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ABSTRACT: This study is devoted to a consistent derivation
of an effective model Hamiltonian to describe spin transport
along a helical pathway and in the presence of spin−orbit
interaction, the latter being induced by an external field with
helical symmetry. It is found that a sizable spin polarization of
an unpolarized incoming state can be obtained without
introducing phase breaking processes. For this, at least two
energy levels per lattice site in the tight-binding representation
are needed. Additionally, asymmetries in the effective
electronic-coupling parameters as well as in the spin−orbit
interaction strength must be present to achieve net polarization. For a fully symmetric systemin terms of electronic and spin−
orbit couplingsno spin polarization is found. The model presented is quite general and is expected to be of interest for the
treatment of spin-dependent effects in molecular scale systems with helical symmetry.

■ INTRODUCTION

Gaining control over the spin degree of freedom to transfer
information lies at the very basis of spintronics. To date, the
majority of existing spintronic devices are based on inorganic
materials. However, an alternative route that exploits organic
molecules would offer many advantages, including the chemical
control of the spin-dependent response of the system as well as
the rather inexpensive synthesis of identical molecular-scale
building blocks. Some work has been performed on organic
molecules, suggesting them as spin-valves.1−5 However, as a
rule, the spin sensitivity of molecular based spintronics is rather
related to the magnetic properties of the electrodes or of the
used molecules, so that for nonmagnetic molecular systems it is
unlikely that strong spin-dependent effects will arise. Hence, the
recent experimental demonstration6,7 of spin selective effects in
monolayers of double-stranded DNA oligomers as well as
earlier works8−15 have triggered strong interest. As a working
hypothesis, it was suggested that the observed spin selectivity
may be related to the specific geometric structure of the
involved molecular systems, namely their helical conformation.7

On the theoretical side, some investigations based on
minimal model approaches including the helical symmetry of
the system have been published. In brief, two main lines can be
identified up to now: (i) Studies based on scattering theory at
the level of the Born approximation,16,17 including spin−orbit
coupling (SOC) derived from a helically shaped potential. This
approach can be closely related to the experiments in ref 6,
where the energies of the emitted electrons lie well above the
energy of molecular orbitals of the DNA molecules, and thus,
the problem can be viewed as a scattering process in an external

helical potential. (ii) Approaches based on quantum trans-
port18−20 have also been proposed, being closer related to the
second class of experiments,7 which probe the electrical
response of DNA self-assembled monolayers in a two terminal
setup. Reference 18 addressed for the first time in the context
of a quantum transport model the possibility that an electrostatic
field with helical symmetry could induce a spin−orbit
interaction. An effective one-dimensional (1D) Hamiltonian
was formulated, assuming that only the z-component (along
the helical axis) of the electron momentum was not vanishing.
Although strong spin-dependent effects were found, it turns out
that the model needs to break time-reversal symmetry to reveal
the spin polarization. This is unsatisfactory from a formal point
of view and builds the main motivation to explore extensions of
this model not requiring to artificially break any symmetry of
the problem. In ref 19, the motion of a charge carrier along a
helical path including spin−orbit interactions was treated
within a tight-binding model. A rather large positive spin
polarization was found; however, also here it was necessary to
introduce a symmetry breaking interactionthrough Büttiker
probesin order to achieve spin polarization. The authors also
stated that the double-strand structure of the DNA molecule
was required to get a nonzero polarization, a result that would
impose strong constraints on the molecular systems, where this
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type of chirality induced spin-dependent effects could be
detected.
Apart from these two main lines, in ref 21 the emergence of

bound states in the electronic system induced by curvature
effects was studied and its possible relation to the spin
selectivity analyzed. It is also worth mentioning an earlier work
exploring electron transmission/transfer in chiral molecules
based on the concept of current transfer.22 Furthermore, not
directly related to the physical problems at stake in our work
but nonetheless relevant for some of the analytical studies
proposed here are investigations of the electronic states in
nonplanar geometries, namely, 1D curved wires,23 helical
nanotubes,24 bent nanostructures,25 and the Schrödinger
equation in general curvilinear coordinates.26 Besides the
simplest case of 1D curved wires, most of the investigations
only address the kinetic-energy part of the Hamiltonian but do
not include spin−orbit interactions in systems with curvature.
In the present study, we generalize our previous work18 as

well as the work of Guo and Sun19 in some important aspects.
We consider two concentrical helices, as shown in Figure 1.

