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Generalized Navier-Stokes model
for ballistic and tomographic
electrons

Jorge Estrada-Alvarez™, Francisco Dominguez-Adame & Elena Diaz

Electron hydrodynamics features a plethora of effects where electrons behave like a fluid. Its
description relies on hydrodynamic models akin to the Navier-Stokes equations, which progressively
lose accuracy when approaching the ballistic regime. In this paper, we derive a generalized Navier-
Stokes differential equation with suitable boundary conditions for the drift velocity field in a channel.
It still admits a closed-form solution in a uniform channel while spanning the range of validity of
hydrodynamic models. It also includes electron tomographic dynamics, a realistic description of
electron-electron collisions that affect electrical transport, and explains the occurrence of positive and
negative magnetoresistance at low magnetic fields. The model describes phenomena missed by the
conventional electron hydrodynamic description, and it generally improves its accuracy.

4, gallium arsenide heterostructures®,
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Electron transport in two-dimensional materials such as graphene!
PdCo02%” or Weyl semimetals as WTe2? results in hydrodynamic signatures resembling conventional fluids
Archetypal hydrodynamic signatures are Poiseuille’s flow in channels, or the superballistic effect!>-!°, which
reduces the resistance of the devices below the ballistic limit. Together with applications for high-frequency
operation!”!8, the hydrodynamic character of electrons mitigates dissipation while miniaturizing electronic
devices'>?. Electron transport in these materials is primarily non-ohmic!2. Therefore, we need the equivalent of
Ohm’s law to design devices based on two-dimensional materials, especially if they are required to operate in the
hydrodynamic regime. Models analogous to the stationary Navier-Stokes equations are often used">'*'2, with
the electron’s drift velocity u(x), or expected value of the velocity, along a uniform channel [see Fig. 1a], satisfies
the following equation?!

d*u(z)  vp evrEy
— = 1
Va2 + lmru(ﬂc) + Tm 0, (1)

where v is the viscosity, dependent on the electronic collision rates and the magnetic field, as we will see later.
We use lmr for the mean free path for ohmic collisions against defects and phonons, kr and v are the Fermi
momenta and Fermi velocity, and —eE,, accounts for a constant force due to the electric potential drop along
the channel. In this model, the applied field compensates for the viscous friction associated with a non-uniform
velocity of the electron fluid and the ohmic collisions. The velocity profile becomes*?

u(x) = acosh < vr x) — 6lmrEy, 2)

Vlmr hkF

where « is determined by the edge scattering?’. The advection term (u - V) u of the Navier-Stokes equation,
negligible for the low currents attained in common experiments®!4, is strictly zero in a channel geometry where
u = (0, u(x)). We consider an incompressible flow for a uniform carrier density, as set by a back-gate potential.
The model is also known as Navier-Stokes-Ohm as it features an additional dissipative term, and it is valid in the
hydrodynamic regime. However, it abruptly loses its accuracy in small devices operating in the ballistic regime.
Indeed, the Navier-Stokes model cannot reproduce common phenomena, not even qualitatively, in this regime. It
neither describes the electron tomographic dynamics, a key difference between electrons and conventional fluids
that alters its low-temperature electrical properties®*-2°, especially the superballistic effect!3-1>2%-3, Unless later
renormalized®!, the Navier-Stokes model is utterly blind to the particularities of electron-electron collisions?!
and so, it gives the same results for conventional and tomographic dynamics. In addition, the Navier-Stokes
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Fig. 1. The supra-hydrodynamic model improves the hydrodynamic model and covers the ballistic and
tomographic regimes. (a) Scheme of the considered uniform channel with partially specular edges with

D =1 (see “Methods”). Velocity profile in the (b) ballistic (I = lg. = lg. = 20d), (¢) tomographic

(Imr = 104, Ig. = 0.25d < [2.), and (d) hydrodynamic (Im: = 10d, I, = I3, = 0.25d) regimes. (e) Color-
map for the error percentage of the total current evaluated with the supra-hydrodynamic model compared to
that simulated with the Boltzmann transport equation. We represent the map as a function of the parameters
lr /d, 15/ d and 1S, /13, to consider different transport regimes: diffusive, hydrodynamic and ballistic within
classical (Ig.= l¢.) and tomographic dynamics (lg. > [¢.). Dashed lines limit the regions where the Navier-
Stokes error (orange) and the supra-hydrodynamic model (brown) are over a tolerance of 20%. The gray line
shows experimental values for a graphene channel ' of width d = 200 nm atn = 0.5 x 10'% cm™2. The
supra-hydrodynamic model’s validity range spans that of Navier-Stokes widely, as indicated by the upper arrow.

