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Anomalous Spin Textures in a 2D Topological
Superconductor Induced by Point Impurities

Dunkan Martínez,* Álvaro Díaz-Fernández, Pedro A. Orellana,
and Francisco Domínguez-Adame

Topological superconductors are foreseen as good candidates for the search
of Majorana zero modes, where they appear as edge states and can be used
for quantum computation. In this context, it becomes necessary to study the
robustness and behavior of electron states in topological superconductors
when a magnetic or non-magnetic impurity is present. The focus is on
scattering resonances in the bands and on spin texture to know what the spin
behavior of the electrons in the system will be. It is found that the scattering
resonances appear outside the superconducting gap, thus providing evidence
of topological robustness. Non-trivial and anisotropic spin textures related to
the Dzyaloshinskii–Moriya interaction are also found. The spin textures show
a Ruderman–Kittel–Kasuya–Yosida interaction governed by Friedel
oscillations. It is believed that the results are useful for further studies which
consider many-point-impurity scattering or a more structured impurity
potential with a finite range.

1. Introduction

Topological superconductors find a niche of applications in quan-
tum technology since they can host Majorana fermions, at least
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from a theoretical perspective. Majorana
fermions, originally proposed by Majo-
rana once quantum physics was recon-
ciled with the special theory of relativ-
ity, are particles that constitute their own
antiparticle.[1] Although they have not yet
been detected as real particles in high-
energy physics’ experiments, certain low-
energy excitations arising in condensed
matter physics as edge states of some
topological materials have been found to
display the theorized characteristics for
these fermions.[2] A Majorana state (also
known as Majorana zero mode) can be
understood as a fermion with half a de-
gree of freedom[3] since, in the occupa-
tion number formalism, a fermion oper-
ator can be rewritten as a sum of two Ma-
jorana operators. Because of this, Majo-
rana states appear in pairs. By the same

reasoning, if the states are spatially separated, a perturbation that
affects one of them will not be able to annihilate it, which gives
them great robustness. All this, together with the fact that they
present non-abelian statistics, makes them ideal candidates as
qubits to achieve noiseless quantum computing.[3–7]

Several proposals have been considered to find signatures of
this type of quasi-particles. They involve the use of 1D p-type
superconductors, in which these particles would appear at their
edges,[8] or 2D px + ipy type superconductors, appearing then at
the center of vortices.[4,5,9] Both types of superconductors are
rare in nature and, therefore, proposals have focused on the
use of topological insulators (TIs) on which a layer of a conven-
tional superconductor is deposited to induce superconductivity
by the proximity effect.[10] In turn, a number of theoretical pro-
posals [11–15] have been put forward to demonstrate the existence
of these quasi-particles. However, its presence in these material
systems has not yet been unequivocally determined and this area
of condensed matter physics is far from being fully understood.
In order to finally be able to detect Majorana zero modes in

an experimental setup, electronic characterization of specific sys-
tems and devices is needed. Thus, analyzing how electrons in
these materials behave in the presence of impurities becomes
essential. In this work, we will work along the lines of ref. [16],
where the effect of single scalar and magnetic impurities at the
surface of a TI is analyzed. In our work, we will focus on sur-
face states of a strong TI, such as InSb and HgTe, close to an
s-wave superconductor. Furthermore, while most previous works
deal with zero-range impurity potentials, we introduce an exactly
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solvable model using a non-local separable pseudo-potential that
allows us to address more structured potentials.[17,18] In partic-
ular, it is worth mentioning that finite-range pseudo-potentials
can nicely reproduce electron interaction with screened, local
Coulomb potentials.[19] In addition, our approach is particularly
useful when extending the study to many impurities by apply-
ing the coherent potential approximation, which would allow us
to obtain closed expressions for the average density of states, as
we showed recently in the case of non-magnetic impurities at the
surface of a TI.[20]

2. Model

In our study, we will consider a 2D TI that supports surface
states whose dispersion relation corresponds to Dirac cones. The
Hamiltonian of these surface states is that of a single Dirac cone
in the pristine material and can be written as[10]

H0 = 𝜓†(−iℏv𝝈 ⋅ 𝛁 − 𝜇)𝜓 (1)

Here 𝜓 and 𝜓† are the electron field operators, including the
spin degree of freedom, 𝜇 is the chemical potential, and v is a
material characteristic parameter having dimensions of velocity.
In order to consider the effect of a single impurity, we will add a
non-local separable pseudo-potential to this Hamiltonian[17–21]

