintronics
and advances in this field are expected to occur based on
hybrid systems [1]. Although graphene at present dominates
the sector due to its high-electron mobility, a plethora of other
novel 2D materials offers fascinating fundamental properties
for spin transport and controlled spin-light interaction [2–4].
In this context, silicene is a particularly promising candidate
for the design of spintronic devices [5,6]. The two sublattices
of the honeycomb lattice in silicene are not coplanar and first-
principles calculations suggest that the spin-orbit interaction
opens a sizable gap at the Dirac point of the order of
1.55 meV [7].

Half-metals, in which one spin channel is conductive but
the other one is insulating or semiconducting, turn out to be
a key ingredient to achieve spin-polarized currents. Hybrid
structures of 2D materials and ferromagnetic insulators, like
EuO, EuS, yttrium iron garnet, or cobalt ferrite, provide a
route to induce half-metallicity [8–14] and pave the way for
spintronic applications [15–24]. The ferromagnetic insulator
induces a proximity exchange interaction between the spins
in the magnetic and nonmagnetic material that results in a
spin modulation without compromising the crystallinity of the
structures [25].

Recently we have proposed a spin-filter device based on
a silicene nanoribbon [26]. A ferromagnetic insulator below
the nanoribbon gives rise to the spin polarization of the
electric current. A random distribution of vacancies causes
Anderson localization of electrons. Since the localization
length was found to be spin dependent, only electrons with
one spin orientation can reach the drain contact because their
localization length is larger than the length of the device while
electrons with opposite spin are largely back-reflected [26].
Besides vacancies, other types of point defects can affect
electron transport in silicene nanoribbons. In particular, metal
adatoms present much stronger binding to silicene than to
graphene [27] and can induce a transition from semimetallic
to semiconducting behavior [28,29] or produce a quantum

anomalous Hall effect [30]. Moreover, chemisorption of a
single H atom on silicene induces the formation of a localized
state around the adatom, which acts as a resonant scatterer
for charge carriers [31]. Hence, a significant reduction of the
electron mobility is anticipated since the absence of clustering
prevents the conversion of isolated adatoms into clusters,
which are known to have a much smaller effect on electron
mobility [31].

Theoretical methods and modeling are needed to under-
stand the role of adatoms in the electron transport of silicene
and their influence on the spin-filtering capabilities induced
by the proximity exchange interaction. In this paper, we
address the effects of a random distribution of adatoms on the
electron transport properties of narrow silicene nanoribbons.
Interestingly, De Padova et al. [32] have already synthesized
silicene nanoribbons with very large aspect ratio (several
nanometers in length and a constant width of about 2 nm).
These nanoribbons usually display higher electrical sensitivity
to the adsorption of certain molecules, such as CO, at low
concentration compared to graphene nanoribbons [33]. The
tunnel coupling between adatoms and silicon atoms induces an
electronic Fano effect [34] that makes the conductance vanish
when the Fermi level matches the resonant energy induced by
the adatoms. The resonant energy turns out to be independent
of the random distribution of adatoms, provided that they do
not cluster. When the nanoribbon is in close proximity to a
ferromagnetic insulator, the resonant energy depends on the
electron spin and consequently the electric current can be
highly spin polarized. Our results expand the base of available
materials to designing a tuneable source of polarized electrons
for spintronics.

II. THEORETICAL MODEL

The system consists of a narrow silicene nanoribbon of
width W and length L connected to source and drain leads, as
shown schematically in Fig. 1. In order to avoid topologically
protected edge states that appear at the Fermi energy in zigzag
nanoribbons [35], we restrict ourselves to nanoribbons with
armchair edges hereafter. A ferromagnetic insulator below the
nanoribbon induces a spin splitting of the electronic states.
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FIG. 1. Schematic view of the device. The armchair silicene
nanoribbon is connected to left (L) and right (R) leads, with a
ferromagnetic insulator grown below it (shown as the blue region
in the figure). A random distribution of adatoms is shown as green
spheres. Smaller yellow and red spheres indicate the nonequivalent
Si atoms in the silicene nanoribbon.

Consequently, electrons in the nanoribbon will be subject to a
positive or negative constant potential, according to their spin.