One of the helices, the external one with radius R0 and pitch b,
will provide the helical potential distribution U(r) leading to a
helical field E(r) inducing a SOC. The internal helix, with
radius R < R0 but the same pitch b, describes a possible
geometrical path of a charge propagating in the helical field.
Also, though a helical path may look at the first sight as
artificial, it represents a compromise between a purely 1D
straight motion and a fully three-dimensional (3D) propaga-
tion, since it involves a nontrivial geometry (curvature and
torsion) but at the same times allows to map the spin transport
problem onto a one-dimensional multichannel tight-binding
model. For the sake of simplicity we will consider a distribution
of effective point charges along the external helix as done
previously in ref 18, although our formulation is independent of
the specific source of the helical field. This field is felt as an
effective, momentum-dependent, magnetic field in the rest
frame of the charge carrier and gives rise to SOC mirroring the
helical symmetry of the system. The effective Schrödinger
equation for a spinor wave function of a charge q and spin σ
moving along this pathway is obtained by an appropriate
confinement of the 3D motion along a tubular helix to a 1D
motion along the path with curvature ρ and torsion τ.

In addition, we will include two energy levels per site in the
tight-binding version of the continuum model, corresponding
to the edge orbitals of a molecular monomer building up the
helical system. We stress that the two levels do not need to lie
on different helices, so that the model only considers transport
along a single helical path but with more than one level per site
in the tight-binding description. The model can thus be applied
to single-helix systems and easily extended to double-helix
structures. Our results suggest that two elements are key
ingredients to obtain net spin polarization in this class of
models: first, including more than one energy level per site
(more than one transport pathway), and second, introducing
asymmetries in the effective electronic-coupling elements
between the different channels.
In the next section, we introduce the general Hamiltonian

including SOC in 3D space and provide a derivation of an
effective 1D version for the motion along a helical pathway.
This has the advantage that we can, first, easily include the
geometric effects arising from the curvature of the helical path
and, second, take into account the full helical field generated by
the external helix.

■ LOCAL FRAMES AND SPIN−ORBIT COUPLING
In order to set up the appropriate tight-binding model
describing the 1D motion of a charge along a helical path, we
will first start with a continuum model in 3D space and, after
introducing an effective confinement potential, the limit of the
motion along a 1D submanifold will be considered.27 The
motion of a particle along a helical path in 3D can be described
by the following position vector R(s,q1,q2) = x(s) + q1n(s) +
q2b(s). Here, x(s) = (R cos ϕ,R sin ϕ, pϕ) with ϕ = s/(R2 +
p2)1/2 ≡ s/κ, parametrizes a helix of radius R and pitch b = 2πp
in 3D, while the coordinates q1 and q2 are related to a local
frame moving along the helix (one can think of a helical tube
with e.g. a circular cross section). The normal vector n and the
binormal vector b are unit vectors orthogonal to each other and
to the tangent vector T(s) = dx(s)/ds. These three vectors build
a local orthogonal basis, which is closely related to the Frenet-
Serret frame {T,N,B} (where N lies in the x−y plane) through
the following local rotation mediated by a matrix U(θ)

θ θ
θ θ

= − ×
⎡

⎣
⎢⎢

⎤

⎦
⎥⎥

⎡

⎣
⎢⎢⎢
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0 sin cos (1)

The angle θ(s) = ∫ s0
s duτ(u) reduces to θ(s) = τs in the case of a

constant torsion τ. For a helix, the torsion τ = p/κ2 and its
curvature is ρ = R/κ2. The introduction of the above rotation
mediated by the angle θ is related to the following fact: If the
position of a point on the helical tube is expressed only in terms
of the Frenet−Serret frame, it turns out that the basis es = ∂R/
∂s,e1 = ∂R/∂q1,e2 = ∂R/∂q2 is nonorthogonal for q1

2 + q2
2 > 0.

