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We introduce a solvable two-band model to study electron energy levels in
disordered narrow-gap semiconductor superlattices within the k ⋅ p approach.
The interaction of electrons with the impurities is accounted for by a separable
pseudo-potential method that allows us to obtain closed expressions for
the configurationally averaged Green’s function using the coherent potential
approximation. This approximation is regarded as the best single-site scattering
theory to calculate the average spectral properties of disordered systems.
As a working example, we focus on superlattices based on IV-VI compound
semiconductors and present a thorough study of the configurationally averaged
density of states. Our results are compared with the predictions of a single-band
model and we conclude that the latter underestimates the density of states close
to the band edge.
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1 Introduction

The Dirac equation, formerly proposed almost a century ago as a relativistic quantum
description for elementary spin–1/2 particles [1, 2], has recently attracted a lot of interest
in the realm of condensed matter physics [3–5]. Relativistic corrections, arising from the
Dirac equation after Taylor expansion in the particle velocity in units of the speed of
light, such as spin-obit interaction and the Darwin term, can lead to an inversion of the
normal ordering of electron bands in insulating materials containing heavy elements. As
an example, semiconductor compounds Pb1−xSnxTe [6–8] and Pb1−xSnxSe [9] undergo an
inversion of their L+

6 and L−
6 bands as the Sn fraction is increased. The evolution of the

bands indicates a gap closure at the L points of the Brillouin zone when a critical value
of the Sn fraction is reached, signalling the occurrence of a phase transition from trivial
to topological insulator. Topological insulators host gapless edge or surface states whose
energy lies in the gap of the bulk material, thus enabling electron conduction through
these surface states. Other examples of three dimensional topological insulators are BiSb,
Bi2Se3, Bi2Te3 and strained HgTe, to mention a few (see Refs. [10–12] for reviews on
the topic). Remarkably, effective Hamiltonians for topological states in three dimensional
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topological insulators resemble the Dirac Hamiltonian [13], where
the speed of light is replaced by a matrix element that takes into
account the coupling between conduction-band and valence-band
electron states of the bulk semiconductor. In many situations of
interest, the effective Hamiltonians need to be corrected by including
quadratic terms in momentum that are absent in the Dirac equation
for relativistic electrons (see Ref. [3] for a thorough discussion).

The k ⋅ p perturbation approach for calculating the band
structure of semiconductors [14–16] turns out to be another
scenario where effective Hamiltonians with the same mathematical
structure of the Dirac equation play a relevant role. To be specific, the
matrix elements of the momentum operator between conduction-
band and valence-band electron states cannot be neglected in
narrow-gap semiconductors and at least two bands are needed
in the expansion of the electron wave function in terms of
the products of (slowly varying) envelope functions and (rapidly
varying) Bloch functions. The resulting effective Hamiltonian acting
upon the envelope functions in a two-band model for narrow-
gap semiconductors is formally identical to the Dirac equation
[17]. In this paper, we focus on the electron states close to the
band edges in disordered narrow-gap semiconductor superlattices
within the k ⋅ p approach. While the solution of the problem is
straightforward in the case of perfectly periodic superlattices for
various types of quantum well profiles (square [17], sawtooth [18],
δ-doped [19]), real superlattices present unintentional disorder that
breaks translational symmetry and Bloch’s theorem does not hold
[20, 21]. In addition, intentionally disordered superlattices have also
been studied in the context of Anderson localization [22–24].

Green’s function techniques are routinely used to obtain single-
particle spectral properties of disordered matter, such as the density
of states (DOS). We introduce a solvable two-band model of narrow-
gap semiconductor superlattices to obtain the configurationally
averaged Green’s function of disordered narrow-gap semiconductor
superlattices within the so-called coherent potential approximation
(CPA). The CPA is an excellent and accurate alternative to purely
numerical calculations [25–28]. Furthermore, particularly simple
expressions for the configurationally averaged Green’s function are
achieved when the interaction of the electron with the superlattice
is replaced by a separable pseudo-potential model [29–38]. In spite
of its seemingly more complicated form, the separable pseudo-
potential model is amenable to analytical solution and allows us to
obtain closed expressions for the average Green’s function within the
CPA framework.

