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Anisotropic signatures of electron hydrodynamics
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Electron hydrodynamics refers to the transport regime where electrons collectively behave like a fluid. Its
realization requires pure materials, some of which, such as bilayer graphene or PdCoO2, are anisotropic so that
different in-plane transport directions can be defined. Collective electron flow also benefits from geometrically
engineered devices because it is highly dependent on the nonuniformity of the electron flow. Here we analyze
carrier transport in anisotropic materials where remarkable effects emerge after the proper directional design
of the device. Simulations based on the Boltzmann transport equation demonstrate that electrical properties are
clearly different when the device is set in the easy or the hard transport directions, namely, when the transport
channel is aligned or not aligned to the group velocity at the Fermi level, respectively. Most importantly, the
standard signatures of viscous electron flow, such as Poiseuille flow, superballistic conduction, and the formation
of whirlpools, are enhanced when the anisotropic device operates in the hard transport directions. As a result,
we demonstrate that electron hydrodynamics leads to a different route for efficient charge transport in the hard
in-plane transport directions.

DOI: 10.1103/PhysRevResearch.7.013087

I. INTRODUCTION

The pursued miniaturization of electronics, counting the
use of two-dimensional (2D) devices, faces assorted difficul-
ties [1]. As such, energy dissipation, with its environmental
ramifications, is paramount. One way to deal with energy
losses is to exploit the emerging transport regimes in 2D mate-
rials. This is the case of hydrodynamics, where electrons move
collectively, such as in a conventional viscous fluid [2–5],
giving rise to exotic hydrodynamic signatures. The most re-
markable are (i) the Poiseuille flow in channels, such that
central electrons move faster, leading to a transversal curve
profile [6], (ii) the superballistic conduction or Gurzhi effect
[7–13], and (iii) the emergence of whirlpools and negative
resistances in symmetry-broken devices, associated with the
finite viscosity of the electron fluid [14–17]. Superballistic
conduction is very promising in the field of electronics. Here
the effect of a finite temperature enhances electron-electron
collisions, favoring a collective behavior where electrons
dodge the edges of the sample. Accordingly, the resistance
falls under the ballistic limit, a convenient property to reduce
energy dissipation. Further interest in electron hydrodynam-
ics stems from its applications in amplifying or oscillating
circuits [18,19], aside from the cornerstone of low-energy
dissipation [13,20].
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The first strategies for the realization of electron hydrody-
namics were based on pure 2D materials, including graphene
[6,15,17] and 2D GaAs [8]: electrons travel long distances
until they scatter against impurities or phonons, showing
their underlying collective properties. This is also the case
of bilayer graphene [15], an anisotropic material where, for
a certain filling of the band structure, most of the electrons
will only propagate in six directions. Moreover, three of them
correspond to one valley and three to the other, so that the
anisotropic properties may be used for valleytronics [21–23].
Further systems to be studied are semimetals and the delafos-
sites PtCoO2 and PdCoO2 [24], which are layered crystal
with sheets of platinum and paladium, respectively [25,26].
The features of the out-of-plane band structure of PdCoO2

ensure a mainly 2D transport and allows us to work with
the in-plane approximation. In addition, the purity of this
material enables electrons to travel for very long distances
[27], namely, 20 μm, before they scatter with an impurity.
This makes PdCoO2 a great candidate to build electronic de-
vices with reduced energy dissipation, where a hydrodynamic
response may arise [24,28–31]. Its in-plane Fermi surface is
also highly anisotropic [1,30,32–36], with electrons moving
in six directions. Although Neumann’s principle predicts an
isotropic in-plane resistance of a bulk sample with hexagonal
symmetry [1,36,37], the geometry of the device fixes the
transport direction and breaks that symmetry. Therefore, the
resistance of a PdCoO2 channel is highly anisotropic: trans-
port is easy if the axis of the channel matches one of the six
electron’s velocities, but it is hard if it does not, as we depict
in Fig. 1. The latter situation leads to an increased electrical
resistance.

