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Electron hydrodynamics features a plethora of effects where electrons behave like a fluid. Its 
description relies on hydrodynamic models akin to the Navier-Stokes equations, which progressively 
lose accuracy when approaching the ballistic regime. In this paper, we derive a generalized Navier-
Stokes differential equation with suitable boundary conditions for the drift velocity field in a channel. 
It still admits a closed-form solution in a uniform channel while spanning the range of validity of 
hydrodynamic models. It also includes electron tomographic dynamics, a realistic description of 
electron-electron collisions that affect electrical transport, and explains the occurrence of positive and 
negative magnetoresistance at low magnetic fields. The model describes phenomena missed by the 
conventional electron hydrodynamic description, and it generally improves its accuracy.

Electron transport in two-dimensional materials such as graphene1–4, gallium arsenide heterostructures5, 
PdCoO26,7 or Weyl semimetals as WTe28 results in hydrodynamic signatures resembling conventional fluids9–12. 
Archetypal hydrodynamic signatures are Poiseuille’s flow in channels, or the superballistic effect13–16, which 
reduces the resistance of the devices below the ballistic limit. Together with applications for high-frequency 
operation17,18, the hydrodynamic character of electrons mitigates dissipation while miniaturizing electronic 
devices19,20. Electron transport in these materials is primarily non-ohmic12. Therefore, we need the equivalent of 
Ohm’s law to design devices based on two-dimensional materials, especially if they are required to operate in the 
hydrodynamic regime. Models analogous to the stationary Navier-Stokes equations are often used1,2,10,12, with 
the electron’s drift velocity u(x), or expected value of the velocity, along a uniform channel [see Fig. 1a], satisfies 
the following equation21

	
−ν

d2u(x)
dx2 + vF

lmr
u(x) + evF Ey

ℏkF
= 0,� (1)

where ν is the viscosity, dependent on the electronic collision rates and the magnetic field, as we will see later. 
We use lmr for the mean free path for ohmic collisions against defects and phonons, kF  and vF  are the Fermi 
momenta and Fermi velocity, and −eEy  accounts for a constant force due to the electric potential drop along 
the channel. In this model, the applied field compensates for the viscous friction associated with a non-uniform 
velocity of the electron fluid and the ohmic collisions. The velocity profile becomes22

	
u(x) = α cosh

(√
vF

νlmr
x

)
− e lmrEy

ℏkF
,� (2)

where α is determined by the edge scattering23. The advection term (u · ∇) u of the Navier-Stokes equation, 
negligible for the low currents attained in common experiments3,14, is strictly zero in a channel geometry where 
u = (0, u(x)). We consider an incompressible flow for a uniform carrier density, as set by a back-gate potential. 
The model is also known as Navier-Stokes-Ohm as it features an additional dissipative term, and it is valid in the 
hydrodynamic regime. However, it abruptly loses its accuracy in small devices operating in the ballistic regime. 
Indeed, the Navier-Stokes model cannot reproduce common phenomena, not even qualitatively, in this regime. It 
neither describes the electron tomographic dynamics, a key difference between electrons and conventional fluids 
that alters its low-temperature electrical properties24–29, especially the superballistic effect13–15,20,30. Unless later 
renormalized31, the Navier-Stokes model is utterly blind to the particularities of electron-electron collisions21 
and so, it gives the same results for conventional and tomographic dynamics. In addition, the Navier-Stokes 
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model predicts negative magnetoresistance at low fields32, in contrast to many experiments on two-dimensional 
materials where positive magnetoresistance has been observed6,13,33.

In this work, we propose an extended Navier-Stokes equation, referred to as supra-hydrodynamic approach 
hereafter, consisting of a differential equation for the velocity field to be solved with the appropriate boundary 
conditions. We analyze the model’s range of validity and how it describes the phenomena missed by the Navier-
Stokes equation. The supra-hydrodynamic model incorporates realistic electron-electron interactions, accounts 
for tomographic dynamics, and explains both positive and negative magnetoresistance at low magnetic fields.

Results
Fundamentals
We can study electron viscous flow in two-dimensional materials using the Boltzmann transport equation21,34–37. 
It applies under typical experimental conditions where quantization effects, such as conductance plateaus, are 
negligible5,13. The full distribution f(r, k), such that f(r, k)/π2 gives the probability of finding an electron 
around position r with wavenumber k, obeys

	
v · ∇rf − e

ℏ
(−∇rV + v × B) · ∇kf = Γ[f ],� (3)

where v and −e are the electron’s velocity and charge, respectively. As mentioned before, we consider an isotropic 
Fermi surface for a constant carrier density n set by a back-gate potential. Electrons are subject to an electric potential 
V (r) and a perpendicular magnetic field B, with the cyclotron radius lb = ℏkF /eB. The collision operator is 
generally complex38, but in this context it can be simply written as Γ[f ] = −vF [(f − fe) /lmr + (f − fee) /lee]. 
It describes the collisions against defects and phonons, with a mean free path lmr, that relax the distribution 
towards the Fermi distribution fe. It also takes into account the electron-electron scattering, that relax the 
distribution towards a Fermi distribution shifted by the electron’s mean wavenumber fee, with a mean free 
path lee, that will be distinct for different modes to describe tomographic dynamics39,40, see below. We consider 
a channel parallel to the y axis of width d and long enough to neglect the region near the contacts, where the 
electrons experience a potential −yEy + VH(x), for a constant field across the channel Ey  and where VH(x) is 
the Hall potential. We write k = (k cos θ, k sin θ) and define the distribution g (x, θ) =

´∞
0 (f − fe) dk/kF  

and gee(x, θ) =
´∞

0 (fee − fe) dk/kF . Upon integration, we find the differential equation that gives the excess 
of electrons at position x moving in the direction defined by θ18,21