Electrons in the silicene honeycomb lattice are described by
a single π -orbital tight-binding Hamiltonian of the form H =
HSN + Had + Htun + Hexc. The Hamiltonian for the electron
in the silicene nanoribbon is [36]

HSN = −t
∑
〈i,j〉σ

c
†
iσ cjσ + λSO

3
√

3

∑
〈〈i,j〉〉στ

νij c
†
iσ σzcjτ , (1)

where c
†
iσ (ciσ ) creates (annihilates) an electron at silicon atom

i. Sums over 〈i,j 〉 and 〈〈i,j 〉〉 run over nearest and next-nearest
neighbor sites, respectively. The spin indices ↑,↓ are indicated
by σ and τ hereafter. The first term corresponds to the nearest
neighbor hopping energy t = 1.6 eV and the second term
represents the spin-orbit coupling with λSO = 3.9 meV, where
νij = ±1 is the Haldane factor [37] and σz is the Pauli matrix.
The Hamiltonian corresponding to adatoms levels is given as

Had =
∑

j∈L,σ

εadd
†
jσ djσ , (2)

where d
†
jσ (djσ ) creates (annihilates) an electron at the adatom

j , with the index j running over those silicon sites with an
attached adatom, denoted by L above. Adatoms are assumed
to occupy apex positions and electrons may tunnel from and
to the silicon atom on which the adatom is located. Therefore,
the tunnel coupling is expressed as

Htun = tad

∑
j∈L,σ

(c†jσ djσ + d
†
jσ cjσ ), (3)

where tad is the hopping parameter between the adatom and
the silicene nanoribbon. Finally, the term

Hexc =
∑
iσ

Mc
†
iσ σzciσ (4)

describes the spin splitting of electron states due to the
proximity exchange interaction with the ferromagnet. It raises

(lowers) the energy levels of spin-up (spin-down) electrons by
an amount +M (−M) [26].

We study electron transport across the nanoribbon using
the Green’s function formalism combined with decimation
techniques [38,39]. This approach allows us to obtain the
transmission coefficient Tσ (E) for an electron with energy E

and spin σ . Details of the calculations can be found in Ref. [26].
In the linear response regime, the conductance is calculated
from the transmission coefficient using the Landauer formula
at zero temperature [40],

Iσ (V,EF ) = e

πh̄

∫ EF +eV/2

EF −eV/2
Tσ (E)dE, (5)

where EF is the equilibrium Fermi energy. For the sake of
simplicity, here we assume that the voltage drops across the
conductor-electrode interfaces only, although this assumption
does not affect significantly the current-voltage characteristics
[41]. The total polarization of the spin-dependent linear
conductance Gσ (EF ) = Iσ (V,EF )/V (V → 0) is defined as

P (EF ) = G↑(EF ) − G↓(EF )

G↑(EF ) + G↓(EF )
, (6)

and it will be the figure of merit to assess the spin-filtering
properties of the device.

III. RESULTS

A. Linear conductance in the absence of ferromagnet

Silicene nanoribbons, grown in a controlled environment
of gas such as hydrogen, oxygen, boron, lithium, or silver, will
be covered by a random distribution of adatoms while possibly
retaining their honeycomb structure [29]. Model parameters as
the energy level εad and the tunnel energy tad will depend on the
particular species adsorbed by the nanoribbon. In addition, the
fraction c of silicon atoms with an attached adatom will vary
according to the growth conditions. Another crucial parameter
of the model is the spin splitting M due to proximity exchange
interaction with the ferromagnetic insulator. In our simulations
we take typical values of these magnitudes to illustrate the
feasibility of the proposed device. Other values of the model
parameters do not qualitatively change our main conclusions.

In Fig. 2, we show the average conductance 〈G〉/G0 as a
function of the Fermi energy EF when the energy level of the
adatom is εad = 0.10t (0.16 eV) and the hopping parameter
tad = 0.10t (0.16 eV). Here G0 = e2/h is the quantum of
conductance per spin. Spin-splitting effects are not considered
for the moment (M = 0). We set the size of the system of
the nanoribbons, W × L, as width W = 2.35 nm and length
L = 23.22 nm that were used in all of our calculations. Results
for the pristine sample (c = 0) are compared to the average
over 100 realizations of random samples with concentrations
from c = 0.01 up to c = 0.50. The characteristic quantum
plateaus of the conductance are clearly revealed when c = 0
but the conductance drops abruptly at the adatom energy εad

at finite values of c. The occurrence of an antiresonance in
the conductance can be traced back to quantum interference
between the states in the continuum of the nanoribbon and
the localized states of the adatoms. This is nothing but the
electronic analog of the optical Fano effect [34]. It originates
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FIG. 2. Average conductance as a function of the Fermi energy
of a silicene nanoribbon when M = 0. Solid lines correspond to
the average over 100 realizations of random samples with adatom
concentration c = 0 (pristine), 0.01, 0.10, and 0.50. The energy
level of the adatom is εad = 0.10t and the hopping parameter
tad = 0.10t with t = 1.6 eV. The inset shows an enlarged view of
the antiresonance. Only the error bars of the more disordered sample
(c = 0.5) are displayed for clarity. Fluctuations strongly diminish
upon lowering c.