Alternative strategies for electron hydrodynamics were
based on nanostructuring the devices. The viscous proper-
ties emerge when the electron flow is nonhomogeneous, and
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FIG. 1. Anisotropic electron transport. Electrons in PdCoO2

preferably move in six directions, perpendicular to the Fermi surface
and defined by the atomic structure of the palladium planes (not to
scale). Collisions against the boundaries increase the resistance, but
they can be mitigated with electron-electron collisions. The orienta-
tion of the Fermi surface and the geometry, either in a channel or in
a honeycomb antidot superlattice, defines easy (0◦) and hard (30◦)
transport directions.

geometrically engineering the device is the best way to bend
the electron trajectories. For example, superballistic con-
duction has been reported in point contacts [7], crenelated
channels [8], and antidot superlattices [12], and the more that
we bend the flow, the stronger the superballistic effect is. Also,
symmetry-broken devices have been considered, leading to
the formation of unexpected electronic whirlpools [14,17].
Notice that in sum, the first strategy drove us to anisotropic
materials such as PdCoO2 and the second to geometrically
engineered devices with well-defined transport directions.
However, to the best of our knowledge, former studies of
PdCoO2 were mostly limited to trivial geometries [38]. In
other words, the question of how the material anisotropy
can affect viscous electron flow in geometrically engineered
devices remains open.

In this paper, we analyze the most relevant signatures to
establish viscous electron flow in 2D anisotropic devices:
Poiseuille flow, the superballistic conduction, and the forma-
tion of whirlpools in symmetry-broken devices. We solve the
Boltzmann transport equation in devices working in the easy
and the hard flow directions by properly setting the angle be-
tween the material Fermi surface and the direction of transport
(see Fig. 1). We find that when the device works in the hard
flow directions, the three hydrodynamic signatures considered
here are enhanced.

II. MODEL

Let us introduce the model to describe a 2D electron sys-
tem in an anisotropic material [39]. We consider electrons

as semiclassical particles with a steady distribution function
f (r, k) such that f (r, k) d2r d2k is the number of electrons
around position r and momentum h̄k. The dynamics of the
electrons when they are subjected to an electric potential V (r)
and a perpendicular magnetic field B can be described by the
following Boltzmann transport equation [1,39–42]:

v · ∇r f + e

h̄
(∇rV − v × B) · ∇k f = �[ f ], (1)

where e is the elementary charge and h̄ is the reduced
Planck’s constant. We consider the following arbitrary Fermi
surface [1]:

kF (θ ) = kF ρ(θ )

(
cos θ

sin θ

)
, (2)

where θ is the angle of the electron’s momenta, kF is the
Fermi wave number, and ρ(θ ) is a function with a mean
value of 1. For PdCoO2, we assume the hexagon ρ(θ ) = 1 +
0.034 cos(6θ ) [36]. Thus, the group velocity of the carriers
near the Fermi surface is

v(θ ) = vF

(
cos(θ ) ρ(θ ) + sin(θ ) ∂θρ(θ )
sin(θ ) ρ(θ ) − cos(θ ) ∂θρ(θ )

)
, (3)

where vF is the Fermi velocity. The latter is perpendicular
to the Fermi surface and has modulus v � vF provided that
|ρ − 1| � 1. Note that in the considered case, the anisotropic
response of the material is not founded on the change of the
modulus of the velocity of the charge carriers, but rather on
the change of its direction. Indeed, the hexagonal shape of the
Fermi surface forces many electrons to move perpendicular
to the sides of the hexagon (easy transport directions), while
there are few electrons moving in other directions (hard trans-
port directions). The collision operator �[ f ] in Eq. (1) reads

�[ f ] = − f − fe

lev
−1
F

− f even − f even
ee

leven
ee v−1

F

− f odd − f odd
ee

lodd
ee v−1

F

. (4)

The first term describes electron scattering against impurities
and phonons, where momentum is not conserved. Therefore,
the distribution decays to the Fermi equilibrium distribution
fe(k), and the decay ratio is defined with the mean free path
le. For the purposes of this work, we consider that the easy and
hard transport directions are mainly determined by the shape
of the Fermi surface and, as such, we take a uniform mean free
path le. Notice that despite the increase in le, for a very few
electrons near the vertexes of the Fermi surface in PdCoO2

[24], this is a sensible approximation to determine the overall
electrical response for all in-plane electrons [36]. The second
term in Eq. (4) describes collisions with other electrons, which
are processes that conserve momentum. Hence, the distribu-
tion decays to a shifted equilibrium distribution fee(r, k) =
fe[k − k̄(r)], where k̄(r) = (1/n)