Fig. 1.  The supra-hydrodynamic model improves the hydrodynamic model and covers the ballistic and 
tomographic regimes. (a) Scheme of the considered uniform channel with partially specular edges with 
D = 1 (see “Methods”).  Velocity profile in the (b) ballistic (lmr = leee = loee = 20d), (c) tomographic 
(lmr = 10d, leee = 0.25d ≪ loee), and (d) hydrodynamic (lmr = 10d, leee = loee = 0.25d) regimes. (e) Color-
map for the error percentage of the total current evaluated with the supra-hydrodynamic model compared to 
that simulated with the Boltzmann transport equation. We represent the map as a function of the parameters 
lmr/d, leee/d and leee/loee to consider different transport regimes: diffusive, hydrodynamic and ballistic within 
classical (loee= leee) and tomographic dynamics (loee ≫ leee). Dashed lines limit the regions where the Navier-
Stokes error (orange) and the supra-hydrodynamic model (brown) are over a tolerance of 20%. The gray line 
shows experimental values for a graphene channel 1,14 of width d = 200 nm at n = 0.5 × 1012 cm−2. The 
supra-hydrodynamic model’s validity range spans that of Navier-Stokes widely, as indicated by the upper arrow.
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cos θ

∂g

∂x
− e cos θ

ℏkF

dVH

dx
+ eEy sin θ

ℏkF
+ 1

lb

∂g

∂θ
= Γ [g] .� (4)

Thus, the electron’s drift velocity along the channel can be obtained from the distribution as follows18,21

	
u(x) = 1

π

ˆ 2π

0
sin θ g(x, θ) dθ � (5)

and, upon integration of u(x) over the spatial coordinate x across the channel, the electrical current is evaluated. 
Under this formalism, the electron-electron collisions, responsible for the viscous effects, relax the distribution g 
towards gee = u sin θ. The formal study of electron dynamics reveals different rates for each mode in the polar 
expansion of g25,26. Here we will focus on the lower-order modes, which pose the foremost contribution to the 
electrical properties41. Indeed, we cast the collision operator as

	
Γ [g] = − g

lmr
− ge − ge

ee

leee
− go − go

ee

loee
,� (6)

where we split g = ge + go into the even and odd modes. The even modes relax with a characteristic leee, while 
the odd modes relax with an loee. We take an loee representative of the third mode, as higher order odd modes have 
a smaller contribution to electrical transport. The rates are similar leee ≃ loee at high temperatures, but leee ≪ loee 
when the temperature is much lower than the Fermi temperature, giving rise to tomographic dynamics39,40. 
The Boltzmann equation accurately predicts the transport phenomena in the ballistic, tomographic, and 
hydrodynamic regimes. However, its complexity makes it impossible to solve it analytically, and numerical 
simulations are necessary even to address the channel geometry. Remarkably, our formulation of a supra-
hydrodynamic model enables us to obtain an analytical solution in such cases.

Supra-hydrodynamic model
To derive the supra-hydrodynamic model, we first write g(x, θ) as a Fourier series up to the fourth-order as 
follows

	
g(x, θ) ≃

4∑
n=1

[
sn(x) sin nθ + cn(x) cos nθ

]
,� (7)

where s1(x) = u(x) is the drift velocity according to Eq.  (5). The existence of electron-electron collisions 
guarantees the relaxation of high-order modes and justifies a second-order expansion21. Therefore, the supra-
hydrodynamic model generalizes it, providing a wider range of validity that we will analyze. Equation (7) is 
substituted into the Boltzmann equation to set a system of equations. In the absence of the magnetic field, 
cn = 0, which allows us to write a system of four coupled linear differential equations for u, s2, s3, and s4, 
and after some algebra, s2, s3, and s4 coefficients can be eliminated (see “Methods”). The supra-hydrodynamic 
equation finally reads

	

(
η

d4

dx4 − ν
d2

dx2 + vF

lmr

)
u(x) + evF Ey

ℏkF
= 0,� (8)

which generalizes the Navier-Stokes model with the following modified viscosity

	
ν = 3 γmr + 2 γo

8 γe γo
vF � (9)

and a new term dependent on the fourth derivative of the velocity multiplied by

	
η = 1

32 γe2 γo
vF .� (10)

For the sake of brevity, we have defined the following rates related to electronic collisions: γmr = 1/lmr, 
γe = 1/lmr + 1/leee and γo = 1/lmr + 1/loee.

As well as the Navier-Stokes model, Eq. (8) is a linear differential equation that admits a closed-form solution 
in the channel depicted in Fig. 1a

	
u(x) = α1 cosh(λ1x) + α2 cosh(λ2x) − elmr Ey

ℏkF
,� (11)

where

	

λ1 =

√√√√ ν

2η

[
1 +

√
1 − 4vF ηγmr

ν2

]
λ2 =

√√√√ ν

2η

[
1 −

√
1 − 4vF ηγmr

ν2

]
.� (12)
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Moreover, α1 and α2 are analytically determined upon imposing boundary conditions at the edges (see 
“Methods”)23. Last, the velocity profile (11) can be easily integrated over the coordinate x to obtain the total 
current and the resistance.

Figure 1b shows a ballistic velocity profile for lmr = leee = loee = 20d and a partially specular edge. In such a 
case, the Navier-Stokes model fails, while the supra-hydrodynamic one reproduces accurately the profile given 
by the Boltzmann equation. The latter also successfully explains the deep tomographic regime and the curvature 
of the profile in Fig.  1c for lmr = 10d, leee = 0.25d ≪ loee, that the standard hydrodynamic model cannot 
account for. Unlike the Navier-Stokes equation, which is blind to the peculiarities of the tomographic dynamics, 
the supra-hydrodynamic coefficients of Eq. (8), ν and η, distinguish the relaxation rates of the even (γe) and 
odd parity (γo) modes. Indeed, it accounts for the velocity profiles and explains the lower resistance under 
tomographic collisions, which do not relax the odd parity modes of the distribution function. The generalized 
model also predicts the profile and the so-called slip-length, which characterizes the edge scattering, similar 
to previous descriptions42,43, not shown for brevity. Figure 1d shows a case where the regime of transport is 
hydrodynamic (lmr = 10d, leee = loee = 0.25d) and therefore, both Navier-Stokes and the proposed supra-
hydrodynamic model agree with Boltzmann equation prediction.