model predicts negative magnetoresistance at low fields*?, in contrast to many experiments on two-dimensional
materials where positive magnetoresistance has been observed®!333,

In this work, we propose an extended Navier-Stokes equation, referred to as supra-hydrodynamic approach
hereafter, consisting of a differential equation for the velocity field to be solved with the appropriate boundary
conditions. We analyze the model’s range of validity and how it describes the phenomena missed by the Navier-
Stokes equation. The supra-hydrodynamic model incorporates realistic electron-electron interactions, accounts
for tomographic dynamics, and explains both positive and negative magnetoresistance at low magnetic fields.

Results

Fundamentals

We can study electron viscous flow in two-dimensional materials using the Boltzmann transport equation
It applies under typical experimental conditions where quantization effects, such as conductance plateaus, are
negligible>'3. The full distribution f(r, k), such that f(r, k)/m> gives the probability of finding an electron
around position 7 with wavenumber k, obeys

21,34-37

V-Vrf—%(—VTV—I—VXB)-ka:P[f], 3)

where v and —e are the electron’s velocity and charge, respectively. As mentioned before, we consider an isotropic
Fermisurfaceforaconstant carrier density n setbyaback-gate potential. Electrons are subject toan electric potential
V() and a perpendicular magnetic field B, with the cyclotron radius I, = fikr/eB. The collision operator is
generally complex’®, but in this context it can be simply writtenas [ f] = —v [(f — fe) /lmr + (f — fee) [lee]-
It describes the collisions against defects and phonons, with a mean free path I, that relax the distribution
towards the Fermi distribution f€. It also takes into account the electron-electron scattering, that relax the
distribution towards a Fermi distribution shifted by the electron’s mean wavenumber fee, with a mean free
path lee, that will be distinct for different modes to describe tomographic dynamics®***?, see below. We consider
a channel parallel to the y axis of width d and long enough to neglect the region near the contacts, where the
electrons experience a potential —yE, + VH( ), for a constant field across the channel E, and where Vi () is
the Hall potentlal We write k = (k cos 0, k sin 0) and define the distribution g (z, 0) fo (f — fe) dk/kr
and gee (,0) = [ (fee — fe) dk/kF. Upon integration, we find the differential equation that gives the excess
of electrons at position x moving in the direction defined by '8!
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Thus, the electron’s drift velocity along the channel can be obtained from the distribution as follows!®?!

27
u(z) = % /0 sinf g(x,0) do (5)

and, upon integration of u(x) over the spatial coordinate x across the channel, the electrical current is evaluated.
Under this formalism, the electron-electron collisions, responsible for the viscous effects, relax the distribution g
towards gee = u sin 0. The formal study of electron dynamics reveals different rates for each mode in the polar
expansion of g?>?°. Here we will focus on the lower-order modes, which pose the foremost contribution to the
electrical properties*!. Indeed, we cast the collision operator as

€ € o o
F[g}:_lg _g legee_g logee7 (6)
mr ee ee

where we split g = g° 4 ¢° into the even and odd modes. The even modes relax with a characteristic (¢, while
the odd modes relax with an [g.. We take an lg, representative of the third mode, as higher order odd modes have
a smaller contribution to electrical transport. The rates are similar g, >~ l¢, at high temperatures, but lg, < lg,
when the temperature is much lower than the Fermi temperature, giving rise to tomographic dynamics®*>*°.
The Boltzmann equation accurately predicts the transport phenomena in the ballistic, tomographic, and
hydrodynamic regimes. However, its complexity makes it impossible to solve it analytically, and numerical
simulations are necessary even to address the channel geometry. Remarkably, our formulation of a supra-
hydrodynamic model enables us to obtain an analytical solution in such cases.