2 Theoretical model

Let us consider a superlattice consisting of alternating layers
of two narrow-gap semiconductors, e.g., PbTe/PbSnTe [39], grown
along the x axis. The envelope functions fc(x) and fv(x) describing
conduction-band and valence-band states obey the following
equation [17, 40].

[−iℏvσx
d
dx

+ V (x) + 1
2

σzEg (x) − E]ψ (x) = 0, ψ (x) = ( fc (x)
fv (x)) , (1)

where spatial derivatives of higher order are not considered, and
σx and σz are Pauli matrices. Here, Eg(x) is the position-dependent

gap and V(x) is the energy of the gap center. v is a parameter
with dimensions of velocity related to the Kane’s momentum
matrix elements [16]. In our model we will assume that the interfaces
are perfectly flat so that the momentum parallel to the interfaces k‖ is
a constant of motion. We set k‖ = 0 hereafter, although finite values
of k‖ could be considered if needed.

In semiconductor superlattices, both the position-dependent
gap Eg(x) and the gap center V(x) are piecewise functions of the
spatial coordinate along the growth direction, corresponding to the
semiconductor layers composing the system. In order to obtain a
solvable model, we replace the interaction of the electron with the
superlattice by a separable pseudo-potential model [29–38]. Hence,
we perform the following substitution in Equation 1.

[V (x) + 1
2

σz Eg  (x)] ψ (x) → Δσz ψ (x)

+ ∑nλnω (x − na)∫
∞

−∞
ω (x′ − na)ψ (x′)dx′, (2a)

where the index n labels the semiconductor layers of width a. 2Δ
is a reference gap that it is taken out from the summation for
convenience. For the sake of brevity in the notation, we introduced
the following 2 × 2 diagonal matrices

λn = Vn + σzΔn. (2b)

Here Vn is the energy of the gap center of the nth semiconductor
layer. Similarly, 2Δn is the difference of the gap of the nth layer
and the reference gap 2Δ. ω(x) will be referred to as shape
function hereafter. Remarkably, the introduction of the separable
pseudo-potential model allows us to obtain closed solutions for
any arbitrary shape function. Hence, we can set up an appropriate
shape function that reproduces the observed energy spectrum of
the considered system. Typically naive functions with very few
adjustable parameters are good candidates [32, 34]. Within the
framework of strongly coupled semiconductor superlattices, the
dynamics of an electron in a potential well can be accurately
described by a Dirac δ-type potential, following the approach
introduced by Kronig and Penney [41]. This limiting case will be
considered in our subsequent calculations below.

In a disordered superlattice, Vn and Δn are random variables
with a given probability distribution function P(Vn,Δn). In this
work we will restrict ourselves to binary disorder with two different
layers labeled A and B, for which the corresponding probability
distribution is

P (Vn,Δn) = cδ (Vn − VA)δ (Δn − ΔA) + (1 − c)δ (Vn − VB)δ (Δn − ΔB),

where c is the fraction of A layers in the superlattice. This type
of probability distribution corresponds to intentionally disordered
superlattices where the individual layer thicknesses take on two
values at random [20, 22, 24]. Other models of disorder can
be addressed on the same footing by selecting an appropriate
probability distribution, such as the Gaussian function introduced
in Anderson’s seminal paper [42]. Nevertheless, in this study we
concentrate on the case of binary disorder as a representative
example for the application of the CPA.
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FIGURE 1
(a) A realization of the disordered superlattice, illustrating the conduction- and valence-band edge profiles along with the band gaps of the two
constituent layers. In our model, the actual band-edge profile is substituted by a nonlocal pseudopotential in the Dirac-like equation for the envelope
functions (1). (b) The effective superlattice, constructed to compute the average Green’s function, is translationally invariant and described by the
complex parameters VCPA and ΔCPA. (c) The self-consistency condition is established by replacing one of the layers in the effective superlattice with a
layer (A or B) of the disordered superlattice, and requiring that the single-site t–matrix vanishes.