∫
k f (r, k) d2k is the mean

wave number and n = ∫
f (r, k) d2k is the density of carriers,

which is uniform in the sample. We shall use a more realistic
approach than Callaway’s ansatz [43] by taking different leven

ee
and lodd

ee for the modes of the polar expansion of f with even
and odd indexes, respectively. In particular, we assume lee =
leven
ee � lodd

ee , which gives rise to the so-called tomographic
regime [44–46].
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Transport phenomena happen near the Fermi surface and
they can be described using a reduced distribution function
g(r, θ ) = 4π2vF k−1

F

∫ ∞
0 ( f − fe) dk, which only depends on

the polar angle θ and splits into its even- and odd-parity parts.
After definition of gee(r, θ ) = 4π2vF k−1

F

∫ ∞
0 ( fee − fe) dk, we

assume linear transport with g � vF and |ρ − 1| � 1, so that
Eq. (1) reduces to

v(θ )

vF
· ∇rg − e

h̄kF
∇rV + ∂θg

lB

= − g

le
− geven − geven

ee

leven
ee

− godd − godd
ee

lodd
ee

, (5)

where lB = h̄kF /eB is the cyclotron radius. Finally, the drift
velocity is computed as

u = 1

π

∫
v(θ ) g(θ ) dθ. (6)

Equation (5) must be solved for an appropriate edge scat-
tering [39,47]. In particular, we study the two most commonly
accepted boundary conditions. First is a fully diffusive bound-
ary (DF), assuming g(θ ) = 0 for all the scattered directions.
This means the electrons scatter uniformly in all directions,
regardless of the incident distribution on a wall. Second is a
partially specular (PS) edge, such that the electron distribution
is

g(θ ) = g(−θ ) + D sin θ

×
[

g(−θ ) − 2

π
sin θ

∫ π

0
sin2 θ ′g(−θ ′) dθ ′

]
, (7)

for all reflected angles 0 < θ < π , with D � 1 a dispersion
coefficient. In particular, if D � 1, the edge is almost specular
and a perfect slip boundary is obtained. For example, this
model is able to reproduce the experimental results for uni-
form channels with DF boundaries and a uniform mean free
path of le = 20 µm for PdCoO2 [36] (not shown for brevity).
The definition of a mean free path is the common approach
[36], which is followed even after the detailed first-principles
calculations [29]. Therefore, current experimental evidence
supports the assumption of an isotropic mean free path, while
also suggesting that the anisotropy of the Fermi surface is the
leading source for anisotropic electrical properties.

III. POISEUILLE AND COLLECTIVE FLOW

In this section, we analyze the Poiseuille flow in a very
long uniform channel of width d . Figure 2 shows the flow
profiles for the easy [Fig. 2(a)] and hard [Fig. 2(b)] transport
directions, within a physical scenario between the ballistic and
hydrodynamic regimes of transport, d/le = 0.3 and d/lee =
1. Experiments visualizing Poiseuille flow [6] are typically
performed at finite temperatures, using the hydrodynamic
description leven

ee = lodd
ee = lee, although the results would be

equivalent under the tomographic approach [44]. DF bound-
aries are typically considered when studying Poiseuille-like
profiles. Notice that our results fit the experimental observa-
tions in PdCoO2, where the largest (lowest) current is obtained
for the easy (hard) direction. Moreover, our simulations also
demonstrate that the profile curvature is also affected by the
transport direction, being larger for the hard one (κ = 0.34)

FIG. 2. Enhanced Poiseuille flow in the hard transport direction.
The transverse velocity profile (a) in the easy transport direction,
(b) in the hard transport direction, and (c) in an isotropic material for
a uniform channel with DF boundaries and d/le = 0.3, d/lee = 1.
We also show such profiles under the effect of a magnetic field,
d/lB = 0.5 (dotted lines) and d/lB = 0.75 (dashed lines). (d)–(f)
Color map of the propagation velocity in a honeycomb antidot su-
perlattice simulated with the Boltzmann transport equation and DF
edges for d/le = 0.3 and d/lee = 0.5.

than for the easy one (κ = 0.24). This is also in perfect agree-
ment with previous results [29]. For completeness, we also
study transport in an isotropic material in Fig. 2(c), whose
profile curvature results are very similar to the one obtained
in the hard direction.