Supra-hydrodynamic model
To derive the supra-hydrodynamic model, we first write g(x, 6) as a Fourier series up to the fourth-order as
follows

4

g(z,0) ~ Z [sn(x) sinnf + ¢, (x) cos n@], (7)

n=1

where s1(x) = u(z) is the drift velocity according to Eq. (5). The existence of electron-electron collisions
guarantees the relaxation of high-order modes and justifies a second-order expansion?!. Therefore, the supra-
hydrodynamic model generalizes it, providing a wider range of validity that we will analyze. Equation (7) is
substituted into the Boltzmann equation to set a system of equations. In the absence of the magnetic field,
¢n = 0, which allows us to write a system of four coupled linear differential equations for u, s2, s3, and s4,
and after some algebra, s2, 3, and s4 coefficients can be eliminated (see “Methods”). The supra-hydrodynamic
equation finally reads

d* d? VE evrEy
(’7 &V aE T ) O T =0 @®

which generalizes the Navier-Stokes model with the following modified viscosity

mr 2 o
I/Zig’y + 29 VF

9
8707 )
and a new term dependent on the fourth derivative of the velocity multiplied by
-1 v 10
T 3202 (10)

For the sake of brevity, we have defined the following rates related to electronic collisions: Ymr = 1/lmr,
Yo = 1/lmr + 1/15c and o = 1/lme + 1/12..

As well as the Navier-Stokes model, Eq. (8) is a linear differential equation that admits a closed-form solution
in the channel depicted in Fig. 1a

elmr By

u(x) = ag cosh(A1z) + az cosh(Aaz) — , (11)
hkr
where
v AV FNYmr v AV FNYmr
T LRV e e D T P FERVA R L (12)
2n v 2n v?
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Moreover, o1 and a2 are analytically determined upon imposing boundary conditions at the edges (see
“Methods”)?. Last, the velocity profile (11) can be easily integrated over the coordinate x to obtain the total
current and the resistance.

Figure 1b shows a ballistic velocity profile for lmr = I3, = lg. = 20d and a partially specular edge. In such a
case, the Navier-Stokes model fails, while the supra-hydrodynamic one reproduces accurately the profile given
by the Boltzmann equation. The latter also successfully explains the deep tomographic regime and the curvature
of the profile in Fig. lc for lm: = 10d, 1§, = 0.25d < 2., that the standard hydrodynamic model cannot
account for. Unlike the Navier-Stokes equation, which is blind to the peculiarities of the tomographic dynamics,
the supra-hydrodynamic coefficients of Eq. (8), v and 7, distinguish the relaxation rates of the even (7.) and
odd parity (7,) modes. Indeed, it accounts for the velocity profiles and explains the lower resistance under
tomographic collisions, which do not relax the odd parity modes of the distribution function. The generalized
model also predicts the profile and the so-called slip-length, which characterizes the edge scattering, similar
to previous descriptions*>*3, not shown for brevity. Figure 1d shows a case where the regime of transport is
hydrodynamic (Im: = 10d, lg. = lg. = 0.25d) and therefore, both Navier-Stokes and the proposed supra-
hydrodynamic model agree with Boltzmann equation prediction.

Figure le shows the accuracy of the supra-hydrodynamic model?!. In these simulations, we consider
a uniform channel with rough edges for a better comparison, although the general conclusion is also valid
for specular edges that would produce lower errors?!. Figure le demonstrates that, although the model is not
valid in the ultra-deep ballistic regime I, lcc — 00, it leads to successful results under typical experimental
conditions where the ballistic regime is usually studied'->!**3. Tt is demonstrated that the supra-hydrodynamic
model properly describes the transport and electrical properties under the diffusive, hydrodynamic, ballistic and
tomographic regimes.

Supra-hydrodynamic model with a magnetic field
Now, let us consider the effects of a perpendicular magnetic field in our generalized model. An algebraic
derivation similar to that of the previous section yields the following supra-hydrodynamic equation

ds d* d®>  vp evrE,
<_Xd:176+77d$4_1/d$2+lmr u(il')-i-ihkp =0, (13)

where the viscosity is replaced by

Yo (1e® +129ew?) — (87e” w> + 80w*)
(702 +977) (e* +167%2)

4 (ve2 + 471)2)

Ye + 3Ymr (14)

with 5 = 1/ls. Here, the first term accounts for the dependence of the viscosity on the magnetic field in the
Navier-Stokes model?!. We also introduce the coefficients

v [7e% (9%mr + 8%) + 477 (257mr — 1296 + 167) ] (15)
7 64 (ve? +41%) (707 + 91?) (7e* + 167°) 7
_ 3VF e
7256 (72 + 4712) (702 + 912) (e2 + 1672)

X

Similar to Eq. (11), the solution in a uniform channel in the presence of a magnetic field now reads

elmrEy
hkr '

3
u(z) = Z an cosh(Apx) — (17)
n=1

where )\, = /A,, are obtained after solving the cubic equation —xA3 + 771\2 — VA 4+ Yy = 0, and the
boundary condition?® establishes a1, a2, and 3.