from the interference of two coexisting paths for a traveling
electron in the system. One path is a direct way that traverses
the nanoribbon while the second path includes a hopping
on and off the adatom and then the electron continues with
propagation. The destructive interference between these two
paths is at the heart of the Fano antiresonance. The conductance
around a Fano antiresonance at an energy Ear can be fitted by
the general expression G(EF )/G0 ∼ (̃ε + q)2/(ε̃ 2 + 1). Here
ε̃ = (EF − Ear)/γ corresponds to the normalized energy of
the Fano antiresonance, q is an adjustable parameter related
to the phase shift originated in the interference phenomena,
and γ is an effective coupling between the adatom and the
nanoribbon [42,43].

When the concentration of adatoms increases, the an-
tiresonance does not shift but the dip becomes broader. For
high concentration of adsorbed atoms, a gap centered at the
adatom energy εad opens. The antiresonance remains despite
having high concentrations of adatoms, and the fully covered
nanoribbon (c = 1) displays a gap of width t2

ad/t centered at
the adatom energy level, as can be demonstrated as follows.
The dispersion relation in the pristine nanoribbon is

E0(k‖,k⊥) = ±t

√
1 + 4 cos k‖ cos k⊥ + 4 cos k2

⊥ , (7)

where k‖ and k⊥ are the longitudinal and transverse wave num-
bers in units of the inverse of the lattice period, respectively.
Here the subscript 0 refers to the absence of adatoms. The
energy spectrum is symmetric about E = 0 and the two bands
touch at this energy if k⊥ = 2π/3. Then the nanoribbon is
metallic and the longitudinal dispersion relation is

ε0(k‖) ≡ E0(k‖,k⊥ = 2π/3) = ±2t | sin(k‖/2)|. (8)

On the other side, in the fully covered nanoribbon (c = 1)
the energy levels of the Si atoms are renormalized and
become energy dependent after the substitution εSi → εSi +

FIG. 3. Average conductance as a function of the Fermi energy
of a silicene nanoribbon when M = 0. Results were averaged over
100 realizations of random samples with adatom concentration c =
0.05 and tad = 0.05t , 0.25t , 0.50t , and 1.00t , where t = 1.6 eV. The
energy level of the adatom is εad = 0.10t .

t2
ad/[ε(k‖) − εad]. Now ε(k‖) stands for the dispersion relation

when c = 1. Notice that we have taken εSi = 0 throughout this
work. Introducing this substitution in Eq. (8) yields

ε(k‖) = t2
ad

ε(k‖) − εad
± 2t | sin(k‖/2)|. (9)

In this case, a gap opens at k‖ = π . Taking εad = 0 for
simplicity, the two roots of Eq. (9) at k‖ = π are found to
be ε± = ±t ∓ t

√
1 + (tad/t)2. Consequently, the magnitude

of the gap is |ε+ − ε−| = 2
√

t2 + t2
ad − 2t � t2

ad/t , where we
have taken into account that tad � t .

We now turn to the dependence of the antiresonance on
the model parameters εad and tad. Figure 3 displays the
average conductance 〈G〉 as a function of the Fermi energy
EF in units of the hopping energy t for different values
of tad when εad = 0.10t . Results were averaged over 100
realizations of random samples with adatom concentration
c = 0.05. The average conductance vanishes at EF = εad and
the antiresonance becomes broader on increasing tad. It can be
shown that the width of the antiresonance scales quadratically
with tad, provided that the adatom concentration is not large.
We have also performed calculations when the hopping energy
varies at random with mean value tad from adatom to adatom
(not shown in the figure). The general trend is the same as
before, in the sense that the larger the fluctuation of the hopping
energy, the wider the antiresonance. But even if this hopping
is random, the conductance vanishes at EF = εad. Therefore,
we come to the conclusion that the Fano antiresonance effect
is a very robust phenomenon, which is advantageous for
applications.