This makes the calculation of the kinetic-energy operator and of
the SOC operator quite difficult, since the metric tensor is
nondiagonal and hence mixed derivatives can appear in the
different expressions. The local rotation by the angle θ
overcomes this problem by adapting the local frame at each
point along the path s in such a way that the Darboux vector
does not have any component on the tangential direction.24

Notice that hereby only the normal and binormal vectors are
affected by the rotation, while the local tangent vector is the
same in both frames. In Cartesian coordinates, the Frenet−
Serret basis has the following representation (with ϕ = s/κ):

Figure 1. Schematic representation of the system. Along the external
helix with radius R0 point charges are arranged and build the source of
the electrostatic field felt by a charge moving along the internal helical
path of radius R. The internal helical path is parametrized with the arc
length s.
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Using the above expressions and after a lengthy but
straightforward calculation, the transformation matrix
J(s,q1,q2) relating the Cartesian unit vectors to the local frame
basis (es,e1,e2) can be found as

θ
κρ
η
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η
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1 2
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In this expression, η = 1 − ρ(q1 cos θ + q2 sin θ) = √g, with g
being the determinant of the metric tensor with elements Glj =
η2δl1δj1 + δl2δj2 + δl3δj3 in the local basis. A(q1,q2) is a diagonal
matrix with elements Ajj = (Gjj)

1/2. Further, A± = (1 ± κτ)/2, c±
= cos k±, s± = sin k±, and k± = θ ± ϕ = (τ ± (1/κ)) s = ±(2s/κ)
A±.
Confining to One Dimension. The above equations

describe the motion along a helical tube with a cross section
whose precise shape can be specified through the local
coordinates q1 and q2. Thus, for example, a polar representation
q1 = r cos γ and q2 = r sin γ would correspond to a helical tube
with a circular cross-section. We are however not interested in
this aspect, since our aim is to reduce the 3D motion along the
helical tube to a 1D motion along a helical path. Physically this
can be realized through the introduction of a transversal
confining potential Vλ(q1,q2) with strength λ→∞. In this limit,
the precise shape of this potential does not matter, although for
the sake of simplicity one can assume it to be a harmonic
confinement.
Formally, the Hamilton operator of a particle with spin 1/2

and including SOC will read as

α
σ σ

= +

+ · × − · ×

H K s q q V s q q

p E E p

( , , ) ( , , )

2
[ ( ) ( )]

1 2 pot 1 2
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(4)

In this equation, K(s,q1,q2) is the kinetic energy operator, and
Vpot(s,q1,q2) includes the previously mentioned transversal
confinement potential Vλ as well as the potential related to
the electric field E in the SOC term, αSOC = eℏ/(2mc)2. The
vector σ = (σx,σy,σz) contains the Pauli matrices. Notice that we
have already symmetrized the SOC Hamiltonian in order to
have a Hermitian expression in the continuum case. Special care
must be taken of the action of the momentum operator on the
electric field and the Pauli matrices since in the new local
coordinate system the latter will also become dependent on s,q1
and q2.
The kinetic-energy term K(s,q1,q2) has been already

discussed in the literature (see, e.g., ref 27), and it can be
written using Einstein’s sum convention as

∑
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Hereafter gj stands for the contravariant diagonal components
of the metric tensor and index j runs over the three local
coordinates s, q1 and q2. In order to preserve the normalization
of the wave function when going from the 3D situation to 1D,
the Ansatz Ψ(s,q1,q2) = η−1/2χ(s,q1,q2) is now performed. This
leads to the result
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Notice that the second term in the previous expression is a
potential energy term with a purely geometric character since it
only depends on the curvature of the helix ρ.
In a next step we need to consider the SOC term. First, we

can write this term as
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Note that the second nabla operator does not act beyond the
square brackets. Writing explicitly the terms containing the
momentum operator acting along the arc s and collecting into
HSOC

