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Many‑impurity scattering 
on the surface of a topological 
insulator
José Luis Hernando1,2, Yuriko Baba1,2*, Elena Díaz1 & Francisco Domínguez‑Adame1

We theoretically address the impact of a random distribution of non‑magnetic impurities on the 
electron states formed at the surface of a topological insulator. The interaction of electrons with 
the impurities is accounted for by a separable pseudo‑potential method that allows us to obtain 
closed expressions for the density of states. Spectral properties of surface states are assessed by 
means of the Green’s function averaged over disorder realisations. For comparison purposes, the 
configurationally averaged Green’s function is calculated by means of two different self‑consistent 
methods, namely the self‑consistent Born approximation (SCBA) and the coherent potential 
approximation (CPA). The latter is often regarded as the best single‑site theory for the study of 
the spectral properties of disordered systems. However, although a large number of works employ 
the SCBA for the analysis of many‑impurity scattering on the surface of a topological insulator, 
CPA studies of the same problem are scarce in the literature. In this work, we find that the SCBA 
overestimates the impact of the random distribution of impurities on the spectral properties of surface 
states compared to the CPA predictions. The difference is more pronounced when increasing the 
magnitude of the disorder.

Since the pioneering work of Anderson on the absence of diffusion in random  lattices1, different models of disor-
der have played a major role in understanding optical and transport properties of real solids with point defects. 
The advent of two-dimensional (2D) Dirac materials, such as the surface of topological insulators, graphene and 
carbon nanotubes, has brought renewed interest in low-dimensional disordered systems. One of the most salient 
features of Dirac materials is the appearance of a gapless energy spectrum that depends linearly on momentum 
(Dirac cones). This dispersion makes electrons behave as massless fermions with a Fermi velocity much lower 
than the speed of light. The single-parameter hypothesis of disordered systems, introduced by Abrahams et al.2, 
led to the general belief that all electron states were exponentially localized in 2D systems. Although this predic-
tion works nicely when the energy spectrum depends quadratically on momentum, it turns out that extended 
states may arise in 2D systems with linear dispersion where quasi-particles undergo a localisation-delocalisation 
transition by varying the magnitude of  disorder3. Therefore, it becomes apparent that electron dynamics in dis-
ordered 2D Dirac materials may substantially differ from what is known in conventional solids.

Single-particle spectral properties of disordered systems, such as the density of states (DOS), can be assessed 
by means of the Green’s function averaged over disorder  realisations4,5. In general, the configurationally averaged 
Green’s function cannot be calculated exactly and various approximations of different degree of sophistication 
are employed. Among them, self-consistent methods stand out because they correctly explain the main features 
of the DOS as inferred from photo-emission and soft X-ray  experiments6.

Impurities and other point defects are common sources of disorder in 2D Dirac  materials7–10. Electron scat-
tering by impurities yields spectral features, such as circular s-wave resonances, that can be targeted by scan-
ning tunnelling experiments (see  reference8 and references therein). Theoretical treatments of many impurities 
are often based on the self-consistent Born approximation (SCBA)11–19. In the SCBA the imaginary part of the 
self-energy in the bare Green function is replaced by the self-energy of the full Green function, that renders the 
problem self-consistent. If the impurity potential is assumed short ranged, the SCBA leads to particularly simple 
expressions for the average Green’s function, from which the DOS is readily determined. The so-called coher-
ent potential approximation (CPA) represents another example of a self-consistent approach routinely used for 
the theoretical analysis of conventional disordered  matter4,20. However, CPA studies of spectral and transport 
properties of disordered 2D Dirac materials are still scarce in the  literature21–23, particularly in the context of 
surface states of topological insulators.
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In this work we study many-impurity electron scattering on the surface of a topological insulator by means 
of self-consistent methods, namely SCBA and CPA, with the aim of comparing their predictions. The analysis 
and conclusions can be trivially extended to any 2D material where electron dynamics can be described by 
the massless Dirac equation. The interaction of the electron with the scatterers is accounted for by a separable 
pseudo-potential  model24–31. In spite of its seemingly more complicated form, the separable pseudo-potential 
model is amenable to analytical solution and allows us to obtain closed expressions for the average Green’s func-
tion within the SCBA and CPA frameworks. In particular, short-range potentials approaching the δ-function 
limit, frequently used in previous  works12,18,32–34, can be viewed as limiting cases of the separable pseudo-potential 
model. We will show that the SCBA average Green’s function can also be obtained from the CPA calculations in 
the limit of diluted impurities and small magnitude of disorder. However, the main conclusion of this work is 
that the SCBA overestimates the impact of point-like scatterers on the spectral properties, compared to the CPA 
predictions. The discrepancy becomes greater when increasing the impurity concentration.

