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Abstract: Two-dimensional transition metal dichalcogenides (2D-TMDs) are among the most promis-
ing materials for exploring and exploiting exciton transitions. Excitons in 2D-TMDs present re-
markably long lifetimes, even at room temperature. The spectral response of exciton transitions in
2D-TMDs has been thoroughly characterized over the past decade by means of photoluminescence
spectroscopy, transmittance spectroscopy, and related techniques; however, the spectral dependence
of their electronic response is still not fully characterized. In this work, we investigate the electronic
response of exciton transitions in monolayer MoSe2 via low-temperature photocurrent spectroscopy.
We identify the spectral features associated with the main exciton and trion transitions, with spectral
bandwidths down to 15 meV. We also investigate the effect of the Fermi level on the position and
intensity of excitonic spectral features, observing a very strong modulation of the photocurrent,
which even undergoes a change in sign when the Fermi level crosses the charge neutrality point.
Our results demonstrate the unexploited potential of low-temperature photocurrent spectroscopy for
studying excitons in low-dimensional materials, and provide new insight into excitonic transitions in
1L-MoSe2.

Keywords: excitons; transition metal dichalcogenides; photocurrent spectroscopy

1. Introduction

Two-dimensional transition metal dichalcogenides (2D-TMDs) are an ideal material
platform for exciton physics. This family of materials presents unusually large exciton
binding energies and lifetimes, even at room temperature; consequently, their optical and
optoelectronic properties are largely dominated by excitonic transitions [1]. Indeed, the
discovery of this family of materials has brought renewed hopes to the development of
excitonic devices capable of operating at room temperature.

Excitonic devices based on 2D-TMDs often rely on the so-called bright exciton states,
i.e., exciton states that are capable of emitting light upon relaxation. These exciton states
are typically studied and characterized via photoluminescence spectroscopy and related
techniques. However, in order to fully understand exciton dynamics in 2D-TMDs, it is
also necessary to have access to non-radiating excitonic states. In consequence, in recent
years, different characterization techniques—such as absorption spectroscopy [2–6] or
electroluminescence spectroscopy [7]—have increasingly gained popularity due to their
potential for investigating excitonic states not accessible via PL.

As we demonstrated in a recent publication [8], low-temperature photocurrent spec-
troscopy (PCS) [9–11] provides another simple, powerful, and yet largely underused
complementary approach for studying excitonic transitions in 2D-TMDs. The introduction
of the low temperature in this technique helps to reduce thermal disorder, obtaining resolu-
tion bandwidths of around 10 meV, comparable with low-temperature PL spectroscopy.
PCS not only enables the observation of excitonic transitions with linewidths comparable
to those obtained in PL measurements, but also provides the possibility of detecting ex-
citon transitions that cannot be easily observed via PL due to the presence of dominant
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non-radiative relaxation mechanisms. Furthermore, since excitons are charge-neutral, their
contribution to photocurrent requires them to dissociate without electron–hole recombi-
nation. Consequently, PCS could enable the extraction of information on the dynamics of
non-radiative exciton dissociation mechanisms.

PCS characterization is particularly relevant for excitonic devices aiming to interface
light-based and electron-based communication protocols, as it provides a route towards the
electrical detection of optically excited exciton states. However, PCS measurements in some
of the most technologically relevant 2D-TMDs are still scarce in the scientific literature.

In this work, we report on low-temperature PCS measurements in high-quality mono-
layer (1L) MoSe2 phototransistors. Our measurements allow us to identify the spectral
features associated with the main exciton and trion transitions of monolayer MoSe2, with
spectral bandwidths as low as 15 meV. We also characterize the evolution of the pho-
toresponse as a function of the Fermi level, observing a very strong modulation of the
photocurrent, which even switches from positive to negative as the Fermi level approaches
the edge of the valence band. The results presented here provide new insight into excitonic
transitions in 1L-MoSe2, bearing great importance for the development of excitonic devices
based on this material.