⊥ the contributions including p1 and p2, we can write the
SOC Hamiltonian in the following way

α
η
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η
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E E H

[ ]
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[ ]
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s
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(8)

Here (Es,E1,E2) are the components of the electric field written
in the local coordinate frame. Without SOC and in the limit λ
→ ∞ the Hamiltonian consists only of kinetic and potential
energy terms and would be easily separable. Thus the wave
function χ would be written as a product χ(s,q1,q2) =
Φ(s)ξ(q1,q2). In the present case this does not seem so
obvious since HSOC still depends on all coordinates s,q1, and q2.
However, in a first approximation, we may consider that in the
limit λ → ∞ the kinetic-energy contributions to the transversal
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motion become much larger than the energy scale associated
with the SOC, so that we may use a sort of adiabatic
approximation based on the Ansatz Φ(s)ξs(q1,q2), where
ξs(q1,q2) is a solution of the transversal Schrödinger equation
for a given s. In this limit, we can perform an approximate
separation of variables and set q1 = q2 = 0 everywhere in
K(s,q1,q2) and in the other terms related to the longitudinal
motion along the helical path. As a result, we arrive at an
effective Hamiltonian for the motion along the 1D helical path
in the 2 × 2 spin space as

ρ
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where 12×2 is the 2 × 2 unit matrix. The second term in the
diagonal part of eq 9 is, as mentioned previously, a local
potential of purely geometric origin related to curvature effects
on the helical path. The term V(s) is the electrostatic potential
from where the SOC field E(s) arises. The fourth term is the
spin−orbit term, and the last term takes into account that the
field components as well as the Pauli matrices depend on the
arc length. The matrices σ1 and σ2 are explicitly given by:
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The local field components E1 and E2 (and Es, which does
not appear in the final expressions) can be expressed in terms
of their components in a cylindrical coordinate system
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In terms of the cylindrical field components, the expression
σ2E1 − σ1E2 from eq 9 reads
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where Z = κρEr and Z0 = κe−iϕ[ρEz + τ(i Er − Eϕ)].
For a helical charge distribution, as that used in the

remaining of this paper, the cylindrical components are given
by
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where Δϕ = ϕ − (2π/b)mΔz and εR = R/R0. In the previous
equations, the variables R, ϕ, and z are the corresponding
coordinates of a point on the internal helix, and the indices n
and m run over the discretized external helix. In general, the
prefactor Ec will depend on the specific physical origin of the
local effective charge at a given site, and its knowledge requires
a detailed microscopic calculation of field strengths and SOC
parameters for specific molecular systems. In ref 18, we have
provided a rough estimate of the order of magnitude of the
combined parameter αSOCEc ∼ 2−6 meV nm. We will adopt
similar orders of magnitude in the current study.

Limiting Cases. In the limit of zero torsion τ = 0 (planar
geometry) and assuming only the z-component of the field to
be nonvanishing and constant, one gets
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which is the standard expression for the planar Rashba
Hamiltonian on a 1D curved wire.23 In the case that only the
radial field component is assumed to be nonzero and constant,
we recover the continuous version of the Hamiltonian of ref 19
for the single channel case:
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Notice, however, that in ref 19 neither the geometric potential
−ℏ2ρ2/8m nor the electrostatic potential V(s) have been
considered in the calculations. For the typical parameters of the
DNA helix, the geometric potential is rather small (∼5−10
meV); only for large curvatures its contribution may become
relevant. The electrostatic potential V(s), on the contrary, must
be included for physical consistency, since it is the source of the
helical electric field.
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■ TIGHT-BINDING HAMILTONIAN
Once the Hamiltonian eq 9 in the continuum approximation
has been obtained, the next step is to discretize it and to map it
to a tight-binding model parametrized by the arc length. We
start with the SOC part expressed in terms of eq 12
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∂