Figure  1e shows the accuracy of the supra-hydrodynamic model21. In these simulations, we consider 
a uniform channel with rough edges for a better comparison, although the general conclusion is also valid 
for specular edges that would produce lower errors21. Figure 1e demonstrates that, although the model is not 
valid in the ultra-deep ballistic regime lmr, lee → ∞, it leads to successful results under typical experimental 
conditions where the ballistic regime is usually studied1–3,14,33. It is demonstrated that the supra-hydrodynamic 
model properly describes the transport and electrical properties under the diffusive, hydrodynamic, ballistic and 
tomographic regimes.

Supra-hydrodynamic model with a magnetic field
Now, let us consider the effects of a perpendicular magnetic field in our generalized model. An algebraic 
derivation similar to that of the previous section yields the following supra-hydrodynamic equation

	

(
−χ

d6

dx6 + η
d4

dx4 − ν
d2

dx2 + vF

lmr

)
u(x) + evF Ey

ℏkF
= 0,� (13)

where the viscosity is replaced by

	
ν = vF

4 (γe2 + 4 γb
2)

[
γe + 3γmr

γo
(
γe

3 + 12 γe γb
2)

−
(
8 γe

2 γb
2 + 80 γb

4)
(γo2 + 9 γb

2) (γe2 + 16 γb
2)

]
� (14)

with γb = 1/lb. Here, the first term accounts for the dependence of the viscosity on the magnetic field in the 
Navier-Stokes model21. We also introduce the coefficients

	
η =

vF

[
γe

2 (9 γmr + 8γo) + 4γb
2 (25γmr − 12γe + 16γo)

]
64 (γe2 + 4 γb

2) (γo2 + 9γb
2) (γe2 + 16γb

2) ,� (15)

	
χ = 3 vF γe

256 (γe2 + 4γb
2) (γo2 + 9γb

2) (γe2 + 16γb
2) .� (16)

Similar to Eq. (11), the solution in a uniform channel in the presence of a magnetic field now reads

	
u(x) =

3∑
n=1

αn cosh(λnx) − e lmrEy

ℏkF
,� (17)

where λn =
√

Λn are obtained after solving the cubic equation −χΛ3 + ηΛ2 − νΛ + γmr = 0, and the 
boundary condition23 establishes α1, α2, and α3.

Figures 2a–c show the velocity profiles of a uniform channel with partially specular boundaries in a ballistic 
regime of transport, lmr = 5d, leee and loee ≫ d, when a magnetic field is applied. Fields are expressed in units 
of the commensurability field Bc = ℏkF /ed44 such that (a) B = 0, (b) B = 0.5BC  and (c) B = BC . Note 
that the boundary conditions (see “Methods”) are derived under the hypothesis that the distribution g at the 
edges is a smooth function. However, this is not the case near the commensurability condition B = BC  so 
this inaccuracy will affect the results shown in Fig. 2c. A more accurate description could be obtained using 
numerical calculations to obtain a boundary condition under a magnetic field45,46, but the goal of this article is 
to obtain a simple closed-form model, so we keep this level of approximation with valid results. Indeed, as shown 
in Fig. 2a and b, the supra-hydrodynamic model already works properly under a magnetic field, away from the 
commensurability condition B ∼ Bc, and it improves the predictions of the standard Navier-Stokes model.

Most remarkably, the supra-hydrodynamic model reproduces the positive magnetoresistance observed at 
low fields in experiments performed beyond the fully hydrodynamic transport32 [see Fig. 2d] and provides an 
accurate description in the deep tomographic regime [see Fig. 2e]. On the contrary, the Navier-Stokes model 
misses this effect, and it always predicts negative magnetoresistance [see Fig. 2d–f].
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Discussion
The inherent complexity of the Boltzmann equation is often circumvented by employing simpler hydrodynamic 
models, such as those based on the Navier-Stokes equation. However, they miss relevant phenomena, from 
the tomographic dynamics of electrons25,27 to the occurrence of positive magnetoresistance33. Just as the 
Burnett equations generalized the Navier-Stokes equations in a conventional fluid47, our supra-hydrodynamic 
model generalizes the hydrodynamic models for electrons, with potential interest for other particle systems 
as phonons48. In electronic systems transport phenomena usually occur near the Fermi surface, and we can 
exploit that fact to write the electron distribution as a Fourier expansion in the polar angle. Despite the drastic 
differences in the derivation and the final equations of our model, adding higher order terms to the Navier-
Stokes, similar to the Chapman-Enskog expansion49, has shown its usefulness in the description of conventional 
fluids50. Nevertheless, the Burnett equations have mathematical pathologies and convergence issues, which have 
been studied in detail51,52. On the contrary, our model is more closely related to the better-behaved harmonic 
expansion in semiconductors53, where hydrodynamic expansions have been used54. Therefore, it reveals the 
appropriate generalized model for electron hydrodynamics.

Moreover, key phenomena of electron fluids, such as tomographic dynamics or the correct sign in the 
magnetoresistance, are missed by the Navier-Stokes equation. Together with the experimental difficulty to fully 
achieve the hydrodynamic regime, lee ≪ d, other attempts to dodge the Boltzmann equation have been made 
using non-local conductivity tensors where the description of all polar modes is included25,39,40,55. The supra-
hydrodynamic model enables analytic solutions to describe the variety of edge-scattering mechanisms usually 
found in experiments2,3,23. It is to be noticed that expansions of the Boltzmann equation to second order may 
also describe boundary layers accurately42,43,56. Another remarkable expansion of the Boltzmann equation 
up to third-order was addressed in the quasi-hydrodynamic by Alekseev and Dimitriev for the description 
of magnetotransport57. However, our expansion to the fourth order is even more accurate, and replacing the 
Boltzmann equation with a supra-hydrodynamic model, where we write the equations and boundary conditions 
just in terms of the velocity field, facilitates a more straightforward interpretation of the results.