2. Materials and Methods
2.1. Device Fabrication

Figure 1 summarizes the main steps of the monolayer MoSe2 phototransistor fabri-
cation, following a similar procedure to the one described by Quoc An Vu et al. [12]. We
started the process with the exfoliation of the MoSe2 by micromechanical cleavage. We
used high-quality tape (BT-150E-CM, Nitto) to exfoliate the bulk crystals, and we placed
the flakes obtained in a polydimethylsiloxane (PDMS) substrate. Then, we inspected the
substrates through optical microscope, identify the 1L-MoSe2 flakes by their optical con-
trast and confirm their thickness by micro-Raman spectroscopy [13] as further detailed in
Supplementary Section S1. The thickness of 1L-MoSe2 was found to be around 0.7 nm in
previous literature [14]. After the optical identification of a monolayer, we transferred it on
top of a hexagonal boron nitride (h-BN) flake previously exfoliated onto a SiO2 (285 nm)/Si
substrate; the resulting stack is shown in Figure 1a. Then, we defined the device geometry
by electron beam lithography (EBL), using a homemade PMMA resist (4% in chloroben-
zene). After the EBL exposure, we developed the resist with a mixture of 1 part methyl
isobutyl ketone (MIBK) to 3 parts isopropanol. Figure 1b shows the geometry of the device
after the dry-etching process, in which we etched away the EBL exposed areas in a SF6
atmosphere using inductively coupled plasma reactive-ion etching (ICP-RIE). Once the
geometry of the stack was defined, we performed a second EBL to define the contact
geometry, and deposited Ti (10 nm)/Au (60 nm) contacts via e-beam evaporation in an
ultrahigh vacuum (10−8 mbar). Figure 1c shows the device after evaporation of the metallic
contacts. The final step consisted of transferring an h-BN layer on top of the device using a
dry transfer method that relies on the use of polycarbonate film (PC) for stacking of van der
Waals heterostructures [14,15]. Once the device was completed, we annealed the sample
for 3 h at 200 ◦C in vacuum to eliminate bubbles trapped between the different layers;
Figure 1d shows the resulting device. The encapsulation of the 1L-MoSe2 allowed us to
obtain a high-quality phototransistor, improving the performance of the device, decreasing
the influence of the impurities of the SiO2 substrate, and reducing the bandwidths of the
spectral features [16].

2.2. Electrical Characterization of The Monolayer MoSe2 Phototransistor

We started our measurements by characterizing the electrical behavior of the device.
Unless otherwise specified, all of the measurements described below were performed
in vacuum and at T = 5 K. Figure 2a shows the gate transfer curve of the 1L-MoSe2
phototransistor at Vds = 10 V, showing a clear n-type behavior with a threshold gate voltage
at Vth = 13 V. Figure 2b shows the two-terminal I–V characteristic of the device at Vg = 33 V
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(Vg − Vth = 20 V), exhibiting a nonlinear behavior due to the presence of asymmetric
Schottky barriers in the contacts. Both measurements were almost hysteresis-free.
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Figure 1. Optical microscope images of the 1L-MoSe2 device at different stages of the fabrication
process: (a) Transfer of the 1L-MoSe2 above the bottom h-BN. (b) Definition of the device geometry
after the dry etching. (c) Fabrication of the Ti/Au contacts. (d) Final device after the transfer of the
top layer of h-BN.
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3. Results
3.1. Photocurrent Spectroscopy Measurements

Next, in order to characterize the 1L-MoSe2 spectral photoresponse, we exposed
the whole device to a monochromatic light source of tunable wavelength [8]. Figure 3a
schematically shows the low-temperature photocurrent setup used for the measurements.
The sample was placed inside a pulse-tube cryostat with an optical access. The light
source was a supercontinuum (white) laser (SuperK Compact, from NKT photonics),
and the excitation wavelength was selected using a monochromator (Oriel MS257 with
1200 lines/mm diffraction grid); this enabled us to scan the visible and NIR spectral range,
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roughly from 450 nm to 1000 nm. The setup also included a halogen lamp and a CCD
camera, aligned with the laser excitation via two beam splitters, allowing for easy sample
alignment. In order to improve the signal-to-noise ratio of the optoelectronic measurements,
an optical chopper modulated the excitation signal, and the electrical response of the device
was registered using a lock-in amplifier with the same modulation frequency.
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Figure 3b shows a typical photocurrent spectrum of the 1L-MoSe2 phototransistor,
measured at Vds = 10 V and Vg = −40 V (Vg − Vth = −53 V). The resulting spectrum can
be fitted by a series of Lorentzian peaks, as depicted in the figure. We identified three main
sharp spectral features at 1.616 ± 0.001 eV, 1.634 ± 0.001 eV, and 1.822 ± 0.004 eV, as well
as two smaller features at 1.799 ± 0.010 eV and 1.705 ± 0.002 eV. The peaks at energies
E = 1.634 ± 0.001 eV and E = 1.822 ± 0.004 eV correspond to the A and B excitonic ground
states (XA