3 Coherent potential approximation

Configurationally averaged spectral properties of random
systems cannot be calculated exactly in most cases and suitable
approximations are needed. Among them, the CPA stands out as
the best single-site theory for the study of the spectral properties
of disordered systems [43–52]. The starting point is the (retarded)
resolvent of a given random Hamiltonian H, formally defined
as Ĝ(z) ≡ (z − Ĥ)−1 with z ≡ E + i0+, where 0+ is a small positive
quantity which is allowed to vanish after mathematical operations.
Our interest concerns the average of the resolvent over the possible
configurations of the disorder, ⟨Ĝ(z)⟩av = ∫P(Vn,Δn)Ĝ(z)dVndΔn,
from which the average DOS can be readily obtained. The CPA
combines two basic ideas. On one side, the average resolvent of
the random system (see Figure 1a) is calculated by introducing a
periodic (translationally invariant) effective medium. On the other
hand, this effective medium is determined by demanding that the
fluctuations of the resolvent average out to zero, thus leading to a
self-consistency condition [28].

Following the proposal by Sievert and Glasser [30], we will
assume that the effective medium is characterized by a uniform gap
(see Figure 1b) and replace λn = Vn + σzΔn by λCPA ≡ VCPA + σzΔCPA
in the corresponding Equation 2a for this translational invariant

medium. The two parameters VCPA and ΔCPA are complex in general
and play the same role as the coherent potential in the conventional
CPA. The parameters of the effective medium will be determined
by a self-consistency condition [28]. This is performed in practice
by substituting one of the potential terms in the two-band model
equation for the effective medium by a potential with coupling
constant VA/B + σzΔA/B (see Figure 1c) and nullifying the single-
site t–matrix. After performing the average with the probability
distribution function (3), the self-consistency equation reads (see
Ref. [30] for details).

(λCPA − λA)F (z,λCPA)(λCPA − λB) + λCPA − λVCA = 0, (3a)

where

λVCA = cλA + (1 − c)λB (3b)

is the virtual crystal approximation value [28] and

F (z,λCPA) = ∫
∞

−∞
∫

∞

−∞
ω (x) ω(x′) Geff (x,x′;z) dxdx′. (3c)

Here, Geff(x,x′;z) denotes the Green’s function of the effective
medium. Since this medium is translationally invariant, the Green’s
function actually depends on the difference x − x′, but we will keep
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the standard notation. Equation 3a is an implicit equation for the
two unknowns VCPA and ΔCPA that can be solved iteratively if
Geff(x,x′;z) is known.

4 Green’s function of the effective
medium

To proceed, we need to calculate the Green’s function of
the effective medium. Therefore, we look for the solution of the
following equation

(−iℏvσx
∂
∂x

+ Δσz − z)Geff (x,x′;z) + λCPA ∑
n

ω (x − na)

×∫
∞

−∞
ω(x′′ − na)Geff (x′′,x′;z)dx′′ = −δ(x − x′) .

We now Fourier transform with respect to the x
coordinate and obtain

(ℏvkσx + Δσz − z) G̃eff (k,x′;z) + λCPA∫
∞

−∞
(∑

n
ei(q−k)na) ω̃ (k)

×ω̃∗ (q) G̃eff (q,x′;z)dq = − 1
√2π

e−ikx′
. (4)

Here f̃(q) = (1/√2π) ∫∞
−∞ exp (−iqx)  f(x) dx denotes the

Fourier transform of the function f(x). We assume ω(x) to be a real
function and consequently ω̃(−q) = ω̃∗(q).