Figures 2a—c show the velocity profiles of a uniform channel with partially specular boundaries in a ballistic
regime of transport, Im: = 5d, lg. and lg. > d, when a magnetic field is applied. Fields are expressed in units
of the commensurability field B. = hkr/ed* such that (a) B =0, (b) B = 0.5B¢ and (c) B = Bc. Note
that the boundary conditions (see “Methods”) are derived under the hypothesis that the distribution g at the
edges is a smooth function. However, this is not the case near the commensurability condition B = B¢ so
this inaccuracy will affect the results shown in Fig. 2c. A more accurate description could be obtained using
numerical calculations to obtain a boundary condition under a magnetic field*>*, but the goal of this article is
to obtain a simple closed-form model, so we keep this level of approximation with valid results. Indeed, as shown
in Fig. 2a and b, the supra-hydrodynamic model already works properly under a magnetic field, away from the
commensurability condition B ~ B, and it improves the predictions of the standard Navier-Stokes model.

Most remarkably, the supra-hydrodynamic model reproduces the positive magnetoresistance observed at
low fields in experiments performed beyond the fully hydrodynamic transport®? [see Fig. 2d] and provides an
accurate description in the deep tomographic regime [see Fig. 2e]. On the contrary, the Navier-Stokes model
misses this effect, and it always predicts negative magnetoresistance [see Fig. 2d-f].
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Fig. 2. The supra-hydrodynamic model improves the results of the Navier-Stokes equation under a magnetic
field. Velocity profile of a uniform channel with specular edges (D = 1, see “Methods”) in a ballistic regime
of transport with I, = 5d, I¢, and [, > d in the presence of a magnetic field: (a) B = 0, (b) B = 0.5B,,
and (¢) B = B, where B, = hkr/ed is the commensurability magnetic field. Magnetoresistance curves for
different regimes of transport and d /I, = 0.2: (d) Ballistic with d/l¢. = d/lg. = 0, (e) deep tomographic
with d/Ig, = 4 but d/lg. = 0, and (f) fully hydrodynamic with d/Ig. = d/lg. = 4.

Discussion

The inherent complexity of the Boltzmann equation is often circumvented by employing simpler hydrodynamic
models, such as those based on the Navier-Stokes equation. However, they miss relevant phenomena, from
the tomographic dynamics of electrons’>?’ to the occurrence of positive magnetoresistance®. Just as the
Burnett equations generalized the Navier-Stokes equations in a conventional fluid?’, our supra-hydrodynamic
model generalizes the hydrodynamic models for electrons, with potential interest for other particle systems
as phonons®. In electronic systems transport phenomena usually occur near the Fermi surface, and we can
exploit that fact to write the electron distribution as a Fourier expansion in the polar angle. Despite the drastic
differences in the derivation and the final equations of our model, adding higher order terms to the Navier-
Stokes, similar to the Chapman-Enskog expansion®’, has shown its usefulness in the description of conventional
fluids*. Nevertheless, the Burnett equations have mathematical pathologies and convergence issues, which have
been studied in detail®*2. On the contrary, our model is more closely related to the better-behaved harmonic
expansion in semiconductors®’, where hydrodynamic expansions have been used®*. Therefore, it reveals the
appropriate generalized model for electron hydrodynamics.

Moreover, key phenomena of electron fluids, such as tomographic dynamics or the correct sign in the
magnetoresistance, are missed by the Navier-Stokes equation. Together with the experimental difficulty to fully
achieve the hydrodynamic regime, [.. < d, other attempts to dodge the Boltzmann equation have been made
using non-local conductivity tensors where the description of all polar modes is included?>**4%%5, The supra-
hydrodynamic model enables analytic solutions to describe the variety of edge-scattering mechanisms usually
found in experiments>>?. It is to be noticed that expansions of the Boltzmann equation to second order may
also describe boundary layers accurately?>*>. Another remarkable expansion of the Boltzmann equation
up to third-order was addressed in the quasi-hydrodynamic by Alekseev and Dimitriev for the description
of magnetotransport®”. However, our expansion to the fourth order is even more accurate, and replacing the
Boltzmann equation with a supra-hydrodynamic model, where we write the equations and boundary conditions
just in terms of the velocity field, facilitates a more straightforward interpretation of the results.