Himp = 𝜓†|𝜔⟩U ⟨𝜔|𝜓 (2)

where 𝜔(r) =< r|𝜔 > is referred to as the shape function. The
model Hamiltonian then reads H = H0 +Himp. The intensity of
the interaction U can be expressed in terms of an inner product
as U = 𝜆 ⋅ 𝜎⃗, where 𝜆 = (𝜆0,𝝀) with 𝝀 = (𝜆x, 𝜆y, 𝜆z) being a vec-
tor whose components are the coupling constants between the
carriers and the impurity. Here 𝜎⃗ = (𝜎0,𝝈), where 𝜎0 is the 2 × 2
identity matrix and 𝝈 = (𝜎x, 𝜎y, 𝜎z) are the spin Pauli matrices.
On top of this material, a trivial superconductor layer will be

deposited in such a way that, due to the proximity effect, the
Cooper pairs can tunnel to the surface states from the supercon-
ductor. In order to take these processes into account, we have
to introduce a new term in the Hamiltonian V = Δ𝜓†

↑𝜓
†
↓ + h.c.

where Δ = Δ0e
i𝜙 is the superconducting gap.

Due to the particle-hole symmetry of the system, we can de-
fine the Nambu spinors Ψ =

(
𝜓↑,𝜓↓,𝜓

†
↑ ,−𝜓

†
↓

)
, and then use

the Bogoliubov-de Gennes Hamiltonian whereH = Ψ†Ψ∕2.
This can be written as

 = 𝜏z(−iℏv𝝈 ⋅ 𝛁 − 𝜇 + |𝜔⟩U ⟨𝜔|)
+ Δ0

(
𝜏x cos𝜙 + 𝜏y sin𝜙

)
(3)

where 𝜇 is the chemical potential and 𝜏i the Pauli matrices asso-
ciated with particle-hole symmetry. Since the vortex states we are
looking for exist for every value of the chemical potential,[10] we
will take 𝜇 = 0 for the sake of simplicity of calculations. Further-
more, it is convenient to write the pristine Hamiltonian in mo-
mentum space since it will be used in subsequent calculations of
the Green’s function.

0(k) = 𝜏z𝝈 ⋅ k + Δ0

(
𝜏x cos𝜙 + 𝜏y sin𝜙

)
(4)

Here, energy is measured in units of Δc and momentum in
units of Δc∕ℏv, with 2Δc being the width of the energy region in
which the energy dispersion is linear in momentum.
In order to deal with the impurity term, we will consider the

Green’s function of the Hamiltonian  given in Equation (3)

G = (z −)−1 = (1 −G0imp)
−1G0 (5)

where G0 is the retarded Green’s function associated to the pris-
tine Hamiltonian 0, namely G0 = 1∕(z −0), and z = E + i0+.
We can rewrite this expression as G = G0 +G0|𝜔 >W < 𝜔|G0,
with W = U∕(1 −U < 𝜔|G0|𝜔 >). Here U is expressed in units
of ℏ2v2∕Δc. Taking into account the closure relation for the eigen-
states of r, we easily find

G(r) = G0(r) +Q(r)WQ(−r) (6a)

with

G0(r) =
1

(2𝜋)2 ∫ d2kG0(k) (6b)

Q(r) = 1
2𝜋 ∫ d2kG0(k)𝜔(k) e

ik⋅r (6c)

and

G0(k) =
z + 𝜏z𝝈 ⋅ k + Δ0(𝜏x cos𝜙 + 𝜏y sin𝜙)

z2 − Δ2
0 − k2

(6d)

Here, 𝜔(k) is the Fourier transform of the shape function 𝜔(r).
Although the presented results are general for any arbitrary shape
function, for illustrative purposes, we will restrict ourselves to
a regularized 𝛿-function with Fourier transform 𝜔(k) = 𝜔(k) =
𝜃(kc − |k|), with kc a cut-off momentum which will be chosen
to be equal to the momentum at which the energy dispersion
ceases to be linear. Defining the matrix M = z + Δ0(𝜏x cos𝜙 +
𝜏y sin𝜙) and considering that the impurity can only be scalar
(non-magnetic) or magnetic

G0(r) =
M
4𝜋

log
Δ2
0 − z2

k2c + Δ2
0 − z2

(7a)

Q(±r) = M ∫
kc

0
dk k

z2 − Δ2
0 − k2

J0(kr)

± i𝜏z𝜎𝜌 ∫
kc

0
dk k2

z2 − Δ2
0 − k2

J1(kr) (7b)

W = 1
1 − 𝜉2𝜆2(z2 − Δ2

0)

[
𝜏z𝜆 ⋅ 𝜎⃗ + 𝜆2𝜉M

]
(7c)

where 𝜉 = 𝜉(z) = 𝜋 log(Δ2
0 − z2)∕(k2c + Δ2

0 − z2), Ji(kr) are the
Bessel functions of the first kind and 𝜎𝜌 = cos 𝜃𝜎x + sin 𝜃𝜎y, be-
ing 𝜃 the polar coordinate of the vector r. Now we can calculate
the Green’s function of the perturbed system by means of Equa-
tion (6a) and thus obtain the local density of states (LDOS), the
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spin-polarized local density of states (sLDOS), and the spin tex-
tures (ST)[16,22]