Calculations are largely simplified assuming that the range of
the shape function is non-zero and hence its Fourier transform
vanishes outside the first Brillouin zone [−π/a,π/a], as pointed out
by Sievert and Glasser [30]. This can be understood by inspection
of the summation over n appearing in Equation 4, which is nonzero
only if k and q differ by a reciprocal wave number. The summation
is multiplied by the product ω̃(k) ω̃∗(q) that vanishes unless both
k and q belong to the first Brillouin zone. Whence

(∑
n

ei(q−k)na) ω̃ (k) ω̃∗ (q) = 2π
a

|ω̃ (k)|2δ (q − k) ,

when ω̃(k) = 0 for |k| > π/a. Inserting this result into Equation 4
to obtain G̃eff(k,x′;z) and performing the inverse Fourier
transform yields

Geff (x,x′;z) = 1
2π

∫
∞

−∞
eik(x−x′)[z − ℏvkσx − Δσz − 2π

λCPA

a
|ω̃ (k) |2]

−1
dk. (5)

Therefore

F (z,λCPA) = ∫
∞

−∞
|ω̃ (k) |2[z − ℏvkσx − Δσz − 2π

λCPA
a

|ω̃ (k) |2]
−1

dk. (6)

We will consider functions ω̃(k) with well-defined parity
hereafter without loss of generality. Thus, |ω̃(k)|2 in Equation 6 is
an even function of the wave number k. It is straightforward to
demonstrate that in this case the off-diagonal terms of the 2 × 2
matrix appearing in the integrand are odd functions of k and vanish
after integration. Hence, F(z,λCPA) turns out to be a 2 × 2 diagonal
matrix. Recalling that λCPA = VCPA + σzΔCPA we get the following
expression

F (z,λCPA) = ∫
∞

−∞
|ω̃ (k) |2 [z − 2π

VCPA
a

|ω̃ (k) |2

+(Δ + 2π
ΔCPA

a
|ω̃ (k) |2)σz]

× [(z − 2π
VCPA

a
|ω̃ (k) |2)

2

−(Δ + 2π
ΔCPA

a
|ω̃ (k) |2)

2
− ℏ2v2k2]

−1
dk, (7)

that inserted back into Equation 3a yields two scalar coupled
equations for the two unknowns VCPA and ΔCPA that can be solved
by self-consistent methods.

Once the Green’s function of the effective medium is obtained,
relevant physical quantities can be calculated. In particular, the
average DOS per unit length is easily computed by the following
expression

ρ (E) = − 1
πL

Im[Tr(Ĝeff (E + i0+))] = − 1
π

Im[Tr(Geff (0,0;E + i0+))] , (8)

where L ≫ a is the system length. Besides the DOS, the
knowledge of the Green’s function allows us to calculate the electric
conductivity in the linear response approximation [28] or the optical
absorption spectrum [53].

5 Wide-gap limit

Electron states of wide-gap semiconductor superlattices are
accurately described within a single band approach, known as
BenDaniel-Duke model [54]. In this model, the envelope-function
of the conduction (or valence) band states satisfies a Schrödinger-
like equation where the bare electron mass is replaced by a position-
dependent effective mass m∗(x). In this section we consider the
applicability of our two-band model to study disordered wide-
gap semiconductor superlattices. This limiting case corresponds
to Δ,v → ∞ in such a way that the effective mass m∗ = Δ/v2

remains finite. Notice that we are considering Δn = 0 for simplicity
and consequently the effective mass is the same in the two
semiconductor layers.

Let us define zwg = z − Δ to shift the origin of energy from the
gap center to the conduction band edge. We are interested in the
states near the band edge and take |zwg| ≪ Δ in what follows. At
moderate magnitude of disorder we also assume |ΔCPA‖ω̃(k)|2/a ≪
Δ in the wide-gap limit. Therefore, from Equation 7 we easily see
that F22/F11 is of the order of |zwg|/Δ ≪ 1 so that F22 can be
disregarded and

F11  (zwg,λCPA) ≃ ∫
∞

−∞
|ω̃  (k) |2(zwg − 2π

VCPA
a

|ω̃ (k) |2 − ℏ2v2

2Δ
k2)

−1
dk.