Conclusion

In this work, we introduce a generalized Navier-Stokes equation that extends the range of validity of conventional
electron hydrodynamic models by one order of magnitude. Remarkably, our approach properly describes
hydrodynamic, tomographic, and ballistic electrons under typical experimental conditions. This formulation
incorporates appropriate boundary conditions and retains analytical solutions in uniform geometries,
facilitating its application. In particular, the supra-hydrodynamic model correctly predicts the positive or
negative sign of the magnetoresistance in two-dimensional materials at low magnetic fields, overcoming the
limitations of conventional hydrodynamic approaches. The introduced framework provides a more accurate and
comprehensive description of the collective behavior of electrons, especially in the transition toward ballistic
transport.
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Methods

Model derivation

We can derive the supra-hydrodynamic model by writing the g(z, ) as the fourth-order Fourier expansion in
Eq. (7). We use fundamental relationships to expand the product of trigonometric functions as a sum, and we
write the collision operator as

I'[g] = Ymrusing + ymrc1 €08 6 + Yes2 Sin 20 + vYeca €08 20 + 753 5in 30 + Y03 €08 30 + YeSa sin 46 + Yecy cos 46, (18)

where u = s; is the electron’s drift velocity. We show that ¢; = 0 as there is no net current through the edge
of the channel?>. We substitute the expansion in Eq. (4), group the resulting terms with each trigonometric
function, and impose each as zero. Note that the terms with sine and cosine functions are decoupled without a
magnetic field. The condition ¢z = ¢3 = c4 = 0 follows from ¢; = 0, while the remaining equations read

uqLds2 By
R N e
1 du 1 dss
Yes2t g T =0
(19)
yLldse  Bdsa
Yo 53 2 dzx 2 dz
1
esat+ 195 g
2 dx

The fourth-order Fourier expansion is just an approximation to the full solution of the Boltzmann equation,
which, ideally, has infinite terms. Substituting it directly gives this set of equations with 8 = 1 and an additional
condition ds4 /dz = 0, which cannot be fulfilled together with these equations. Therefore, in a finite expansion
up to fourth order, we might ignore the additional condition ds4/dz = 0. But ds4/dz also appears in the third
equation. So, rather than ignoring it, we can take 8 = 1/2 in Eq. (19), which slightly improves the accuracy of
using B = 1. We derive the expressions in Eq. (19) three times with respect to x and obtain a linear coupled
system of equations. In this system, we perform Gaussian elimination to isolate s2, s3, and s4, obtaining an
equation only for u and its derivatives. A typical process in ordinary differential equations is to reduce the order
of an equation for u and its higher order derivatives by adding new variables, such as defining new magnitudes
like du/dx or d>u/dz? for the high order derivatives. Here, we follow the opposite process: We eliminate the
superfluous variables by increasing the order of the equation and obtain the result given by Eq. (8). We can
expand g to different orders, writing extended versions of (19), whose results are depicted in Fig. 3. The M = 4
model discussed in the paper strikes a balance between the complexity of the expressions and the accuracy of
the results.

We can follow an analog procedure in the presence of a magnetic field to obtain the following set of coupled
equations

3 T T T T . . i :
rSupra-Hydro |
e S 7 A B
e -

5

) AR Z__\ ]
= | Navier-Stokes )
g
5‘ I -
e r 2.43 |
o
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. 24}
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Fig. 3. Velocity profiles of different supra-hydrodynamic models. The order M = 4 corresponds to the supra-
hydrodynamic model explored in this article. Increasing M results in a better convergence to the result of the
Boltzmann equation. We consider lm: = I, = lo. = 5d and a partially specular D = 1 edge.
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1 +pus L4 e dVi
T CLFWUT S 0 T ke da
ety lds_ eB,
P AT e S e T T ke
ldcl 1d63
e 2 s +t55 =0,
e 2+ 7b82+2 dw+2 dx 0
1du 1 dss
) . ek (20)
’yb62+782+2dx+2 dz 0,
ldex  Bdea
’7003+3’Yb53+2dx+2dm—0,
1d82 ﬂd54_
_3’7b03+’7053+2 dx+2 e =0,
1d63
e 4 —— =0,
Ye C4 + ’7b54+2dx 0
1 ds
—4%(:4+7e54+§d—;=04

We again take derivatives three times and use Gaussian elimination to obtain two equations for u, Vi, and their
derivatives. Additionally, if we focus on the velocity field, we can derive these expressions twice and find an
equation only for the velocity field, which is Eq. (13).