Let us now explain why the transport direction determines
the curvature. Consider the distribution of the electrons mov-
ing near the edge. The incident electrons contribute to the
drift velocity, but those scattered from the edge flow equally
in all directions, which reduces its contribution to the drift
velocity. It is not until they move away from the edge that
due to electron-electron collision or the accelerating potential,
they recover their drift velocity and contribute to the electrical
conduction. This explains the curved profiles in isotropic ma-
terials. However, the electrons in PdCoO2 are only allowed to
flow in six directions. When a device is aligned with an easy
direction, there is a huge accumulation of electrons moving
parallel to the channel, outshining the remaining directions.
They rarely suffer edge scattering, so they keep the same drift
velocity regardless of being near the edge or far away from
it. Therefore, the overall current profile flattens. Conversely,
when the device is set in the hard direction of transport, part
of the electrons scatter from the boundaries, similarly to what
happens in isotropic materials. This reduces the drift veloc-
ity near the edges and leads to a curved profile of electron
velocities. An additional technical explanation based on the
g distribution can also be provided. In the easy direction of
transport, there is an accumulation of electrons parallel to the
channel, so g is not a smooth function. In the hard direction,
however, electrons, scattered from the boundaries, may flow
in all directions and, as a result, g is a smoother function.
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FIG. 3. Enhanced superballistic conduction in the hard direction. (a) Simulation of the Boltzmann transport equation, where colors account
for the electric potential and streamlines are average electron trajectories in the honeycomb antidot superlattice with DF edges and d/le = 0.3,
d/leven

ee = 0.5, d/lodd
ee = 0. (b) Resistance R of an antidot superlattice with DF edges and d/le = 0.3, when different transport directions are

considered hard (red), easy (green), and isotropic (blue) transport. R decreases with increasing the magnitude d/lee, which favors electron-
electron collisions. Solid circles show R when a magnetic field is applied, d/lB = 1. (c) Gurzhi ratio G = 1 − R/Rmax for the cases shown in
(b) (solid lines) and with d/le = 0.5 (dotted lines). (d)–(f) The same magnitudes as in (a)–(c), but for a crenellated channel. For comparison,
(f) presents results for PS boundaries with D � 1 (dashed lines).

In the latter scenario, collective electron transport arises so
the Boltzmann equation reduces to a hydrodynamic Navier-
Stokes equation [39], and the curved profiles emerge naturally.

Notice that the differences between the easy and hard trans-
port directions become more notorious the more we approach
the ballistic regime, while they will blur if we go deeply into
the hydrodynamic regime. Indeed, the modified Navier-Stokes
equation that could be derived from Eq. (5) [39] would be
the same for all transport directions. However, unless we are
too deep into the hydrodynamic regime, the anisotropy affects
the Boltzmann equation and largely determines the physical
properties of the device. Another point to be considered is
the role of the magnetic field [32], which can also induce
hydrodynamic behavior [39,48,49]. We notice that unlike in
the easy direction, in the hard direction low magnetic fields
further increase the curvature of the Poiseuille profile. This
opposite behavior can be considered as a different indicator to
classify viscous electron flow in anisotropic materials.

Finally, we show that these conclusions are valid in other
geometries. Let us focus on an antidot superlattice. The anti-
dots have been sorted in a honeycomb fashion, or compact
staking, with hexagonal symmetry. This defines a series of
channels in the shape of hexagons and preferred transport
directions every 60◦. The latter could be easy or hard, de-
pending on the axis of the anisotropic material. Although
there is no formal definition of the Poiseuille flow beyond
the uniform channel, we propose to look at the velocity field
to study the degree of transport collectivity. As shown in
Fig. 2(d), the flow in the easy direction occurs in parallel
straight channels, such that the electrons do not follow the
antidot geometry. However, in the hard direction presented in

Fig. 2(e), the electron trajectories are more curved and the
velocity significantly increases in the regions between holes
that are adjacent to the main flow. This is yet a clear indicator
of collective flow in the hard transport direction, which is con-
sistent with the results in the uniform channel. Lastly, Fig. 2(f)
shows the electron flow in an isotropic antidot superlattice
such that the electron trajectories result from a combination
between those in the easy and hard directions with an inter-
mediate degree of collectivity.

Altogether, we demonstrate that devices working in the
hard transport direction facilitate the observation of hydrody-
namics effects and, particularly, enhance the occurrence of the
Poiseuille flow.