This results agrees with that obtained in Reference [30] after the
substitution ℏ2v2/2Δ → ℏ2/2m

∗
.

6 Results

Notice that Equation 7 is valid for any Fourier transform of the
shape function. In this work we set a top-hat function as a working
example, but the general conclusions are valid for other functions
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FIGURE 2
Average DOS in arbitrary units as a function of energy E expressed in units of Δ for (a) various values of the energy of the gap center in the B layers VB

when VA = 2Δ and c = 0.5, and (b) various values of the fraction c of A layers when VA = 2Δ and VB = 2.5Δ. In all cases ΔA = ΔB = 0.

FIGURE 3
Average DOS in arbitrary units as a function of energy E expressed in units of Δ for (a) various values of ΔB when c = 0.5 and (b) various values of the
fraction c of A layers when ΔB = 0.4Δ. In all cases ΔA = 0, VA = VB = 2Δ.

ω̃ (k) = √ a
2π

θ(kc − |k|) ,

where θ is the Heaviside step-function and kc is a momentum cutoff
to ensure that ω̃(k) vanishes outside the first Brillouin zone. To avoid
the profusion of free parameters, we fix kc = π/a in what follows.
Finally, from Equations 5 and 8, the configurationally averaged DOS
per unit length reads

ρ (E) = − 2
π2 (E − VCPA) Im∫

π/a

0
[(E + i0+ − VCPA)2

−(Δ + ΔCPA)2 − ℏ2v2k2]−1dk .

As an application of our results, we will focus on typical values
of the model parameters for IV-VI compound semiconductors.
Hence, we take Δ = 75meV and ℏv/Δ = 4.5nm. It is therefore more

convenient to define the following dimensionless parameter β =
(ℏv/aΔ)2, being β = 2.25 for a = 3nm. To estimate representative
values of VA and VB in superlattices of IV-VI compound
semiconductors, we consider a single term in Equation 2a, say n = 0,
and solve the corresponding two-band model equation. For positive
values of V0 the single-layer potential binds a hole with energy E0.
Straightforward calculations lead to V0/Δ = √4β(Δ + E0)/(Δ − E0)
(in the limit kc → ∞ for simplicity). Considering a particular value
of the acceptor energy level of 20meV above the edge of the valence
band, then we find E0 = − 55meV with respect to the gap center and
consequently V0 ≃ 1.8 Δ.

After discussing suitable values of the model parameters for
IV-VI compound semiconductors, we present the results for the
configurationally averaged DOS per unit length Equation 8. We start
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FIGURE 4
Average DOS in arbitrary units as a function of energy E expressed in
units of Δ for various values of the fraction c of A layers when VA =
1.75Δ and VB = 2Δ. Solid (dashed) lines correspond to the two-band
(single-band) model.

by analyzing the impact of the disorder arising from a random binary
distribution of gap centers, setting Δn = 0 for the moment. In this
case, it is most important to notice that the results depend only on
the difference δV ≡ VA − VB when the DOS is plotted as a function of
Ē ≡ E − VVCA with VVCA = cVA + (1 − c)VB. This symmetry is easily
proven by defining V̄ ≡ VCPA − VVCA and noticing that the self-
consistency Equation 3a can be rewritten as

(V̄ − (1 − c)δV)F (Ē + i0+, V̄)(V̄ + cδV) + V̄ = 0 . (9)

In addition, Equation 9 is invariant under the simultaneous change
δV → −δV and c → 1 − c. As a consequence, we can set c in the range
[0,0.5] hereafter.