Boundary conditions
Edge scattering determines the electrical properties in the hydrodynamic, tomographic, and ballistic regimes?.
By considering the appropriate boundary conditions in the supra-hydrodynamic model, we can describe
particular edge scattering properties, either by a rough or a partially specular edge.

We can derive boundary conditions by writing the distribution at the x = d/2 edge

g(0) = @sin 0 + 32 sin 20, (21)
where —7/2 < 6 < 7/2 account for the incident electrons. The parameterization of g as a function of @ and 32,
which is exact in the hydrodynamic fluid-like regime?!, still provides reasonable results in the tomographic and
ballistic regimes, as evidenced by the range of validity of the supra-hydrodynamic model. A phenomenological

approach to typical edge scattering considers a very rough, disordered edge that scatters the electrons in all
directions>>?*, The scattered distribution in this case is

g"(0) =0, (22)

where 7/2 < 8 < 3m/2 are the angles of the scattered electrons. After combining Eqs. (21) and (22), we obtain
the following expansion

g(0) ~ usin 0 + s2 sin 20 + s3 sin 30 + s4 sin 460 (23)

with the Fourier coefficients

u 1/2 4/3m )
sl s (8 @)
S4 —8/15m 0
After some algebra it is possible to eliminate % and 32 by imposing
A(u 82 s3 34)T =0, (25)

so that edge scattering constrains the shape of the distribution function at the edges. Particularly for a rough (R)
edge, the matrix reads

Ry (155 —1.82 1 0
AT = (1.21 ~103 0 1) (26)
Another approach to edge scattering is a partially specular edge (S) with a scattered distribution!*??
) 3mw/2
g (0) = g (x — 6) + D cosb x [g (m=0)~ = / cos’0'g (m —0') do’ (27)
/2
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for m/2 <0 <37/2 and the incident distribution given by Eq. (21). The dispersion coefficient
D = /mh*W k3 < 1is related to the edge’s bumps height # and its correlation length h'2%. Edge scattering can
also be modeled in great detail using the Berry-Mondragon condition, which also results in partial scattering of
the electrons and has been used to calculate the electrical properties of nanoribbons***. For a partially specular
edge, the matrix of Eq. (25) reads

0.151 D—1 _0A167’D2—14963’D+4 1 0
A — 0.075 D—1 D—0.075 D2 (28)
0.19D 0.162 D—0.762 .
T 0.075D—-1 T 0.075D—1 0 1

In order to write the boundary conditions for the velocity field u, we carry out Gaussian elimination in the linear
system defined by Eq. (19) and its derivatives to write each of the s2, s3, and s4 as a function of the velocity field
and its derivatives as follows

T
(u s2 s3 84)T =B (u w4 u(s)) + Bo, (29)

where the conversion matrices are

1 0 0
_ 3vmrt+27 1
B = 3? 4 e Yo 01 16'Ye2’YO (30)
Zo 0 T 8770 0
0 _ 379mr
49 Yo 16 ve? Yo
and
-3 T
Bo=100 o . (31)
27
Now we impose two equations for the velocity field and its derivatives at the boundary such that
AB (u uM @ u(S))T = —ABy, (32)
where these matrices replace the slip-length ¢ in the hydrodynamic boundary condition u = —&u"), improving

its accuracy. In particular, in a channel, we define two additional matrices C and C as follows

cosh (Ald) cosh (Agd)

_ A1 sinh ( 212 ) /\ sinh (AQd)
¢= A2 cosh (%) A2 cosh ’\gd) ’ (33)
A3 sinh (#) A3 sinh %)
T
Co = (7’?;;;& 00 o) , (34)

and substitute the closed-form solution of Eq. (11) to obtain the following 2 X 2 linear system that gives c; and
C2

ABC (g;) — _ABy — ABG,. (35)