Results
Theoretical model. The Hamiltonian operator of an electron in a pristine surface of a topological insulator 
will be denoted as Ĥ0 . It is diagonal in the basis of plane waves 

where35

Here v is a matrix element having dimensions of velocity (for example, v = 4× 105m/s for Bi2 Te336, and 
v = 5× 105m/s for Bi2Se337), σx and σy are Pauli matrices and k = (kx , ky) is the in-plane momentum. The 
corresponding bands are simply given as Ek = ±�v|k| (Dirac cones). Notice that we are restricting the study 
to a single Dirac cone and neglecting intervalley scattering as well as the contribution of non-linear terms in 
momentum. Moreover, we are dealing with the case of disorder that modifies the spectrum but does not collapse 
the bulk gap. Therefore, our results are valid as long as the 2D effective model holds.

Let us address how the electron interacts with impurities located at the surface of the topological insulator. 
We will assume that they are placed on a regular square lattice of parameter a. Notice that a is not related to the 
size of the unit cell of the crystal structure of the topological insulator. In fact, electrons do not see the crystal 
structure since we are using a continuous approximation for the Hamiltonian (1). We will focus on binary dis-
order hereafter. To this end, two different species of impurities A and B are considered. A given site of the square 
lattice is occupied by an impurity A with probability c or by an impurity B with probability 1− c . Therefore, the 
separable pseudo-potential operator can be cast in the  form25,29

The index n runs over all sites Rn of the square lattice and ω(r − Rn) = � r | ωn � will be referred to as shape 
function. �n is the coupling constant that takes on two values �A and �B at random, with probability c and 1− c 
respectively. Hence, the probability distribution in this model of binary disorder is

The electron Hamiltonian in the presence of the impurities is the sum of the Hamiltonian Ĥ0 corresponding 
to the translationally invariant system and the random part V̂  , namely Ĥ = Ĥ0 + V̂  . The retarded Green’s func-
tion operators (resolvents) corresponding to Ĥ and Ĥ0 are

where z = E + i0+ . Notice that Ĝ0(z) is diagonal in the basis of plane waves 

with

by virtue of Eq. (1). We will concern ourselves with the ensemble average 〈Ĝ(z)〉av of the Green’s function operator 
in the random medium. The subscript ‘ av ’ indicates the average over the probability distribution (3).

The knowledge of 〈Ĝ(z)〉av allows us to obtain the spectral properties of an electron on the surface of a topo-
logical insulator scattered off by a random array of impurities. In general, the average Green’s function operator 
cannot be obtained exactly and some approximations are needed. The conceptually simplest way of finding an 
approximation to 〈Ĝ(z)〉av is by introducing an effective, translationally invariant medium represented by a 
Green’s function operator Ĝeff (z) such that Ĝeff (z) = �Ĝ(z)�av . The first level of approximation is reached in the 
case of very weak scattering by assuming that the array of impurities is periodic with a coupling constant given 
as the following average

(1a)� k | Ĥ0 | k′ � = H0(k) δk,k′ ,

(1b)H0(k) = �v
(
σxky − σykx

)
.

(2)V̂ =
∑

n

V̂n , V̂n =| ωn ��n�ωn | .

(3)P (�n) = cδ(�n − �A)+ (1− c)δ(�n − �B) .

(4)Ĝ(z) =
(
z − Ĥ

)−1
, Ĝ0(z) =

(
z − Ĥ0

)−1
,

(5a)� k | Ĝ0(z) | k′ � = G0(k, z) δk,k′ ,

(5b)G0(k, z) =
1

z −H0(k)
= z +H0(k)

z2 − �2v2k2
,
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This approach is known as the Virtual Crystal Approximation (VCA) (see, e.g.,  reference4). The VCA is a 
reasonably good description only if c → 0 (or equivalently c → 1 ) and �A ≃ �B . However, more elaborated, 
self-consistent methods have a much wider range of validity. Within these methods, the VCA appears usually as 
a first constant term in the expansion of the Green’s function, as described in the following sections.