Conclusion
In this work, we introduce a generalized Navier-Stokes equation that extends the range of validity of conventional 
electron hydrodynamic models by one order of magnitude. Remarkably, our approach properly describes 
hydrodynamic, tomographic, and ballistic electrons under typical experimental conditions. This formulation 
incorporates appropriate boundary conditions and retains analytical solutions in uniform geometries, 
facilitating its application. In particular, the supra-hydrodynamic model correctly predicts the positive or 
negative sign of the magnetoresistance in two-dimensional materials at low magnetic fields, overcoming the 
limitations of conventional hydrodynamic approaches. The introduced framework provides a more accurate and 
comprehensive description of the collective behavior of electrons, especially in the transition toward ballistic 
transport.

Fig. 2.  The supra-hydrodynamic model improves the results of the Navier-Stokes equation under a magnetic 
field. Velocity profile of a uniform channel with specular edges (D = 1, see “Methods”) in a ballistic regime 
of transport with lmr = 5d, leee and loee ≫ d in the presence of a magnetic field: (a) B = 0, (b) B = 0.5Bc, 
and (c) B = Bc, where Bc = ℏkF /ed is the commensurability magnetic field. Magnetoresistance curves for 
different regimes of transport and d/lmr = 0.2: (d) Ballistic with d/leee = d/loee = 0, (e) deep tomographic 
with d/leee = 4 but d/loee = 0, and (f) fully hydrodynamic with d/leee = d/loee = 4.
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Methods
Model derivation
We can derive the supra-hydrodynamic model by writing the g(x, θ) as the fourth-order Fourier expansion in 
Eq. (7). We use fundamental relationships to expand the product of trigonometric functions as a sum, and we 
write the collision operator as

	 Γ[g] = γmru sin θ + γmrc1 cos θ + γes2 sin 2θ + γec2 cos 2θ + γos3 sin 3θ + γoc3 cos 3θ + γes4 sin 4θ + γec4 cos 4θ,� (18)

where u = s1 is the electron’s drift velocity. We show that c1 = 0 as there is no net current through the edge 
of the channel23. We substitute the expansion in Eq.  (4), group the resulting terms with each trigonometric 
function, and impose each as zero. Note that the terms with sine and cosine functions are decoupled without a 
magnetic field. The condition c2 = c3 = c4 = 0 follows from c1 = 0, while the remaining equations read

	

γmr u + 1
2

ds2

dx
= − eEy

ℏkF
,

γe s2 + 1
2

du

dx
+ 1

2
ds3

dx
= 0,

γo s3 + 1
2

ds2

dx
+ β

2
ds4

dx
= 0,

γe s4 + 1
2

ds3

dx
= 0.

� (19)

The fourth-order Fourier expansion is just an approximation to the full solution of the Boltzmann equation, 
which, ideally, has infinite terms. Substituting it directly gives this set of equations with β = 1 and an additional 
condition ds4/dx = 0, which cannot be fulfilled together with these equations. Therefore, in a finite expansion 
up to fourth order, we might ignore the additional condition ds4/dx = 0. But ds4/dx also appears in the third 
equation. So, rather than ignoring it, we can take β = 1/2 in Eq. (19), which slightly improves the accuracy of 
using β = 1. We derive the expressions in Eq. (19) three times with respect to x and obtain a linear coupled 
system of equations. In this system, we perform Gaussian elimination to isolate s2, s3, and s4, obtaining an 
equation only for u and its derivatives. A typical process in ordinary differential equations is to reduce the order 
of an equation for u and its higher order derivatives by adding new variables, such as defining new magnitudes 
like  du/dx or d2u/dx2 for the high order derivatives. Here, we follow the opposite process: We eliminate the 
superfluous variables by increasing the order of the equation and obtain the result given by Eq.  (8). We can 
expand g to different orders, writing extended versions of (19), whose results are depicted in Fig. 3. The M = 4 
model discussed in the paper strikes a balance between the complexity of the expressions and the accuracy of 
the results.

We can follow an analog procedure in the presence of a magnetic field to obtain the following set of coupled 
equations

Fig. 3.  Velocity profiles of different supra-hydrodynamic models. The order M = 4 corresponds to the supra-
hydrodynamic model explored in this article. Increasing M results in a better convergence to the result of the 
Boltzmann equation. We consider lmr = leee = loee = 5d and a partially specular D = 1 edge.
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1
2

dc1

dx
= 0,

γmr c1 + γb u + 1
2

dc2

dx
= e

ℏkF

dVH

dx
,

−γb c1 + γmr u + 1
2

ds2

dx
= − eEy

ℏkF
,

γe c2 + 2 γb s2 + 1
2

dc1

dx
+ 1

2
dc3

dx
= 0,

−2 γb c2 + γe s2 + 1
2

du

dx
+ 1

2
ds3

dx
= 0,

γo c3 + 3 γb s3 + 1
2

dc2

dx
+ β

2
dc4

dx
= 0,

−3 γb c3 + γo s3 + 1
2

ds2

dx
+ β

2
ds4

dx
= 0,

γe c4 + 4 γb s4 + 1
2

dc3

dx
= 0,

−4 γb c4 + γe s4 + 1
2

ds3

dx
= 0.

� (20)

We again take derivatives three times and use Gaussian elimination to obtain two equations for u, VH , and their 
derivatives. Additionally, if we focus on the velocity field, we can derive these expressions twice and find an 
equation only for the velocity field, which is Eq. (13).