In Figure 2a we plot the average DOS in arbitrary units as a
function of energy E (expressed in units of Δ) for various values of
the gap center energy of the B layers VB when VA = 2Δ and c = 0.5.
We fix the same value β = 2.25 for all calculations. The DOS turns
out to be symmetric around the center of the gap of the effective
medium and, for this reason, only the DOS in the conduction band
is depicted. The DOS of the ordered superlattice, namely, VB = 2Δ,
displays a divergence at the band edge, as expected (recall that the
momentum parallel to the interfaces is set to zero and consequently
the DOS corresponds to a one-dimensional system). In disordered
superlattices, the divergence is smeared out and the band edge shifts
in energy upwards (downwards) when VB is smaller (larger) than
VA. In addition, the peak of the DOS around the band edge becomes
broader and the gap of the effective medium shrinks (not shown)
upon increasing |δV|. Figure 2b shows the DOS as a function of
energy for various values of the fraction c of A layers when VA = 2Δ
and VB = 2.5Δ. We notice that the band edge shifts to lower energy
on increasing c, consistent with the fact that VA < VB.

Having discussed the salient features of the DOS when disorder
originates from the shift of the gap centers in the semiconductors
A and B, we now turn our attention to the situation Δn ≠ 0 while
keeping Vn constant. Figure 3a depicts the average DOS in arbitrary
units as a function of energy E (expressed in units of Δ) for
various values of ΔB when ΔA = 0, VA = VB = 2Δ and c = 0.5. We
observe that the conduction band states are pushed upwards and the
maximum of the DOS becomes broader on increasing ΔB. Figure 3b
demonstrates that the conduction band edge shifts to lower energies
when the fraction of A layers increases, following a similar trend to
that found in Figure 2b.

Finally, we compare our results with the predictions of
the single-band model discussed in Section 5. In the wide-
gap limit, the configurationally averaged DOS per unit length
(14) reduces to

ρ (E) ≃ − 1
π2 Im∫

π/a

0
(E + i0+ − Δ − VCPA − ℏ2v2

2Δ
k2)

−1
dk.

Figure 4 compares the results obtained with the two-band model
(solid lines) and the single-band model (dashed lines) for several
values of the of the fraction c of A layers when VA = 1.75Δ and
VB = 2Δ. We observe an increase of the configurationally averaged
DOS at the high-energy side of the peaks in the two-band model
compared to the wide-gap limit. We attribute this enhancement to
non-parabolicity effects arising in the two-band model. Specifically,
the bands of the effective medium flatten upon increasing energy,
an effect that it is more pronounced in narrow-gap semiconductors
and it can be viewed as an increase of the effective mass. Since the
DOS in one-dimensional systems is proportional to the square root
of the effective mass, non-parabolicity effects reflect themselves as
an enhancement of the DOS upon increasing energy.

7 Conclusion

We have introduced a solvable model for random narrow-gap
semiconductor superlattices where two type of layers of the same
width are arranged at random along the growth direction. In the k ⋅ p
approximation framework, the interband matrix element of narrow-
gap semiconductors, parameterized by v, is not negligible and at
least two bands are needed to accurately describe the electronic
states. The average spectral properties have been calculated with a
reliable implementation of the CPA after introducing a separable
pseudo-potential. We have demonstrated that the two-band model
predictions are in agreement with the results derived by a single-
band model [30] after letting the gap be the largest energy scale of the
problem. We used our model to study the impact of the disorder on
the electron states in superlattices of narrow-gap IV-VI compound
semiconductors when the center of the gap or the magnitude of the
gap of each layer are random variables with a binary probability
distribution.

It is worth noticing that the validity of our approach is not
restricted to the field of condensed matter physics. Equation 1
for a periodic array of local δ-function potentials is the well-
known Dirac-Kronig-Penney model that McKellar and Stephenson
proposed as a crude approximation to describe the relativistic
dynamics of quarks in the nucleus [55, 56]. The use of separable
pseudo-potentials (2a) would allow to deal with more elaborated and
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realistic interaction potentials. Moreover, demanding periodicity
seems too restrictive to describe the nucleus, and the introduction
of disorder would improve those relativistic models which, in
the end, can be tackled with the same techniques presented in
this work.
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