+ ∂
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s
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2
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Here, the derivatives with respect to the arc length act on
everything to their right, including a possible wave function.
The discretized derivative reads
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Here Δs = κΔϕ = κπ/5 is the discretization step along the arc
and ϕ = π/5 is the angular distance between monomers
building the helix (for the sake of reference we take the typical
value of π/5 for a DNA molecule, although other values are
obviously possible).
Acting with HSOC onto a spinor wave function, one obtains
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With this, the discretized Schrödinger equation resulting from 9
can be written as follows:
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Notice that the spin-conserving nearest-neighbor electronic
coupling Wn,n+1 = −ℏ2/(2mΔs2) − i(ℏαSOC/4Δs)(Zn + Zn+1) is
renormalized by the diagonal blocks of the SOC Hamiltonian,
which will clearly influence the effective bandwidth of the
electronic spectrum. The spin-flip hopping term reads Dn,n+1 =
−i(ℏαSOC/4Δs)([Z0]n + [Z0]n+1).
Thanks to the last identity of eq 19, the corresponding

Hamiltonian is indeed Hermitian
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This Hamiltonian preserves time reversal symmetry generated
by the operator = −iσy⊗1N×N, where N is the number of
sites in the discretized tight-binding model and 1N×N is the unit
matrix in the Hilbert space generated by the N localized
orbitals.

The present model can then be easily extended to include
two orbitalscalling them HOMO (H) and LUMO (L)per
lattice site. If we neglect SOC between orbitals of different type
and, moreover, assume that the effective SOC parameter α may
depend on the specific electronic state (although not on the
lattice site n), then the generalization of the previous
Hamiltonian is straightforward
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In this equation, VHL is the local coupling between the two
levels H and L at site n. Notice that the nearest-neighbor
electronic couplings Wn,n±1

k (included in Mn,n±1
k , see eq 19)

depend now on the specific orbital: Wn,n±1
H,L = VH,L −

i(αH,L/Ec)(Zn + Zn±1), where αH,L is now considered as an
effective parameter with the dimensions energy × length. VH
and VL are the nearest-neighbor electronic coupling elements of
the HOMO and LUMO orbitals, respectively.
We have also introduced a staggered contribution to the site

energies εn
k = −ℏ2ρ2/8m + V(n) + Δk(−1)n which opens a band

gap. A gap opening can also be achieved with a large VHL;
however, in order to keep the orders of magnitude of the
electronic coupling parameters in a realistic range of few tens of
meV, we will keep the Δk(−1)n contribution with Δk = 30 meV.

■ TRANSPORT PROPERTIES
Spin-dependent transport in the tight-binding model in eq 21
can be represented as a charge transport model in a four-leg
ladder, where each leg corresponds to a molecular orbital (H or
L) and to a given spinor component (↑ and ↓). It is clear that
the specific transport mechanism will in general depend on the
molecular system and also be influenced by the environmental
conditions, for example, single molecule vs molecule embedded
in a self-assembled monolayer or dry vs solvent conditions.
Being aware of its potential limitations, we will consider
transport in the context of the Landauer approach, which
provides a simple framework to analyze the influence of
different parameters on the spin polarization. Decoherence to
mimic hopping transport can be introduced via Büttiker
probes28 or by directly formulating the problem in terms of
master equations. However, we are interested in exploring the
possibility of inducing a spin polarization without the need of
decoherence as a key element, so that we limit ourselves to
compute the zero-bias transmission function T(E) (linear
conductance) for our model.
The Hamiltonian 21 needs to be extended to include the

coupling to the electrodes for which the Hamiltonian reads
Hleads. Along similar lines as in ref 18, we consider four
independent (left)- and four independent (right)-leads,
each of them standing for a spin channel connected to a specific
molecular orbital (H,L) and being represented by a semi-
infinite tight-binding chain.
The transmission function is given by the expression: T(E) =