Boundary conditions
Edge scattering determines the electrical properties in the hydrodynamic, tomographic, and ballistic regimes23. 
By considering the appropriate boundary conditions in the supra-hydrodynamic model, we can describe 
particular edge scattering properties, either by a rough or a partially specular edge.

We can derive boundary conditions by writing the distribution at the x = d/2 edge

	 g(θ) = ũ sin θ + s̃2 sin 2θ ,� (21)

where −π/2 < θ < π/2 account for the incident electrons. The parameterization of g as a function of ũ and s̃2, 
which is exact in the hydrodynamic fluid-like regime21, still provides reasonable results in the tomographic and 
ballistic regimes, as evidenced by the range of validity of the supra-hydrodynamic model. A phenomenological 
approach to typical edge scattering considers a very rough, disordered edge that scatters the electrons in all 
directions2,3,23. The scattered distribution in this case is

	 g(R)(θ) = 0,� (22)

where π/2 < θ < 3π/2 are the angles of the scattered electrons. After combining Eqs. (21) and (22), we obtain 
the following expansion

	 g(θ) ≃ u sin θ + s2 sin 2θ + s3 sin 3θ + s4 sin 4θ � (23)

with the Fourier coefficients

	




u
s2
s3
s4


 =




1/2 4/3π
4/3π 1/2

0 4/5π
−8/15π 0


 (

ũ
s̃2

)
.� (24)

After some algebra it is possible to eliminate ũ and s̃2 by imposing

	 A (u s2 s3 s4)T = 0,� (25)

so that edge scattering constrains the shape of the distribution function at the edges. Particularly for a rough (R) 
edge, the matrix reads

	
A(R) =

(1.55 −1.82 1 0
1.21 −1.03 0 1

)
.� (26)

Another approach to edge scattering is a partially specular edge (S) with a scattered distribution13,23

	
g(S)(θ) = g (π − θ) + D cos θ ×

[
g (π − θ) − 2

π

ˆ 3π/2

π/2
cos2 θ′g

(
π − θ′) dθ′

]
� (27)
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for π/2 < θ < 3π/2 and the incident distribution given by Eq.  (21). The dispersion coefficient 
D =

√
πh2h′k3

F ≲ 1 is related to the edge’s bumps height h and its correlation length h′23. Edge scattering can 
also be modeled in great detail using the Berry-Mondragon condition, which also results in partial scattering of 
the electrons and has been used to calculate the electrical properties of nanoribbons58,59. For a partially specular 
edge, the matrix of Eq. (25) reads

	
A(S) =

(
0.151 D−1
0.075 D−1 − 0.167 D2−1.963 D+4

D−0.075 D2 1 0
− 0.19 D

0.075 D−1 − 0.162 D−0.762
0.075 D−1 0 1

)
.� (28)

In order to write the boundary conditions for the velocity field u, we carry out Gaussian elimination in the linear 
system defined by Eq. (19) and its derivatives to write each of the s2, s3, and s4 as a function of the velocity field 
and its derivatives as follows

	 (u s2 s3 s4)T = B
(
u u(1) u(2) u(3))T

+ B0,� (29)

where the conversion matrices are

	

B =




1 0 0 0
0 − 3 γmr+2 γo

4 γe γo
0 1

16 γe2 γo3 γmr
2 γo

0 − 1
8 γe γo

0
0 − 3 γmr

4 γe γo
0 1

16 γe2 γo


 � (30)

and

	
B0 =

(
0 0 −3

2 γo
0
)T

.� (31)

Now we impose two equations for the velocity field and its derivatives at the boundary such that

	 AB
(
u u(1) u(2) u(3))T

= −AB0,� (32)

where these matrices replace the slip-length ξ in the hydrodynamic boundary condition u = −ξu(1), improving 
its accuracy. In particular, in a channel, we define two additional matrices C and C0 as follows

	

C =




cosh
(

λ1d
2

)
cosh

(
λ2d

2

)
λ1 sinh

(
λ1d

2

)
λ2 sinh

(
λ2d

2

)
λ2

1 cosh
(

λ1d
2

)
λ2

2 cosh
(

λ2d
2

)
λ3

1 sinh
(

λ1d
2

)
λ3

2 sinh
(

λ2d
2

)


 ,� (33)

	
C0 =

(−evF lmrEy

ℏkF vF
0 0 0

)T

,� (34)

and substitute the closed-form solution of Eq. (11) to obtain the following 2 × 2 linear system that gives c1 and 
c2

	
ABC

(
α1
α2

)
= −AB0 − ABC0.� (35)

The generalization of the boundary conditions in the presence of a magnetic field is possible by writing the 
distribution for the incident electrons at x = d/2 as a Fourier series with up to second-order

	 g(θ) = c̃0 + ũ sin θ + c̃1 cos θ + s̃2 sin 2θ + c̃2 cos 2θ,� (36)

where −π/2 < θ < π/2 and now the c̃n coefficients may not be zero in a magnetic field. We supplement it with 
the no-trespassing condition23, accounting for charge conservation at the boundary. Similarly, this expression, 
which enables the determination of a boundary condition without premises on the device geometry, is exact in 
the hydrodynamic regime and is a general way to derive a boundary condition without assuming any particular 
geometry. However, it is not valid near the commensurability condition d ∼ lb (B ∼ BC), where the electrons 
arriving from the other edge of the channel alter the distribution. Even for the conventional hydrodynamic 
model, which characterizes edge scattering with a simple slip-length ξ, a more detailed characterization of edge 
scattering requires numerical calculations45,46. In a similar way as in the absence of magnetic field, we use the 
distributions for the scattered electrons in Eqs. (22) and (27), write g as a Fourier sum, and find the A matrix 
with three equations for u, s2, s3, s4, c2, c3, c4. We derive B upon Gaussian elimination in Eq.  (20) and its 
derivatives, writing each of these variables in terms of u, . . . , u(5). To facilitate its implementation, we provide 
the resulting matrix in the Supplementary Material. In particular, in a channel geometry, we can write a 3 × 3 
linear system
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ABC

(
α1
α2
α3

)
= −AB0 − ABC0,� (37)

which we solve for α1, α2 and α3, the coefficients that determine the current profile. In the manuscript, we 
primarily present results for a partially specular edge. Figure 4 also illustrates their analogue for a rough edge, 
where convergence, slightly slower, is still achieved in the ballistic regime.