1s and XB
1s) of 1L-MoSe2, respectively [17]. The peak at E = 1.616 ± 0.001 eV appears

19 meV below XA
1s, as expected for the A trion transition TA [18]. Similarly, the feature at

E = 1.799 ± 0.010 eV may correspond to the B trion transition TB, although it might also
contain a contribution from the first excited Rydberg state of the A exciton, XA

2s, which is
expected to appear at a similar energy. The origin of the last feature, at 1.705 ± 0.002 eV,
is not clear to us at this point, as it does not correspond to any of the typical features
observed in low-temperature photoluminescence spectroscopy for 1L-MoSe2; however, we
observed a similar exciton-like feature between the XA

1s and the XB
1s transitions in recently

reported PCS measurements for h-BN-encapsulated 1L-MoS2 devices. This transition might
correspond to a non-radiative interlayer exciton, forming at the interface between the 1L-
MoSe2 and the h-BN. The uncertainty of the energies of the spectral peaks was extracted
from the fitting errors.

As we will now discuss, the spectral features described above appear consistently in
photocurrent spectra measured at different gate voltages.

3.2. Gate Dependence of The Photocurrent

Let us now investigate the gate voltage dependence of the photoresponse. In TMD-
based phototransistors, photocurrent typically emerges from two different mechanisms:
the photoconductive effect (PCE), where light-induced formation of electron–hole pairs
leads to increased charge carrier density and electrical conductivity; and the photogating
effect (PGE), where the light-induced filling or depletion of localized states causes a shift in
the Fermi energy [19,20]. These two mechanisms can be distinguished by their different
dependence on the gate voltage—while PCE-generated photocurrent typically depends
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weakly on Vg, PGE produces a gate-voltage-dependent photocurrent proportional to the
out-of-plane transconductance G ≡ dIds/dVg [21–23].

Figure 4a shows the gate dependence of the photocurrent measured for illumination
energy in resonance with the A exciton, E = 1.634 eV. For gate voltages above the threshold
voltage (Vth,e; see Figure 2a), we find that the measured photocurrent is proportional to
the transconductance, as expected for PGE. However, for Vg < Vth a small but measurable
photocurrent is still present, even when the transconductance drops to zero. The inset of
Figure 4a shows a zoomed-in view of the region where the channel of the device is closed;
there, the photocurrent remains in the range of 10 pA, and decreases monotonically as the
gate voltage is lowered, until it cancels out at Vg ≈ −84 V. Remarkably, for gate voltages
below −84 V, the photocurrent becomes negative, i.e., the device becomes more resistive
upon illumination. As further discussed below, we associate Vg ≈ −84 V (the voltage at
which IPC switches sign) with the charge neutrality point of the 1L-MoSe2 channel, V0.
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Figure 4. Gate dependence of the observed photocurrent: (a) Transconductance of the device (orange
line, right axis) and gate-dependent photocurrent measured at Vds = 10 V, in resonance with the
exciton XA

1s transition, at a modulation frequency of f = 31.81 Hz. The inset shows a zoomed-in view
of the region where the channel is closed. (b) Schematic gate ramps of an ambipolar transistor, under
illumination and no illumination. The photoresponse contribution of ∆Vpge is depicted in the plot.

As we will now discuss, the exotic regime of negative photocurrent observed for
Vg < −84 V can be well understood assuming that the photoresponse is dominated by PGE.
Figure 4b schematically depicts a typical transfer gate ramp of an ambipolar TMD transistor
in the dark (OFF) and under illumination (ON). When the Fermi level is in the band gap
of the MoSe2, Ids is zero due to the absence of free charge carriers. As the gate voltage
increases (decreases) and reaches Vth,e (Vth,h), Ids shows an abrupt increase due to the filling
of electrons (holes) in the conduction (valence) band. Upon illumination, photoexcited
charge carriers may accumulate in localized states within the semiconductor bandgap,
inducing a shift in the Fermi energy. This results in a horizontal shift of the transfer
I–V curve by ∆Vpge. The light-induced photocurrent IPC generated by this mechanism is
given by

IPC = ∆Vpge
dIds
dVg

(1)

In Equation (1), ∆Vpge may in principle have either a positive or negative sign, depend-
ing on the nature of the localized states involved in the PGE generation (either electron
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acceptor or electron donor). In monolayer MoSe2 phototransistors, ∆Vpge is generally
positive [24], as we also assume in the schematic drawing from Figure 4b.