Tr{Ga(E)ΓRGr(E)ΓL}. Here Gr(a)(E) are retarded (advanced)
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matrix Green’s functions for the scattering region including the
influence of Hleads via retarded self-energy matrices Σ E( )r , and

Σ E( )r , . The retarded Green’s function matrix can be
determined via Dyson’s equation (Gr)−1(E) = (E + iη)1 − H
− Σ − ΣE E( ) ( )r r, , . The spectral functions Γ , of the left

and right electrodes are related to the self-energies via Γ , =
− Σm E2I ( )r , , . The only eight nonvanishing elements of the

spectral functions are Γ↑ L H, , ,Γ↓ L H, , ,Γ↑ L H, , ,Γ↓ L H, , . These quanti-
ties are in general energy-dependent and can be computed
analytically for semi-infinite chains (see, e.g., ref 29).
Using the previous expressions and approximations, the total

transmission function for the system can be written as

= + + +↑↑ ↓↑ ↑↓ ↓↓T E T E T E T E T E( ) ( ) ( ) ( ) ( ) (22)

where
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In the previous equations, Gnσ,mν(E) with σ,ν = ↑,↓ are matrix
elements of the previously defined retarded Green’s function of
the SOC-active region including the influence of the - and
-electrodes via appropriate self-energies. Each contribution in

eq 22 can be related to a different transport process with or
without spin flip. Thus, all contributions included in T↑↑ and
T↓↓ are related to processes taking place only in the spin-up or
spin-down channels, respectively, while T↑↓ and T↓↑ involve all
processes flipping the electron spin. With the help of the
previously introduced transmission components, we can define
a spin polarization (SP) as:

= + − −↑↑ ↓↑ ↑↓ ↓↓P E
T E

T E T E T E T E( )
1
( )

[ ( ) ( ) ( ) ( )]

(23)

Finally, an energy-averaged SP can be defined as ⟨P⟩E = [⟨T↑↑ +
T↓↑⟩E − ⟨T↑↓ + T↓↓⟩E]/⟨T⟩E. When computing it, we use only
the hole-like contributions of the P(E) plot, that is, the E < 0
sector, so that ⟨...⟩E = (2V0)

−1∫ −2V0

0 dE(...). Here, V0 is
determined by diagonalizing the Hamiltonian of eq 21,
calculating the bandwidth ΔE and taking V0 = ΔE/4. This
choice guarantees that we include all the relevant molecular
electronic states in the calculation of the transmission function.
V0 is also taken as the effective bandwidth of the electrodes.
Thus, for the semi-infinite linear chain electrodes with a single
orbital per side, the nonvanishing matrix elements of the
s p e c t r a l f u n c t i o n s Γ E( ), a r e g i v e n b y t h e

standard Anderson−Newns expressions Γ↑ ↓ E( )L H, , ,
, =

V0[1 − (E/2V0)
2]1/2 for and zero otherwise, where the site

energies have been set equal to zero.

■ RESULTS AND DISCUSSION
We address in this section two issues: (i) Is it possible to obtain
a nonzero spin polarization without including decoherence in
the model formulation? (ii) What is the influence of having
more than one molecular orbital per site in the tight-binding
representation?
Concerning the typical order of magnitude of the spin−orbit

interaction as induced by the helical field, we have already
provided a rough estimate of its strength in a previous study;18

in the present investigation we are going to use similar values,
being aware that a more accurate estimation would require a
separate first-principle study of the electronic structure of the
molecules. Along this paper, if not stated otherwise, we will
keep fixed the bare electronic-coupling parameters: VL = 10
meV, VH = 90 meV, and VHL = 50 meV. These values have
typical orders of magnitude as for a DNA molecule. We remark,
however, that we are not addressing a specific molecular system
but are deriving a generic model and investigating its main
properties.
For the following discussion we will also introduce two

parameters, namely, ηSOC = αH/αL and ηelec = VH/VL measuring,
respectively, the relative asymmetries of the SOC and of the
nearest-neighbor tight-binding hopping elements for the H and
L levels.
In Figure 2, the spin polarization for an incoming

unpolarized state is shown as a function of the injection energy

for different lengths and for the case of an array of helically
distributed (negative) charges. The first interesting feature of
Figure 2 is that a nonzero SP can be obtained with absolute
values which can be as large as 60% for certain energies. These
results suggest that decoherence may not be a key element to
reveal a spin polarization.19 Moreover, it seems necessary
(although not sufficient, as discussed below) to have more than
one transport channel. This can be implemented in the model
either as a double-strand structure19 or as a single strand with