Once the effective Green’s function is obtained, important physical quantities can be calculated. In particular, 
the average DOS per unit area is easily computed by the following expression

We will take S = 1 and referred to ρ(E) as the DOS hereafter.

Self‑consistent Born approximation. In this section we consider the effects of disorder within the 
SCBA. In the framework of this approximation, the Green’s function operator of the effective medium is taken as 

where the self-energy operator �̂SCBA(z) is diagonal in the basis of plane waves

The self-energy �SCBA(k, z) is to be determined self-consistently from the following equation

Here C(k − k
′) is the disorder correlator that depends on the transferred momentum. In the case of the 

separable pseudo-potential model (2) we get

where ω(k) =
∫
d2r eik·rω(r) is the Fourier transform of the shape function and � = �A − �B is the magnitude 

of disorder.
For convenience, we define the self-energy as the product of an effective coupling constant �SCBA(z) and the 

shape function ω(k) as follows 

Therefore, Eq. (8c) is written as

Notice that Eq. (10b) is valid for any shape function and consequently it is suitable for the study of finite-
range impurity potentials. However, particularly simple expressions are found for point-like impurities, namely 
when ω(k) becomes independent of k . Since the resulting integral is divergent at large momenta, we impose a 
momentum cutoff kc (or, equivalently, we introduce a finite bandwidth) and set

where θ is the Heaviside step function and the impurity lattice constant a is introduced for convenience. The 
assumption of point impurities, albeit crude, is widely used in the context of continuous models. It is worth 
stressing, however, that the pseudo-potential model introduced in this work does not require this assumption 
and more structured electron-impurity potential can be handled within the same footing. In particular, lattice 
distortion around the impurity site can be accounted for by setting a finite-range function ω(r).

Since H0(k) in the numerator of (5b) is an odd function of momentum, the corresponding integration van-
ishes. Moreover, we find it more convenient to express the results in terms of the coupling constant obtained 
within the VCA (6) by defining �SCBA(z̄) = �SCBA(z)− �VCA with z̄ = z − �VCA . Hence, the self-consistent 
equation for SCBA can be expressed in a compact form as follows 

where we have defined

(6)�VCA ≡ ��n�av = c�A + (1− c)�B .

(7)ρ(E) = − 1

πS
Im

[
Tr

(
Ĝeff (E + i0+)

)]
.

(8a)Ĝeff (z) = Ĝ0

[
z − �̂SCBA(z)

]
,

(8b)� k | �̂SCBA(z) | k′ � = �SCBA(k, z) δk,k′ .

(8c)�SCBA(k, z) =
|ω(k)|2

a2
�VCA +

∫
d2k′

4π2
C(k − k

′)G0

[
k
′, z −�SCBA(k

′, z)
]
.

(9)C(k − k
′) = 1

a2
|ω(k) ω(k′)|2c�2 ,

(10a)�SCBA(k, z) = �SCBA(z)
|ω(k)|2

a2
.

(10b)�SCBA(z) = �VCA + c�2

∫
d2k

4π2
|ω(k)|2 G0

[
k, z − �SCBA(z)|ω(k)|2/a2

]
.

(11)ω(k) = ω(k) = aθ(kc − k) ,

(12a)
�SCBA(z̄)

c�2
= F [z̄ −�SCBA(z̄)],

(12b)F (z) = a2

4π

∫ kc

0
dk k

(
1

z + �vk
+ 1

z − �vk

)
.
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Coherent potential approximation. The CPA traces back to the sixties and has proven to be a success-
ful mean field theory for the study of various elementary excitations (electrons, phonons, excitons, magnons) 
in disordered  systems38–41. The CPA combines two basic ideas. On one side, the average Green’s function of the 
disordered system is calculated by introducing a periodic (translationally invariant) effective medium. On the 
other hand, this effective medium is determined by demanding that the fluctuations of the Green’s function 
average out to zero, thus leading to a self-consistency  condition5. In the single-site CPA combined with the 
separable pseudo-potential model, the electron motion in the effective medium is represented by the following 
 Hamiltonian25,26

where �CPA(z) is in general complex and will be determined self-consistently from the condition 
Ĝeff (z) = (z − Ĥeff )

−1 = �Ĝ(z)�av . In contrast to Ĥ = Ĥ0 + V̂  with V̂  given by Eq. (2), the effective Hamilto-
nian Ĥeff  has the full symmetry of the impurity lattice since �CPA(z) is taken to be independent of the site. The 
difference between both Hamiltonians can be expressed as Ĥ − Ĥeff =