The generalization of the boundary conditions in the presence of a magnetic field is possible by writing the
distribution for the incident electrons at x = d/2 as a Fourier series with up to second-order

g(0) = ¢+ asinf + & cos @ + 32 sin 20 + & cos 26, (36)

where —7/2 < 0 < 7/2 and now the &, coeflicients may not be zero in a magnetic field. We supplement it with
the no-trespassing condition??, accounting for charge conservation at the boundary. Similarly, this expression,
which enables the determination of a boundary condition without premises on the device geometry, is exact in
the hydrodynamic regime and is a general way to derive a boundary condition without assuming any particular
geometry. However, it is not valid near the commensurability condition d ~ I, (B ~ Bc), where the electrons
arriving from the other edge of the channel alter the distribution. Even for the conventional hydrodynamic
model, which characterizes edge scattering with a simple slip-length £, a more detailed characterization of edge
scattering requires numerical calculations??°. In a similar way as in the absence of magnetic field, we use the
distributions for the scattered electrons in Eqs. (22) and (27), write g as a Fourier sum, and find the A matrix
with three equations for w, s2, s3, S4, 2, €3, c4. We derive B u on Gaussian elimination in Eq. (20) and its
derivatives, writing each of these variables in terms of u, . .., u(®). To facilitate its implementation, we provide
the resulting matrix in the Supplementary Material. In particular, in a channel geometry, we can write a 3 x 3
linear system
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Fig. 4. Velocity profiles for a rough edge. (a) Ballistic regime (I = lg. = lg. = 20d), to be compared with
the partially specular edge in Fig. 1(b). (b) Ballistic regime (Imr = I3, = g = 10d). (c) Tomographic regime
(Imr = 104, Ig. = 0.25d < [2.), to be compared with Fig. 1(c). (d) Hydrodynamic regime (Im: = 10d,

lge = lge = 0.25d), to be compared with Fig. 1(d).

a1
ABC <a2> = —ABy — ABCy, (37)

Qs

which we solve for a1, a2 and s, the coeflicients that determine the current profile. In the manuscript, we
primarily present results for a partially specular edge. Figure 4 also illustrates their analogue for a rough edge,
where convergence, slightly slower, is still achieved in the ballistic regime.

Numerical methods

We compare the closed-form solution provided by the supra-hydrodynamic model against the Boltzmann
equation, which must be solved numerically?!. We use a conforming Galerkin finite element method?"®,
approximating the distribution function as follows

N M
9@,0) =Y "> gum 6n(2) P (0),

n=1m=1

(38)

where {¢, ()} is a basis of tent functions defined on the [—d/2, d/2] interval and the products of adjacent
tent functions, and {¢., (0)} is a set of periodic tent function defined for [0, 27). We achieve convergence with
N = 60 and M = 32. We impose centered Fermi surfaces and the boundary condition for reflected electrons
at the edges. We write the weak formulation of the Boltzmann equation and solve the subsequent linear system
for the gnm coefficients. We numerically integrate the distribution to give the drift velocity u. The integration

/2
d/2

error of the supra-hydrodynamic (SH) model in comparison with the Boltzmann equation (BTE) results as
|Isu — IsTe|/IBTE-

of the velocity profile gives the total current I ff u(x) dz and the resistance. We evaluate the relative

Navier-Stokes model
In previous sections, we have also shown the profiles obtained with the conventional Navier-Stokes model. We
can also obtain it from the Boltzmann equation upon the hypothesis of collective fluid-like behavior?!

2

g(z,0) ~ Z [sn (z) sinnb + ¢, (x) cos nG} .

n=1

(39)

The supra-hydrodynamic model relaxes this condition by adding the contribution of higher-order modes in the
Fourier expansion, extending its range of validity. Upon the assumption of Eq. (39), the Boltzmann equation
reduces to the Navier-Stokes equation in a channel as

d?u(x)
Y T dz?

VE evr By

40
. ; (40)

u(z) +

lmr

where v = vp 7o /(472 + 1677) is the viscosity. Edge scattering is characterized with an slip-length £
imposing the boundary condition u(x) = —£du(z)/dx. In particular, { = 2.35v /v for the rough edge and
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& = (8/D — 1.70)v /v for the partially specular one. The velocity profile, defining A = /v F /Ui, is written

as

u(z) = (41)

B evrlmr By cosh \x
hkpve )

~ cosh(Ad/2) 4 €xsinh(\d/2)

Particularly, in the limit of no collisions against impurities Im: — 0o and under frequent electron-electron
collisions lc. < d, which ensures £/d < 1, we find a parabolic profile of the conventional Poiseuille flow:

-~ SVFEy é 2 .2
@) = =5 [(2) v } ' (42)

In this work, Egs. (11) and (17) provide more accurate expressions for the velocity profile under the supra-
hydrodynamic model.

Data availability
The datasets used and/or analysed during the current study available from the corresponding author on reason-
able request.
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