Numerical methods
We compare the closed-form solution provided by the supra-hydrodynamic model against the Boltzmann 
equation, which must be solved numerically21. We use a conforming Galerkin finite element method21,60, 
approximating the distribution function as follows

	
g(x, θ) =

N∑
n=1

M∑
m=1

gnm ϕn(x) φm(θ),� (38)

where {ϕn(x)} is a basis of tent functions defined on the [−d/2, d/2] interval and the products of adjacent 
tent functions, and {φm(θ)} is a set of periodic tent function defined for [0, 2π). We achieve convergence with 
N = 60 and M = 32. We impose centered Fermi surfaces and the boundary condition for reflected electrons 
at the edges. We write the weak formulation of the Boltzmann equation and solve the subsequent linear system 
for the gnm coefficients. We numerically integrate the distribution to give the drift velocity u. The integration 
of the velocity profile gives the total current I ∝

´ d/2
−d/2 u(x) dx and the resistance. We evaluate the relative 

error of the supra-hydrodynamic (SH) model in comparison with the Boltzmann equation (BTE) results as 
|ISH − IBTE|/IBTE.

Navier-Stokes model
In previous sections, we have also shown the profiles obtained with the conventional Navier-Stokes model. We 
can also obtain it from the Boltzmann equation upon the hypothesis of collective fluid-like behavior21

	
g(x, θ) ≃

2∑
n=1

[
sn (x) sin nθ + cn (x) cos nθ

]
.� (39)

The supra-hydrodynamic model relaxes this condition by adding the contribution of higher-order modes in the 
Fourier expansion, extending its range of validity. Upon the assumption of Eq. (39), the Boltzmann equation 
reduces to the Navier-Stokes equation in a channel as

	
−ν

d2u(x)
dx2 + vF

lmr
u(x) + evF Ey

ℏkF
= 0,� (40)

where ν = vF γe/(4γ2
e + 16γ2

b ) is the viscosity. Edge scattering is characterized with an slip-length ξ23 
imposing the boundary condition u(x) = −ξdu(x)/dx. In particular, ξ = 2.35 ν/vF  for the rough edge and 

Fig. 4.  Velocity profiles for a rough edge. (a) Ballistic regime (lmr = leee = loee = 20d), to be compared with 
the partially specular edge in Fig. 1(b). (b) Ballistic regime (lmr = leee = loee = 10d). (c) Tomographic regime 
(lmr = 10d, leee = 0.25d ≪ loee), to be compared with Fig. 1(c). (d) Hydrodynamic regime (lmr = 10d, 
leee = loee = 0.25d), to be compared with Fig. 1(d).
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ξ = (8/D − 1.70)ν/vF  for the partially specular one. The velocity profile, defining λ =
√

vF /νlmr, is written 
as

	
u(x) = − evF lmrEy

ℏkF vF

[
1 − cosh λx

cosh(λd/2) + ξλ sinh(λd/2)

]
.� (41)

Particularly, in the limit of no collisions against impurities lmr → ∞ and under frequent electron-electron 
collisions lee ≪ d, which ensures ξ/d ≪ 1, we find a parabolic profile of the conventional Poiseuille flow:

	
u(x) ≃ −evF Ey

2ℏkF ν

[(
d

2

)2
− x2

]
.� (42)

In this work, Eqs. (11) and  (17) provide more accurate expressions for the velocity profile under the supra-
hydrodynamic model.

Data availability
The datasets used and/or analysed during the current study available from the corresponding author on reason-
able request.

Received: 13 March 2025; Accepted: 26 September 2025

References
	 1.	 Bandurin, D. et al. Negative local resistance caused by viscous electron backflow in graphene. Science 351, 1055–1058 (2016).
	 2.	 Palm, M. L. et al. Observation of current whirlpools in graphene at room temperature. Science 384, 465–469 (2024).
	 3.	 Sulpizio, J. A. et al. Visualizing Poiseuille flow of hydrodynamic electrons. Nature 576, 75–79 (2019).
	 4.	 Levitov, L. & Falkovich, G. Electron viscosity, current vortices and negative nonlocal resistance in graphene. Nat. Phys. 12, 672–676 

(2016).
	 5.	 Keser, A. C. et al. Geometric control of universal hydrodynamic flow in a two-dimensional electron fluid. Phys. Rev. X 11, 031030 

(2021).
	 6.	 Moll, P. J., Kushwaha, P., Nandi, N., Schmidt, B. & Mackenzie, A. P. Evidence for hydrodynamic electron flow in PdCoO2. Science 

351, 1061–1064 (2016).
	 7.	 Estrada-Álvarez, J., Domínguez-Adame, F. & Díaz, E. Anisotropic signatures of electron hydrodynamics. Phys. Rev. Res. 7, 013087 

(2025).
	 8.	 Aharon-Steinberg, A. et al. Direct observation of vortices in an electron fluid. Nature 607, 74–80 (2022).
	 9.	 Varnavides, G., Yacoby, A., Felser, C. & Narang, P. Charge transport and hydrodynamics in materials. Nat. Rev. Mater. 8, 726 

(2023).
	10.	 Polini, M. & Geim, A. K. Viscous electron fluids. Phys. Today 73, 28–35 (2020).
	11.	 Baker, G., Moravec, M. & Mackenzie, A. P. A perspective on non-local electronic transport in metals: viscous, ballistic, and beyond. 