∑
n Ṽn with

To proceed, we consider the t-matrix operator associated with a single  site4

It can be proven that the requirement Ĝeff (z) = �Ĝ(z)�av yields the well-known CPA  condition4–6

Therefore, from (15) we finally get 

where, within the one-band approximation (see “Methods” for more details), we have

It is worth mentioning that �ωn | Ĝeff (z) | ωn � becomes site independent since the effective medium is trans-
lationally invariant. Thus, the ensemble average in the case of binary disorder (3) poses no problem and (17a) 
leads to

The above expression is valid for any shape function. In particular, in the case of point-like impurities (11) 
one gets

where F (z) is defined in (12b). Once more, it is more convenient to express the left-hand side of Eq. (18) in 
terms of the coupling constant obtained within the VCA (6) by defining

whence

Notice that, expanding the CPA self-consistent equation given by (20), we can get the SCBA. This can be 
obtained by solving for �CPA(z̄) and expanding the result in a Taylor series for small c and � up to third order

In fact, the SCBA can be obtained as a truncation of the series of the CPA. This is further clarified in the 
diagrammatic formalism with Feynman rules. The SCBA takes into account the two irreducible diagrams shown 
in Fig. 1a for the self-energy. The first diagram is the constant VCA term while the second one describes the 
double scattering off by a single impurity with a dressed internal propagator. On the other hand, CPA sums all 
the diagrams with any number of scattering events on the same impurity that, upon a proper re-summation42, 
gives the self-consistent equation (20) [see Fig. 1b].

(13)Ĥeff = Ĥ0 +
∑

n

| ωn ��CPA(z)�ωn |,

(14)Ṽn =| ωn �[�n − �CPA(z)]�ωn | .

(15)t̂n(z) =
[
1− ṼnĜeff (z)

]−1
Ṽn =

∞∑

m=0

[
ṼnĜeff (z)

]m
Ṽn = | ωn �[�n − �CPA(z)]�ωn |

1− [�n − �CPA(z)]�ωn | Ĝeff (z) | ωn �
.

(16)
〈̂
tn(z)

〉
av

= 0.

(17a)
〈

�n − �CPA(z)

1− [�n − �CPA(z)]�ωn | Ĝeff (z) | ωn �

〉

av

= 0 ,

(17b)�ωn | Ĝeff (z) | ωn � =
∫

d2k

4π2
|ω(k)|2 G0

[
k, z − �CPA(z)|ω(k)|2/a2

]
.

(17c)
c

�B − �CPA(z)
+ 1− c

�A − �CPA(z)
=

∫
d2k

4π2
|ω(k)|2 G0

[
k, z − �CPA(z)|ω(k)|2/a2

]
.

(18)
c

�B − �CPA(z)
+ 1− c

�A − �CPA(z)
= F [z − �CPA(z)],

(19)�CPA(z̄) = �CPA(z)− �VCA ,

(20)
�CPA(z̄)

[c�+�CPA(z̄)][(1− c)�−�CPA(z̄)]
= F [z̄ −�CPA(z̄)].

(21)�CPA(z̄) = c�2
F [z̄ −�CPA(z̄)]+ O (c2,�3) .
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Comparison between methods. In this section we analyse and compare the results obtained within both 
self-consistent approximations. First of all, we discuss the effective coupling constant, or equivalently the self-
energy, obtained by SCBA and CPA. Later, we will present the results for the DOS. For simplicity, we cast the 
effective coupling constant as

where � refers either to �SCBA or �CPA , α(Ē) is real and Ŵ(Ē) > 0 corresponds to a disorder-induced broadening. 
Notice that we express the results as a function of Ē that is the shifted energy after taking the limit of z̄ → Ē + i0+.