The transconductance dIds/dVg, on the other hand, changes sign as a function of Vg, as
it is positive for Fermi energies near the conduction band and negative near the conduction
band. Thus, at negative gate voltages approaching the valence band threshold voltage,
PGE is expected to yield a negative photocurrent, as we observed in our measurements.

3.3. Gate Dependence of Spectral Features

We now turn our attention to the evolution of the photocurrent spectra with Vg. In
order to prevent inconsistencies due to photodoping of the device, which can result in a
slow drift of the threshold voltage during the spectral acquisition [25], we measured the
off-current of the device before every spectral ramp, and presented the gate-dependent
spectra as a function of Vg – V0 (further discussed in Supplementary Section S2). Figure 5a
shows photocurrent spectra acquired at a fixed drain–source voltage (Vds = 10 V) for
different gate voltages. As discussed above, IPC flips sign as the gate voltage is modified.
The four principal spectral features described above (see Figure 3b)—i.e., TA, XA

1s, XB
1s, and

XA
2s—appear consistently in the different spectra; however, the position of these spectral

features changes with Vg. Gate-voltage-dependent changes in the position and intensity
of excitonic features have also been reported in earlier literature for photoluminescence
spectroscopy in monolayer TMDs such as MoS2 [6] and WSe2 [26].
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Figure 5. Gate dependence of the photocurrent spectra: (a) Individual photocurrent spectra (grey
lines) acquired at different gate voltages, Vg − V0, in a range between −64 V and 69 V, fitted to a
multipeak Lorentzian function (dashed black lines). For clarity, the spectra are vertically offset in
steps of 0.005 nA. (b) Evolution with gate voltage of XA

1s and TA (T+
A and T−

A) transition energies.
(c) Gate voltage dependence of the energy splitting between the XA

1s and TA transitions.
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Let us now focus on the evolution of the A exciton and trion transitions. Figure 5b
shows the positions of the TA and XA

1s as functions of the gate voltage and the Fermi energy.
There, we observe that the energy position of the TA transition changes abruptly at V0, as
the sign of IPC inverts. A similar energy shift in the TA spectral feature has been reported
in previous literature for MoSe2 [27,28], usually being attributed to the presence of two
different trion species—either positively (T+

A) or negatively charged (T−
A)—whose relative

spectral weights can be tuned by the gate voltages. More specifically, by changing Vg one
can modify the population of free charge carriers in the 1L-MoSe2 channel, favoring the
interaction of photogenerated excitons with either free electrons or holes to form negative
or positive trions, respectively. In our case, for Vg < V0, where T+

A is expected to be the
dominant trion species, the trion transition is centered at ET+

A
= 1.620 ± 0.003 eV, while for

Vg > V0, where T−
A should be dominant, we get ET−

A
= 1.613 ± 0.005 eV.

In addition to modulating the population of different trion species, increasing the
gate voltage is also expected produce a monotonic blue-shift of the exciton energy (see
Supplementary Section S3), while inducing a red-shift in the trion energy [29–32]. As we
show in Figure 5b, this effect was also observed in our spectra.

Figure 5c shows the energy splitting between XA
1s and T−

A as a function of the gate
voltage and the Fermi energy level. We found that the splitting between the two transitions
increases linearly with the doping level of the device, as predicted and observed in previous
literature for exciton and trion transitions [30,33,34], following the equation

EXA
1s
− ET−

A
= ET−

A
b + cEF (2)

where EXA
1s
− ET−

A
is the splitting between exciton and trion transitions; ET−

A
b is the binding

energy of T−
A ; EF is the Fermi energy, which is proportional to the back-gate voltage; and c

is the slope of the linear fit, predicted to have a value of c ≈ 1 [33].
To estimate the Fermi energy from the gate, we recur to a parallel-plate capacitor

model, using the back-gate capacitance Cbg of the device, and considering a band effec-
tive mass of meff = 0.8 m0 [35], with m0 being the electron mass (further discussed in
Supplementary Section S4):