IV. SUPERBALLISTIC CONDUCTION

Superballistic conduction is another signature of viscous
electron flow that has the most straightforward applications in
circuits since it reduces dissipation [7–13]. Let us investigate
how superballistic conduction is affected by the anisotropy.
On the one hand, we need to consider a device with a non-
trivial geometry, different from a uniform channel, to bend
the electron flow and boost its collective response. On the
other hand, the geometry has to establish well-defined easy
and hard transport directions. The honeycomb antidot super-
lattice meets both criteria, as shown in the previous section.
Figure 3(a) shows the bending of the carrier trajectories along
the hard directions defined by the honeycomb.

As expected for the superballistic conduction, the increase
in temperature, which favors electron-electron collisions, re-
duces the device resistance [see Fig. 3(b)]. It is at higher
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FIG. 4. Whirlpool formation enhances in the hard transport direction. Whirlpool formation in (a) the easy direction, (b) the hard direction,
and (c) an isotropic material, after simulations of the Boltzmann equation near the ballistic regime, for d/le = 0.1, d/lee = 0, and DF edges.
The flow in the channel is set from left to right. Specifically, the positive (negative) sign of the uy velocity at half of the radius of the chamber
(solid black circles) is used as an indicator of the formation (absence) of a whirlpool. We normalize the velocities to u0, the average drift
velocity in the channel. Whirlpool in (d) the easy direction, (e) the hard direction, and (f) an isotropic material closer to the hydrodynamic
regime of transport d/le = 0.1 and d/lee = 1.

temperatures where the decrease in le leads to an increase
in the resistance [7]. The superballistic decrease in the re-
sistance is much faster for the hard transport direction [see
Fig. 3(c)]. The latter, which forbids ballistic trajectories along
the honeycomb, favors the collective motion of electrons.
Therefore, the transition from ballistic to hydrodynamic trans-
port, which supports superballistic conduction, occurs more
efficiently in the hard direction, yielding the steepest descent
in the resistance. Due to the superballistic effect, the resistance
in the hard direction (typically higher than in the easy one)
eventually converges to the resistance in other directions as
we go deeper into the hydrodynamic regime by decreasing
lee. An additional magnetic field, which continuously rotates
the electron trajectories in the antidot superlattice, removes
the particular characteristics of transport in the easy and hard
directions, leading to a common magnitude of the resistance
[see symbols in Fig. 3(b)]. To quantify the superballistic ef-
fect, we also evaluate the Gurzhi ratio defined as G = 1 −
R/Rmax [see Fig. 3(c)] to demonstrate that the superballistic
conduction is enhanced in the hard direction. Besides, the
same behavior is observed for another scattering rate d/le
against impurities and phonons. For superballistic conduction,
we mainly focus on the resistance decrease that occurs at
very low temperatures compared to the Fermi temperature
T � TF . So, we take into account the tomographic description
lee = leven

ee � lodd
ee of electron dynamics [12,44–46,50]. Lastly,

we study superballistic conduction in a crenellated channel
[see Fig. 3(d)]. As previously discussed for the antidot su-

perlattice, the resistance decay is also stronger in the hard
transport direction [see Figs. 3(e) and 3(f)] and the resistances
converge to the same value for all transport directions when a
magnetic field is applied. In Fig. 3(f), we also demonstrate that
it is the device geometry and the material anisotropy, and not
the particular edge scattering, that mainly fixes the electron
bent trajectories. Therefore, the effect is robust for different
boundary conditions.

In short, superballistic conduction is strongly affected by
anisotropy. A device in the hard direction exhibits a more
conspicuous superballistic effect. The latter is particularly
relevant when a device needs to operate in a hard transport
direction. By hydrodynamics engineering, a hard transport
direction can be transformed into an easier one, such that some
of the detrimental transport effects of anisotropic materials
can be overcome.

V. WHIRLPOOL FORMATION

Lastly, we consider the emergence of whirlpools in
symmetry-broken devices since it has been considered a clear
indication of collective transport [17]. Figure 4 shows the
current whirlpools for several physical situations where the
alignment of the device geometry and the material anisotropy
is monitored. Let us focus on a regime of transport close
to the ballistic one [51] (d/le = 0.1 and d/lee → 0) in
Figs. 4(a)–4(c), where the anisotropy of the material be-
comes more remarkable. Our simulations show that there is no
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well-defined whirlpool formation in the easy transport direc-
tion [Fig. 4(a)], while it clearly appears and fills almost the
whole chamber in the hard transport direction [Fig. 4(b)].
Even if we consider a case much closer to the hydrody-
namic regime (d/le = 0.1 and d/lee = 1.0) in Figs. 4(d)–4(f),
where the flow collectivity is increased due to favored
electron-electron collisions, the different behavior regarding
whirlpool formation is still appreciable in Figs. 4(d) and 4(e).
Whirlpools are often studied at finite temperatures, so we
use the hydrodynamic approach to electron dynamics (leven