By analysing the symmetry properties of the CPA self-consistent equation (20), we find that it is invariant 
under the exchange (α,Ŵ, Ē, c) → (−α,Ŵ,−Ē, 1− c) and (�, c) → (−�, 1− c) . Therefore, we can restrict our-
selves to � > 0 and 0 ≤ c < 0.5 since all the other scenarios can be obtained from the former range of parameters. 
For the SCBA self-consistent equation (12a), different symmetries are obtained due to the truncation of the series 
expansion of the CPA (see Fig. 1). On the one hand, once high-order terms in c are neglected ( c → 0 ), the sym-
metry (�, c) → (−�, 1− c) is lost. Notice that in order to investigate the range c ≥ 0.5 , the expansion in Eq. (21) 
must be performed around 1− c instead of c. Hence, the expression (12a) can be used only for 0 ≤ c < 0.5 . On 
the other hand, due to the truncation shown in Eq. (21), an artificial symmetry in energy is generated in the SCBA 
self-energy, resulting in a symmetric DOS. This symmetry, already reported in the  literature12,43,44, is due to the 
presence of a single type of non trivial diagram, as explained in more detail in the diagrammatic approach shown 
in Fig. 1. In CPA, odd terms in � are considered in the expansion of the self-energy, leading to an asymmetric 
DOS. This asymmetry is consistent with purely numerical findings in Dirac-like  systems45,46.

In fact, apart from the constant VCA term, the SCBA depends on a single parameter related to disorder, 
namely c�2 , while the CPA needs both c and � separately. We define the SCBA disorder parameter β as follows

Hence, expressing the energies in units of �v/a , we can write Eq. (12a) as a function of a single dimensionless 
disorder parameter given by Eq. (23) and the energy cut-off Ec ≡ �vkc

where it is understood that �SCBA = �SCBA(Ē) . This equation is invariant under the exchange 
(α,Ŵ, Ē) → (−α,Ŵ,−Ē) . Hence, the real part of the effective coupling constant is an odd function of the shifted 
energy, α(Ē) = −α(−Ē) , while the imaginary part is an even function, Ŵ(Ē) = Ŵ(−Ē) . With these considerations 
in mind, the SCBA equation (24) can be solved explicitly in the case of Ē = 0 , finding the zero-energy solution

This exponential behaviour is opposite to the case of single-node Weyl semimetals studied in  reference18, 
where a critical point signals a disorder-induced phase transition. In the Dirac-like Hamiltonian (1b), no critical 
behaviour is observed as a function of the magnitude of disorder, as discussed later.

The SCBA self-consistent equation can be solved analytically for energies |Ē| ≪ Ec and small disorder 
|�SCBA(Ē)| ≪ Ec (see “Methods” for details). In this regime, the coupling constant can be approximated as

where W(x) is the Lambert-W  function47. Figure 2 shows a comparison of the analytic expression for the coupling 
constant with the numerically solved SCBA equation as a function of energy for weak disorder. Notice that the 
approximated solution agrees exceedingly well with the numerics, as long as the range of parameters considered 

(22)�(Ē) = α(Ē)− iŴ(Ē) ,

(23)β ≡ c�2a2

4π(�v)2
,

(24)�SCBA = β(Ē −�SCBA) ln

[
(Ē −�SCBA)

2

(Ē −�SCBA)2 − E2c

]
,

(25)α(Ē = 0) = 0 , Ŵ(Ē = 0) = Ec exp

(
1

2
− 1

2β

)
.

(26)�SCBA(Ē) ≃ Ē

{
1− 1

2β

[
W

(
−i

Ē

2βEc
e1/(2β)

)]−1
}
,

Figure 1.  Irreducible diagrams that are taken into account in the calculation of the self-energy in the (a) SCBA 
and (b) CPA. In the Feynman diagrams, the dashed line represents the scattering amplitude (i.e. the magnitude 
of the disorder), the double solid line is the effective propagator and the dot corresponds to the impurity (i.e. the 
vertex of the momentum-conserved interaction).
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fulfils all the conditions for the approximation to be valid. For the sake of completeness, the CPA results are 
plotted in solid lines as well. It is worth mentioning that the CPA and the SCBA results coincide very nicely 
for small disorder, as predicted by the series-expansion interpretation of the SCBA introduced in the previous 
section. Most importantly, upon increasing the magnitude of the disorder and the energy, the SCBA tends to 
overestimate the impact of the impurities on the DOS.

In the following, we analyse the limit of Ē → 0 . As already mentioned, the SCBA predicts an exponential-
like broadening given by Eq. (25) that resembles, for small disorder parameter, a purely exponential decay [see 
“Methods” for further details]

The above expression of the broadening allows us to write explicitly the value of the DOS in the zero-energy 
limit within the SCBA [see the DOS expression in “Methods” for further details]

Figure 3 shows a comparison of the analytic limit and the results of the numerically solved Ŵ(Ē) and DOS as 
a function of the disorder parameter β within the SCBA. The absence of a disorder-induced phase transition is 
patent and it is a crucial difference between the 2D and 3D cases. In 3D Weyl semimetals, the phase transition 
is firmly established from analytical and numerical  methods48–52, while in the case of 2D Dirac-like materials, 
the phase transition is not observed. In graphene, Dirac-like approaches and tight-biding approximations lead 
to the exponential behaviour shown in Eq. (27) reported in the  literature43,44,53. On the other hand, 2D models 
with mass terms such as the Bernevig-Hughes-Zhang (BHZ) model show more complex phase  diagrams54–56.