B. Electric current in the absence of ferromagnet

Figure 4 displays the current-voltage characteristics for
different values of the adatom concentration when the Fermi
energy at equilibrium is EF = 0. The rest of the parameters
are the same as in Fig. 2. The pristine nanoribbon displays a
perfectly ohmic current-voltage characteristics over the entire
range of voltage V . However, the response becomes nonohmic
at finite adatom concentration and an inflection point appears
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FIG. 4. Electric current through silicene nanoribbons, averaged
over 100 realizations of random samples, in units of I0 = et/πh̄, as a
function of the source-drain potential energy drop eV , for EF = 0 and
the rest of parameters as in Fig. 2. The inset shows the corresponding
average differential conductance 〈Gd〉 = 〈dI/dV 〉, expressed in units
of the quantum of conductance 2G0 = 2e2/h.

at eV = 2εad = 2t . The point reveals itself as a minimum in
the differential conductance, as seen in the inset of Fig. 4. The
drop of about 50% of the quantum of conductance 2G0 can be
easily understood as follows: Assuming that the transmission
coefficient does not change much with the applied voltage, one
can obtain a simple expression for the differential conductance
from the electric current (5). The result is 〈Gd〉/2G0 �
(1/2)[Tσ (EF + eV/2) + Tσ (EF − eV/2)]. When EF = 0 (as
in the inset of Fig. 4), the last term equals unity since the Fano
antiresonance lies on the positive-energy side and the nanorib-
bon is metallic. Thus 〈Gd〉/2G0 � (1/2)[1 + Tσ (eV/2)].
When eV/2 is close to the Fano antiresonance, located
at an energy εad = 0.1 (i.e., eV ∼ 0.2), the transmission
vanishes and 〈Gd〉/2G0 � 1/2. On the contrary, far from
the Fano antiresonance, the transmission becomes unity and
〈Gd〉/2G0 = 1. Also notice that the gap increases with the
adatom concentration, as we anticipated above. Hence, atomic
adsorption induces a chemically tunable gap in silicene
nanoribbons.

C. Polarization effects of the ferromagnet

As mentioned before, half-metallicity of the system arises
as a consequence of the spin splitting induced by the
ferromagnetic insulator. We describe the splitting by the
parameter M in Eq. (4). Ab initio calculations obtain values of
the order of 100–200 meV for graphene in close proximity
to chalcogenides (EuO and EuS) [44]. Unfortunately, no
similar calculations have been carried out in silicene yet
and the magnitude of the parameter M is largely unknown.
In our numerical simulations, we take a moderate value
M = 100 meV to be on the safe side, although higher values
are expected to result in better performance.

In Fig. 5(a), we show the resulting spin-dependent conduc-
tance 〈Gσ 〉 (σ = ↑,↓) as a function of the Fermi energy EF for
both spin directions, averaged over 100 realizations of random
samples with c = 0.05, c = 0.10, and c = 0.50. The shape of
the conductance curve is essentially the same for both spin
orientations but blue and red shifted for spin up and spin down
by an amount M , respectively. Fano antiresonances are wider
than those shown in Fig. 2 for the same adatom concentration

FIG. 5. (a) Spin-up (solid lines) and spin-down (dashed lines)
conductances as a function of the Fermi energy of a silicene
nanoribbon when M = 100 meV, averaged over 100 realizations
of random samples with adatom concentrations c = 0.05, 0.10, and
0.50. The energy level of the adatom is εad = 0.10t and the hopping
parameter tad = 0.25t with t = 1.6 eV. (b) Average conductance
polarization as defined by Eq. (6).

because tad is now larger. We can then take advantage of
the abrupt profile of the conductance curves to generate
spin-polarized electric current through the silicene nanoribbon,
as deduced from the polarization shown in Fig. 5(b). When the
Fermi level lies in the vicinity of εad − M , the electric current
will be fully spin-down polarized. Similarly, when Fermi level
approaches εad + M , the electric current will become fully
spin-up polarized. By increasing the adatom concentration,
the plateaus of the polarization around εad ± M can be made
wide enough to ensure thermal stability in device applica-
tions, that is, keeping the width of the antiresonance larger
than kBT .

IV. CONCLUSIONS

We have studied the electrical conductance of narrow
silicene nanoribbons [32] in close proximity to a ferromagnetic
insulator. The ferromagnet induces a spin splitting of the
energy levels of the silicene nanoribbon. The magnitude of
the splitting in silicene is still unknown and the we have used
the same value found in graphene grown on chalcogenides
[44] to illustrate the phenomenon. We have also investigated
the impact of a random distribution of adatoms adsorbed on the
nanoribbon. The linear conductance shows clear signatures of
the electronic Fano effect due to the coupling of the localized
states at the adatoms and the continuum of propagating
states in the nanoribbon. The Fano antiresonance becomes
spin dependent due to the proximity exchange interaction
between the itinerant electrons and the magnetic ions of the
ferromagnet. The effect is robust and can be tuned by setting
parameters like the adatom concentration. Moreover, it could
be used to generate spin-polarized currents for real-world
applications in spintronics.
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