ee =
lodd
ee = lee), although an analog behavior is observed if we con-

sider tomographic dynamics. Indeed, the map of velocities is
completely different depending on the direction of transport,
whether easy or hard. As previously proposed in Ref. [17], the
sign of the velocity uy at half of the radius of the chamber (see
solid black circles in Fig. 4) is an indicator of the formation of
a whirlpool. Particularly, if the flow in the channel is set from
left to right, a negative (positive) sign in uy is associated with
the formation (absence) of a whirlpool.

This finding cannot only be used to reveal the direction of
transport in anisotropic materials, easy or hard, but it mainly
illustrates that experiments performed in the hard transport
direction enhance the signatures of viscous flow.

VI. CONCLUSIONS

We analyzed the standard signatures of viscous electron
flow when an anisotropic material is particularly placed in
its easy and hard transport directions. Let us stress that at a
first approach, since electron hydrodynamics can be described
by the Navier-Stokes equation with isotropic viscosity ten-
sors in hexagonal materials [37,52], its electrical properties
were not expected to deviate from those of an isotropic crys-
tal. Nevertheless, our simulations of the Boltzmann transport
equation show that this is not the case for an intermediate
regime of transport between the ballistic and the hydrody-
namic ones, where a relevant degree of electron collective
flow is present. This allows us to engineer a directional trans-
port experiment to enhance the collective nature of electron
flow in anisotropic materials. We show that anisotropic vis-
cous electron flow can be studied in geometries beyond the
standard uniform channel [36]. In geometrically engineered
devices such as the honeycomb antidot superlattice, our study
shows that well-established features for viscous flow, other
than Poiseuille flow, also take place in nontrivial geometries.
Therefore, the simulations of the Boltzmann equation prove
that the concept of easy and hard transport directions arises
beyond the uniform channel. Lastly, we demonstrate that vis-
cous electron flow is enhanced in devices working in the hard
transport direction, contrary to a general first intuition. Indeed,
despite the lower dissipation in the easy transport direction, it
is in the hard one where the collectivity of the electron flow is
maximum.

In conclusion, the anisotropy itself can be considered as
a different strategy to induce viscous electron flow [39]. We
explored its effect on the performance of the Poiseuille flow,
superballistic conduction, and electronic whirlpools, and we

found that such collective flow signatures enhance when the
material and geometric anisotropy are smartly coordinated,
this is, in the hard flow direction. Equivalently, if a device
has to operate in the hard flow direction, viscous electron
flow can play a major role in largely reducing its dissipation.
It is worth mentioning that our results may be generalized
to other anisotropic systems, such as bilayer graphene, for
valleytronic applications [21]. Also, together with experimen-
tal progress in this material and visualizing techniques in
PdCoO2 [30,35,36], we expect our findings to be accompanied
by experimental realizations of hydrodynamic transport in
anisotropic materials.

VII. METHODS

The Boltzmann equation was solved numerically with a
Galerkin conformal finite-element method [53]. We write

g(r, θ ) =
N∑

n=1

M∑
m=1

φn(r)ϕm(θ ), (8)

where {φn}N
n=1 is the set of spatial tent functions and its prod-

ucts, defined on a triangular mesh [54] for each geometry.
For the angular part, {φm}M

n=1 is a set of periodic functions
defined on [0, 2π ). M = 32 tent functions for the angular part
were used. A uniform density of carriers is set in Eq. (5) to
solve the resulting linear system with a least-squares approx-
imation in MATLAB [55]. At the edges, the condition for PS
boundaries (7) or g(θ ) = 0 for DF boundaries is imposed for
reflected electrons. Periodic boundary conditions at the edges
of the system were considered. We set the potential difference
between two cells across the longitudinal direction and deter-
mine the Hall difference across the transverse direction with
an additional equation that imposes no net flow across the
transverse direction. Once the g(r, θ ) function is known, we
compute the velocity field v everywhere in space, such that its
integral across the device is the current. The ratio between the
voltage drop and the current gives the electrical resistance R.
Lastly, we used numerical integration to find the total current
and a fourth-order Runge-Kutta method to solve the electronic
trajectories in the streamlines.
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