EF =
}2π

2meffe2

Cbg

e
Vg (3)

Using Equation (2) to fit the experimentally measured energy of the trion spectral
feature, ET−

A
(see Figure 5c), we can estimate the binding energy of T−

A , defined as the energy
required to form a trion in the limit of infinitesimal doping [36]. To do so, we assume
that the charge neutrality point corresponds to the gate voltage at which the photocurrent
cancels out and the dominant trion species switches from T+

A to T−
A [29,37], i.e., V0. Under

this assumption we get ET−
A

b = 14.54 ± 0.79 meV and a slope c ≈ 1.14 ± 0.05. This value of
the slope is consistent with earlier studies [30,38], which interpreted the pre-factor cEF ≈ EF
as the additional energy required to place the charge from the dissociated trion on the top

of the Fermi sea, as required by the Pauli blockade [33]. The values obtained here for ET−
A

b
and c are in good agreement with the large effective masses predicted by recent studies in
Mo-based TMDs [8,17,35,39].

Recent literature on 1L-MoSe2 devices fabricated directly onto a SiO2 substrate gives

slightly larger trion binding energies—around 20 meV [27]. Recently, ET+
A

b was also
measured by photoluminescence spectroscopy in h-BN-encapsulated MoSe2 grown by

CVD [38]; there, the authors report an even larger trion binding energy, ET+
A

b = 27 meV. It is
also instructive also to compare the binding energy obtained for T−

A with the case of MoS2,

where ET−
A

b has been found to be 18 meV [30]—3.5 meV higher than the value obtained here
for MoSe2; this energy difference is in good agreement with theoretical predictions [40].
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The contrast between our results for ET−
A

b and those given earlier literature may be
related to the use of different substrates [16,41] and/or fabrication procedures. Furthermore,
it is worth noting that, for gate-voltage-dependent measurements performed via fully
optical spectral techniques, photodoping effects are not usually monitored, but may still be
present, which could result in systematic errors when estimating the doping level.

4. Discussion

All in all, we studied the properties of the neutral excitons and different trions species
in an h-BN-encapsulated MoSe2 phototransistor using low-temperature photocurrent spec-
troscopy, allowing us to obtain photocurrent spectra with excitonic linewidths of 15 meV,
revealing that this technique is suitable and useful for the performance of spectroscopic
analysis of TMDs. We fully resolved excitonic ground states (XA

1s and XB
1s), trions related to

XA
1s (TA), and one excited state (XA

2s).
We explored the effects of doping on the excitonic transitions by measuring photocur-

rent spectra at different gate voltages, finding that the photocurrent switches signs as a
function of the Fermi energy, being negative for gate voltages below Vg ≈ −84 V and
positive above this value. This change in sign is not frequently observed in TMD-based
phototransistors, as gate voltages below –50 V are not commonly used for these devices,
due to the risk of dielectric breakdown of the SiO2 insulating layer. However, a negative
photoresponse is indeed expected assuming that PGE is the main generation mechanism
for the photocurrent.

Finally, we also studied the effects of the gate voltage in the spectral position of the
XA

1s and TA transitions. We observed an abrupt shift in the position of the TA spectral
features as the gate voltage crossed the neutrality point V0, which we attributed to a change
in the dominant trion species, from negatively to positively charged trions (T−

A and T+
A ,

respectively). For voltages above V0, we observed a continuous electrical tuning of the
transition energies, induced by the change in charge carrier density in the material. By
fitting the energy difference between the exciton and trion levels, we can estimate the trion
binding energy for negative trions.

This work demonstrates low-temperature photocurrent spectroscopy as a powerful
technique for the study of optoelectronics and exciton physics in two-dimensional systems.
The results presented here provide new insight into the exciton-mediated optoelectronic
response of 1L-MoSe2.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/nano12030322/s1: Supplementary Section S1: Raman charac-
terization; Supplementary Section S2: Evaluation of the photodoping effect; Supplementary Section
S3: Blue-shift of neutral exciton; Supplementary Section S4: Fermi energy as a function of the gate
voltage [25,29,35,42,43].
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