The absence of a phase transition is observed in the CPA results as well. In fact, we find a smooth depend-
ence of the DOS at zero energy Ē on the disorder magnitude � and the fraction c of A impurities, as seen in 
Fig. 4. Notice that in the CPA both parameters are needed and they can not be combined into a single disorder 

(27)ŴSCBA(Ē = 0) ≃ Ec e
−1/(2β) .

(28)ρSCBA(Ē = 0) = Ec

2π2β
√
e1/β − 1

≃ Ec

2π2β
e−1/(2β) .
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Figure 2.  Coupling constant and DOS as a function of the shifted energy. (a) Real part of the coupling constant 
α , (b) imaginary part of the coupling constant Ŵ and (c) DOS ρ . The plots compare the results for fixed c = 0.2 
and two values of � = [0.5, 1.0] represented in orange and blue, respectively. Three approaches are compared: 
The analytic solution given by Eq. (26), the SCBA and the CPA. � is expressed in units of �v/a and Ec = 15 in 
the same units.
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parameter, as we already found in the SCBA. The aforementioned figure reproduces again another important 
aspect of the predictions of both methods, namely the overestimation of the SCBA compared to the CPA. The 
disagreement becomes more relevant when increasing the magnitude of disorder.

Figure 5 shows in more detail the range of equivalence of both approximations. For small c and � ( c � 0.2 
and � � 0.5 in the figure) the SCBA and CPA coincide whereas for higher values of disorder the overestimation 
of the SCBA becomes noticeable. Notice that, in the range of weak disorder, the analytic limit given by Eq. (28) 
is accurate and the DOS follows the exponential trend −1/ ln

[
ρ(Ē)

]
∼ c�2 . In a wider range of magnitude of 

disorder � and concentration c, the disagreement becomes apparent, leading to an excess of the DOS of the order 
of the value itself, as seen in Fig. 4. Moreover, the SCBA predicts a threshold for non-zero DOS smaller than the 
one predicted by the CPA, as shown in the Fig. 4d, where the DOS is plotted as a function of �.

For non-zero energy, the tendency remains the same and the SCBA results in an overvaluation of the effect 
of the impurities. Due to the strictly non-zero DOS for |Ē| > 0 , we can compute the relative error defined as

Figure 6 shows the relative error at a given energy as a function of � and c. We observe that the discordance 
grows with the energy, as previously shown in (see Fig. 2).

We conclude by stressing the range of validity of the CPA. The CPA has been proven to reliably obtain the 
self-energy for a wide range of scenarios. It yields the correct result in the weak scattering limit (where it coincides 

(29)δρ(Ē) = 2
ρSCBA(Ē)− ρCPA(Ē)

ρSCBA(Ē)+ ρCPA(Ē)
.
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with the SCBA), in the strong limit and in the dilute  limit42,57. In fact, the only approximation assumed in the 
CPA condition is that if the averaged single-site t-matrix is zero [Eq. (16)], then the averaged T-matrix of the 
whole system is zero. This approximation is correct whenever the spatial correlation of disorder is negligible. The 
single-site CPA incorrectly treats multiple scattering terms associated with clusters of fixed number of neigh-
bour  sites5. Diagrammatically, it corresponds to the fact that the self-energy in CPA does not include wigwam 
diagrams with crossing lines, whose contribution is negligible as long as the scattering length of the impurity 
potential is smaller than a57. Therefore, if the impurities are diluted and short-range order is absent, the results 
of the CPA are essentially exact.

Finally, let us stress the validity of the results obtained in this work for the understanding of other 2D Dirac 
materials. After a trivial rotation, the electron Hamiltonian (1a) is basically the same that of a low-energy elec-
tron in graphene. Hence, our results are of interest in the description of graphene  impurities46 specially in the 
non-magnetic impurities case. Starting from the seminal work by Noro et al.43, graphene disordered sheets have 
been studied extensively within the SCBA  approach14,44, showing a sizeable effect of the disorder present in the 
samples. The numerical findings also show the behaviour presented here for the  DOS58. Moreover, proposals 
have been made in order to obtain the averaged DOS of those systems by measuring the quantum  capacitance59.