Figure 2. Spin polarization for an unpolarized incoming state and for
three different numbers of turns L = 1, 2, and 7 of the helix. The
parameter εR has been set to 0.25. The SP is mostly negative over the
hole band (E < 0) and mostly positive over the electronic band (E >
0). The inset shows the dependence of the energy-averaged SP on the
number of helical turns and several values of εR = R/R0. The absolute
value increases with a larger εR. For larger L we may expect an
oscillatory behavior to set in. Other parameters are αH = 0.2 meV nm,
αL = 2 meV nm, VL = 10 meV, VH = 90 meV, and VHL = 50 meV.
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more than one electronic level per site. Notice also that despite
of the oscillations of the SP as a function of the energy, there is
a clear tendency to have a negative polarization for the electron
bands (E < 0) and positive polarization for the hole bands (E >
0). This behavior does not depend much on the length of the
helical system. The inset of Figure 2 shows the dependence of
the energy-averaged SP on the number of helical turns L for
three different values of the parameter εR = R/R0. This
parameter quantifies the difference between the radii of the
internal and external helices and it is thus a measure for the
radius of curvature of the transport path: for εR ≪ 1 the
transport pathway approaches a straight line (for a fixed radius
of the external helix). For larger εR, the average SP is negative
for all L, and its absolute value progressively increases with L.
The effect becomes stronger with increasing εR, since the helical
field will be felt stronger the closer the charge transport path is
to the external helical charge distribution. The negative average
value indicates that the spin-down channel is easier transmitted
than the spin-up channel over the averaged energy window. For
εR = 0.05, on the contrary, the SP varies in a considerably
weaker way with increasing length, and its absolute value stays
below 5%. This is an indication that the intrinsic geometry of
the path, its helical structure, is playing an important role in
influencing the spin polarization.
In Figure 3, the quantities ξup = T↑↑ − T↓↑ and ξdown = T↓↓ −

T↑↓ are plotted, in order to illustrate the relative amount of

spin-conserving and spin-flip processes in the outgoing spin-up
and spin-down channels. Hence, for energy regions where ξσ is
positive, spin-conserving processes are dominating, while for ξσ
negative, spin-flip events dominate. In addition, the insets of
Figure 3 show the total transmission of each spin component.
Notice that the difference between the curves of tup and tdown is

proportional to the spin polarization (after division by the total
transmission T(E), see also eq 23). The results presented in
Figure 3 are calculated for symmetric electronic coupling VL =
VH and for two different values of the SOC ratio ηSOC ≡ αH/αL
= 0.1 and 0.85, to point out the difference between strong and a
weak asymmetry in the SOC parameters of the H- and L-states.
For a strong asymmetry ηSOC = 0.1leading to net spin
polarization over most of the probed energiesa large degree
of spin-flip is found mainly near the band edges of both the
HOMO and LUMO manifolds. For other energies, the spin-
conserving processes dominate, that is, ξσ=up,down > 0. However,
the magnitude of ξup and ξdown is different, and thus a nonzero
polarization resulting from an interplay between spin-depend-
ent backscattering, a measure of which is the total back-
scattering given by R = 4 − (tup + tdown), and spin-flip processes
can be obtained. On the contrary, for the case ηSOC = 0.85 spin-
conserving transmission processes dominate over spin-flips at
all energies. Moreover, there is almost no difference between
the backscattering of the two spin components nor between ξup
and ξdown, so that the polarization is almost negligible. In the
limiting case ηSOC = 1, the spin polarization identically vanishes.
To provide a global overview of the effect of the previously