Ann. Phys. 536, 2400087 (2024).
	12.	 Narozhny, B. N. Hydrodynamic approach to two-dimensional electron systems. Riv. Nuovo Cimento 45, 661 (2022).
	13.	 Estrada-Álvarez, J. et al. Superballistic conduction in hydrodynamic antidot graphene superlattices. Phys. Rev. X 15, 011039 (2025).
	14.	 Krishna-Kumar, R. et al. Superballistic flow of viscous electron fluid through graphene constrictions. Nat. Phys. 13, 1182–1185 

(2017).
	15.	 Guo, H., Ilseven, E., Falkovich, G. & Levitov, L. S. Higher-than-ballistic conduction of viscous electron flows. PNAS USA 114, 

3068–3073 (2017).
	16.	 Gurzhi, R. N. Hydrodynamic effects in solids at low temperature. Sov. Phys. Uspekhi 11, 255 (1968).
	17.	 Kravtsov, M. et al. Viscous terahertz photoconductivity of hydrodynamic electrons in graphene. Nat. Nanotech. 20, 51 (2024).
	18.	 Estrada-Álvarez, J., Díaz García, E. & Dominguez-Adame, F. Negative differential resistance of viscous electron flow in graphene. 

2D Mater.12, 015012 (2024).
	19.	 Stern, A. et al. How electron hydrodynamics can eliminate the Landauer-Sharvin resistance. Phys. Rev. Lett. 129, 157701 (2022).
	20.	 Huang, W., Paul, T., Perrin, M. L. & Calame, M. Eliminating the channel resistance in two-dimensional systems using viscous 

charge flow. 2D Mater. 11, 033001 (2024).
	21.	 Estrada-Álvarez, J., Domínguez-Adame, F. & Díaz, E. Alternative routes to electron hydrodynamics. Commun. Phys. 7, 138 (2024).
	22.	 Robinson, J. C. An Introduction to Ordinary Differential Equations (Cambridge University Press, 2004).
	23.	 Kiselev, E. I. & Schmalian, J. Boundary conditions of viscous electron flow. Phys. Rev. B 99, 035430 (2019).
	24.	 Ledwith, P. J., Guo, H. & Levitov, L. The hierarchy of excitation lifetimes in two-dimensional Fermi gases. Ann. Phys. 411, 167913 

(2019).
	25.	 Ledwith, P., Guo, H., Shytov, A. & Levitov, L. Tomographic dynamics and scale-dependent viscosity in 2D electron systems. Phys. 

Rev. Lett. 123, 116601 (2019).
	26.	 Hofmann, J. & Gran, U. Anomalously long lifetimes in two-dimensional Fermi liquids. Phys. Rev. B 108, L121401 (2023).
	27.	 Hofmann, J. & Sarma, S. D. Collective modes in interacting two-dimensional tomographic fermi liquids. Phys. Rev. B 106, 205412 

(2022).
	28.	 Alekseev, P. S. & Dmitriev, A. P. Viscosity of two-dimensional electrons. Phys. Rev. B 102, 241409 (2020).
	29.	 Rostami, H., Ben-Shachar, N., Moroz, S. & Hofmann, J. Magnetic field suppression of tomographic electron transport. Phys. Rev. 

B 111, 155434 (2025).
	30.	 Estrada-Álvarez, J., Bermúdez-Mendoza, F., Domínguez-Adame, F. & Díaz, E. Optimal geometries for low-resistance viscous 

electron flow. Phys. Rev. B 111, 075401 (2025).
	31.	 Zeng, Y. et al. Quantitative measurement of viscosity in two-dimensional electron fluids. arXiv preprint arXiv:2407.05026 (2024).
	32.	 Alekseev, P. Negative magnetoresistance in viscous flow of two-dimensional electrons. Phys. Rev. Lett. 117, 166601 (2016).
	33.	 Masubuchi, S. et al. Boundary scattering in ballistic graphene. Phys. Rev. Lett. 109, 036601 (2012).
	34.	 Holder, T. et al. Ballistic and hydrodynamic magnetotransport in narrow channels. Phys. Rev. B 100, 245305 (2019).
	35.	 Alekseev, P. S. & Semina, M. A. Ballistic flow of two-dimensional interacting electrons. Phys. Rev. B 98, 165412 (2018).
	36.	 Alekseev, P. S. & Semina, M. A. Hall effect in a ballistic flow of two-dimensional interacting particles. Phys. Rev. B 100, 125419 

(2019).

Scientific Reports |        (2025) 15:38326 10| https://doi.org/10.1038/s41598-025-22189-7

www.nature.com/scientificreports/

http://arxiv.org/abs/2407.05026
http://www.nature.com/scientificreports


	37.	 Afanasiev, A., Alekseev, P., Greshnov, A. & Semina, M. Ballistic-hydrodynamic phase transition in flow of two-dimensional 
electrons. Phys. Rev. B 104, 195415 (2021).

	38.	 Nastasi, G. & Romano, V. Mathematical aspects and simulation of electron-electron scattering in graphene. Z. fur Angew. Math. 
Phys. 74, 28 (2023).

	39.	 Nazaryan, K. G. & Levitov, L. Nonlocal conductivity, continued fractions, and current vortices in electron fluids. Phys. Rev. B 110, 
045147 (2024).

	40.	 Kryhin, S., Hong, Q. & Levitov, L. Linear-in-temperature conductance in two-dimensional electron fluids. Phys. Rev. B 111, 
L081403 (2025).