Discussion
We have solved the effective medium approximation for a many-impurity scattering problem on a 2D surface of a 
topological insulator within the SCBA and CPA. Moreover, we have analysed in detail the differences, weaknesses 
and strengths of both methods. The simplicity of the SCBA allows us to extend the analytic calculations, bringing 
almost exact analytic results for small magnitude of disorder and low concentration of impurities without the 
need for the numerical solution of the self-consistency conditions. On the other hand, the CPA enables us to 
exactly solve the problem for any number of single-impurity scattering events, yielding reliable results even in 
the non-pertubative limit. Moreover, as expected by the correspondence of SCBA and CPA for weak disorder, 
both approximations coincide in the range of dilute and weakly-interacting impurities.

A reliable determination of the effective coupling constant, or equivalently, the self-energy, is of central impor-
tance since it allows us to calculate all physically meaningful quantities. Aiming to achieve this, it is crucial to 
use the appropriate method matching the regime of concentration and disorder strength properly. In conclusion, 
our finding thus not only calls for a revision of current theories based on the SCBA, but also provides a reliable 
implementation of the (more accurate) CPA for studying impurity scattering of 2D Dirac matter.

Methods
One‑band approximation. Starting from Eq. (13), the Green’s function operators associated to Ĥeff  and 
Ĥ0  satisfy5

We now take into account the closure relation of the plane waves

� being the identity operator, and Eq. (5a) to obtain

where the index K  runs over the vectors of the reciprocal lattice of the impurity lattice. In the one-band approxi-
mation, the Fourier transform of the shape function is assumed to vanish outside the Brillouin  zone25,26. In this 
way, we only retain the term K = 0 in the expansion (32). Therefore

(30)Ĝeff = Ĝ0 + Ĝ0

∑

n

| ωn ��CPA(z)�ωn | Ĝeff .

(31)
∑

k

| k �� k |= � ,

(32)� k | Ĝeff | k′� = G0(k, z)δk,k′ +
�CPA(z)

a2
G0(k, z) ω(k)

∑

K

ω∗(k + K)� k + K | Ĝeff | k′ �,
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Figure 6.  Relative error for the DOS at two different energies for Ec = 15 . Energy and � are expressed in units 
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The translational invariance of the effective medium ensures that the Green’s function operator is diagonal 
in the basis of plane waves. The general relation between operators (A− B)−1 = A−1B(A− B)−1 allows us to 
rewrite (33) as

where �CPA(k, z) = �CPA(z)|ω(k)|2/a2.
Using the closure relation (31) we get

where S is the area of the system. After converting the sum over k into an integration we finally obtain (17b).

Calculation of the coupling constant in the SCBA. As mentioned in the text, the SCBA self-consistent 
equation can be solved exactly at Ē = 0 and approximately in the case of weak disorder. In the case of Ē = 0 , 
considering the symmetry properties of Eq.  (24) in the main text, we find that the real part of the coupling 
constant must be zero. Therefore, replacing � → −iŴ , we conclude that the self-consistent condition reduces to

whose solution is given by Eq. (25).
In the weak disorder regime and for energies Ē ≪ Ec , the coupling constant fulfils |�SCBA|(Ē) ≪ Ec . There-

fore, we can expand the SCBA equation as

where �SCBA = �SCBA(Ē) . Considering solutions with Im (�SCBA) < 0 , we obtain Eq. (26). This approximate 
solution resembles the exact case at Ē = 0 for small β . In fact, at zero energy, we obtain Eq. (27), which corre-
sponds to the first term in the series expansion of Eq. (25) for β ≪ 1.

Expression for the DOS. The DOS per unit area is obtained from the Green’s function using Eq. (7). In the 
case of the 2D effective Hamiltonian we are dealing with, this expression is written as

After some algebra and expressing the energy in units of �vF/a and the coupling constant �(Ē) as given by 
Eq. (22), when ω(k) = aθ(kc − k) we obtain the following expression. For the sake of simplify, hereafter we omit 
the dependence on Ē in α ≡ α(Ē) and Ŵ ≡ Ŵ(Ē) . 

where
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SCBA(Ē = 0)

]
,

(37)�SCBA ≃ β(Ē −�SCBA) ln
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