mentioned asymmetries in the electronic coupling and spin−
orbit interaction, we show in Figure 4 a density plot of the

energy-average polarization as a function of the two asymmetry
parameters ηSOC and ηelec. We only plot the absolute value of
the average polarization, since our main goal is to show the
regions where a polarization can be obtained and those where it
will either vanish or become too small. From the figure it
becomes clear that the spin polarization is very small around
the main diagonal where ηSOC = ηelec, that is, for the fully
symmetric case. The largest polarizations are obtained in the
lower right sector and in the upper left sector of the diagram,
where the asymmetries between both parameters become
largest.
We can gain a qualitative understanding of the vanishing

polarization along the main diagonal of Figure 4 by the
following reasoning. For the continuum model, eq 9, a unitary
transformation U(s) = exp[−i(mαSOC/ℏ)∫ s0

s duC(u)] can be
performed that eliminates the SOC term from the Hamil-
tonian.19 This is the reason why a single-channel model without
symmetry breaking does not yield spin polarization. However, if
more than one channel are present, for example, H and L, then
the Hamiltonian would be transformed by the direct sum
UH⊕UL. This leads to couple terms like VHLUH

†UL, which are

Figure 3. Energy-resolved ratios of the transmission function for the
outgoing spin-up channel, ξup = T↑↑ − T↓↑, and spin-down channel,
ξdown = T↓↓ − T↑↓. Insets show the total transmission tup = T↑↑ + T↓↑
and tdown = T↓↓ + T↑↓, respectively. The calculations have been
performed for equal electronic-coupling elements VL = VH = 90 meV,
in order to highlight the influence of asymmetries in the SOC
parameters ηSOC = αH/αL, as indicated on each plot. For stronger
asymmetry (panel a) in the SOC coupling, there the differences
between ξup and ξdown are stronger, which eventually makes spin
filtering and spin aligning possible. The remaining parameters are αL =
2 meV nm, VHL = 50 meV, εr = 0.25, and L = 2 helical turns.

Figure 4. Density plot showing the absolute value of the average spin
polarization ⟨P(E)⟩E as a function of the asymmetry ratios ηSOC = αH/
αL and ηelec = VH/VL. Parameters are αL = 2 meV nm, VL = 30 meV,
VHL = 50 meV, εr = 0.25, and L = 2 helical turns.
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only diagonal in the spin degrees of freedom if mHαH/
mLαL∼VLαH/VHαL ∼ 1, which is the case for ηSOC = ηelec. Only
if the ratio ηSOC/ηelec is different from 1, the phase factor will
remain and a non-trivial behavior may be expected, as observed
in the regions off the diagonal in Figure 4.

■ SUMMARY
We have derived an effective 1D Hamiltonian to describe the
propagation of a charge carrier with spin along a helical
pathway under the influence of spin−orbit interaction. The
SOC is assumed to be induced by a field of point charges
arranged along a concentric external helix. It has been shown
that a net spin polarization of an incoming unpolarized state
can be achieved using realistic parameters for the electronic
structure. For up to seven helical turns, a progressive increase of
the (negative) polarization with length was found, although the
computed values are smaller than those measured. The spin
polarization results from an interplay between spin-dependent
backscattering and spin-flip processes. This behavior is however
strongly weakened upon reducing the difference between the
two orbital-dependent SOC parameters, so that in the limit of
fully symmetric coupling to both molecular levels H and L, only
spin conserving processes take place, and moreover, the spin
polarization identically vanishes. Interestingly, our model does
not require the presence of decoherence to yield a nonzero spin
polarization. However, whether decoherence is an important
ingredient or not requires further inquiry. In our case, the
nonvanishing polarization emerges when (i) more than one
transport channel is included in the model description, and
related to it, when (ii) the electronic states display strong
asymmetries in both their electronic coupling and the
corresponding SOC parameters.
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