	41.	 Ben-Shachar, N. & Hofmann, J. Magnetotransport of tomographic electrons in a channel. arXiv preprint arXiv:2503.14431 (2025).
	42.	 Ben-Shachar, N. et al. Near-hydrodynamic electron flow according to the linearized boltzmann equation. Phys. Rev. B 111, 125145 

(2025).
	43.	 Ben-Shachar, N. et al. Hall field and odd viscosity in near-hydrodynamic electron flows. Phys. Rev. B 111, L121107 (2025).
	44.	 Alekseev, P. S. Viscous flow of two-component electron fluid in magnetic field. Semiconductors 57, 193–202 (2023).
	45.	 Raichev, O. Linking boundary conditions for kinetic and hydrodynamic description of fermion gas. Phys. Rev. B 105, L041301 

(2022).
	46.	 Raichev, O. Magnetohydrodynamic boundary conditions for the two-dimensional fermion gas. Phys. Rev. B 108, 125305 (2023).
	47.	 Burnett, D. The distribution of molecular velocities and the mean motion in a non-uniform gas. Prod. Lon. Math. Soc. 2, 382–435 

(1936).
	48.	 Sendra, L. et al. Derivation of a hydrodynamic heat equation from the phonon boltzmann equation for general semiconductors. 

Phys. Rev. B 103, L140301 (2021).
	49.	 Soto, R. Kinetic Theory and Transport Phenomena, vol. 25 (Oxford University Press, 2016).
	50.	 García-Colín, L. S., Velasco, R. M. & Uribe, F. J. Beyond the navier-stokes equations: burnett hydrodynamics. Phys. Rep. 465, 

149–189 (2008).
	51.	 Struchtrup, H. & Struchtrup, H. Macroscopic Transport Equations for Rarefied Gas Flows (Springer, 2005).
	52.	 Struchtrup, H. & Taheri, P. Macroscopic transport models for rarefied gas flows: a brief review. IMA J. Appl. Math. 76, 672–697 

(2011).
	53.	 Jüngel, A. Transport equations for semiconductors, vol. 773 of Lecture Notes in Physics (Springer, 2009).
	54.	 Grasser, T., Tang, T.-W., Kosina, H. & Selberherr, S. A review of hydrodynamic and energy-transport models for semiconductor 

device simulation. Proc. IEEE 91, 251–274 (2003).
	55.	 Hong, Q., Davydova, M., Ledwith, P. J. & Levitov, L. Superscreening by a retroreflected hole backflow in tomographic electron 

fluids. Phys. Rev. B 109, 085126 (2024).
	56.	 Ben-Shachar, N. & Hofmann, J. Tomographic electron flow in confined geometries: Beyond the dual-relaxation time approximation. 

arXiv preprint arXiv:2503.14461 (2025).
	57.	 Alekseev, P. S. & Dmitriev, A. P. Hydrodynamic magnetotransport in two-dimensional electron systems with macroscopic 

obstacles. Phys. Rev. B 108, 205413 (2023).
	58.	 Dugaev, V. & Katsnelson, M. Edge scattering of electrons in graphene: Boltzmann equation approach to the transport in graphene 

nanoribbons and nanodisks. Phys. Rev. B 88, 235432 (2013).
	59.	 Nastasi, G. et al. Direct simulation of charge transport in graphene nanoribbons. Commun. Comput. Phys. 31, 449–494 (2022).
	60.	 Ciarlet, P. G. The Finite Element Method for Elliptic Problems (SIAM, 2002).

Acknowledgements
We wish to acknowledge R. Brito, R. Soto, and N. Ben-Shahar for discussions. This work was supported by the 
“(MAD2D-CM)-UCM” project funded by Comunidad de Madrid, by the Recovery, Transformation and Resil-
ience Plan, and by NextGenerationEU from the European Union and Agencia Estatal de Investigación of Spain 
(Grants PID2019-106820RB-C2 and PID2022-136285NB-C31). J. E. acknowledges support from the Spanish 
Ministerio de Ciencia, Innovación y Universidades (Grant FPU22/01039).

Author contributions
J.E-A. Methodology, Investigation, Conceptualization, Writing-original draft. F.D-A. Investigation, Writing-re-
view-editing, Funding acquisition. E.D. Investigation, Writing-review-editing, Funding acquisition, Supervi-
sion. All authors contributed to the final manuscript and approved it for publication.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​1​
0​.​1​0​3​8​/​s​4​1​5​9​8​-​0​2​5​-​2​2​1​8​9​-​7​​​​​.​​

Correspondence and requests for materials should be addressed to J.E.-Á.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Scientific Reports |        (2025) 15:38326 11| https://doi.org/10.1038/s41598-025-22189-7

www.nature.com/scientificreports/

http://arxiv.org/abs/2503.14431
http://arxiv.org/abs/2503.14461
https://doi.org/10.1038/s41598-025-22189-7
https://doi.org/10.1038/s41598-025-22189-7
http://www.nature.com/scientificreports


Open Access   This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 
4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in 
any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide 
a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have 
permission under this licence to share adapted material derived from this article or parts of it. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence 
and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to 
obtain permission directly from the copyright holder. To view a copy of this licence, visit ​h​t​t​p​:​/​/​c​r​e​a​t​i​v​e​c​o​m​m​o​
n​s​.​o​r​g​/​l​i​c​e​n​s​e​s​/​b​y​-​n​c​-​n​d​/​4​.​0​/​​​​​.​​

© The Author(s) 2025 

Scientific Reports |        (2025) 15:38326 12| https://doi.org/10.1038/s41598-025-22189-7

www.nature.com/scientificreports/

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://www.nature.com/scientificreports

	﻿Generalized Navier-Stokes model for ballistic and tomographic electrons
	﻿Results
	﻿Fundamentals
	﻿Supra-hydrodynamic model
	﻿Supra-hydrodynamic model with a magnetic field

	﻿Discussion
	﻿Conclusion
	﻿﻿Methods
	﻿Model derivation
	﻿Boundary conditions
	﻿Numerical methods
	﻿Navier-Stokes model

	﻿References