𝜌(r, E) = − 1
𝜋
ImTr[G(r)] (8a)

𝜌±i (r, E) = − 1
𝜋
ImTr

[
G(r)

(𝜎0 ± 𝜎i
2

)]
(8b)

s(r, E) = − 1
𝜋
ImTr

[
G(r)𝝈

2

]
(8c)

where Tr indicates the trace in the 𝜏 and 𝜎 degrees of freedom.
In view of the definitions (8), we observe that the contribution
of the 𝜏 subspace is solely defined by the Green’s function G(r).
Moreover, since the trace of the Kronecker product of two matri-
ces is the product of the traces of each one, we can exclude all
elements that do not have an identity in the 𝜏 space as they will
not contribute to any of the three magnitudes (8). Therefore, the
only relevant contribution is provided by the term

Gu(r) =
{

z𝜉
4𝜋2

+ 𝜆𝜉zf (z, 𝜆)
[
(z2 + 3Δ2

0)F
2
0 + F21

]}
+if (z, 𝜆)F0F1z 𝟙2 ⊗ [𝜎𝜌,𝝀 ⋅ 𝝈] (9)

with Fi = ∫ kc
0 dk ki+1Ji(kr)∕(z2 − Δ2

0 − k2), f (z, 𝜆) = 𝜆∕[1 −
𝜉2𝜆2(z2 − Δ2

0)] and 𝟙2 is the 2×2 identity matrix acting in 𝜏

space. The term on the second line of this equation is traceless,
so it will only contribute in the Equations (8b) and (8c) where
the Green’s function is multiplied by 𝜎i. Therefore the LDOS
will not depend on the kind of impurity considered. This result
can easily be understood as follows. Non-magnetic impurities
give rise to resonances at energy E with amplitude A, while
magnetic impurities give rise to two resonances at ±E with
half the amplitude of the non-magnetic case.[16,22] Due to the
particle-hole symmetry of the superconducting state, both cases
behave in the same way, that is, for non-magnetic impurities,
there is an additional resonance at−E energy, while for magnetic
impurities, the amplitudes are doubled.
We will focus the study on the resonance energies of the im-

purity, which can be obtained by the poles of Equation (7c)

log

(
Δ2 − z2R

k2c + Δ2 − z2R

)2

(z2R − Δ2) = 1
𝜋2𝜆2

(10)

with 𝜆 ≡ |𝜆|. This equation cannot be solved analytically. How-
ever, we can consider the limit kc → ∞ to study the behavior of
the resonance energy. In such a limit, the resonance energy is
located at z2R ≃ Δ2 + 1∕(4𝜋2𝜆2 ln2 kc). Numerically we have found
that increasing the value of kc decreases the energy of the first
resonance. Thus, the resonances will always be located outside
the gap for any value of the impurity strength, and consequently,
there will be no Majorana zero modes in the system.
For the present study, we will consider the 𝛼-Sn in proxim-

ity to a superconducting aluminum layer, so the bandwidth is
Δc = 300meV,[23] ℏv = 100meVnm and Δ0 = 0.1meV.[10,24] In
addition, as a typical value of the magnetic exchange for topolog-
ical insulators, we will take J = 300meVnm2.[25,26] Consequently,

the dimensionless magnitudes turn out to be Δ0 = 3.3 × 10−4,
kc = 1. As to the coupling between the carriers and the impu-
rity, we will take 𝜆 = J∕2 = 5. We can restrict our study to positive
energies Re(z) ∈ [0, 1] thanks to the particle-hole symmetry. Solv-
ing the Equation (10) numerically we find that Re(zR) = 0.0067,
0.2020, and 0.9791.

3. Scalar Impurity

Here, we will consider an impurity described byU = 𝜆0𝜎0. Since
we have found that the LDOS does not depend on the kind of
impurity introduced into the system but rather on the interac-
tion strength, we will present only LDOS results for this kind of
impurity. We can obtain the explicit expression of the LDOS by
calculating the trace of Gu(r) given by Equation (9)

𝜌(r, z) = − 1
𝜋
Im

(za
𝜋2

+ 4𝜆𝜉zf (z, 𝜆0)

×
[
F20(z

2 + 3Δ2
0) + F21

])
(11)

In Figure 1, the LDOS for the three resonant energies are
shown. As the energy approaches Δc, we can see that the reso-
nance becomes narrower, which implies a less effective interac-
tion of the electron with the impurity. On the other hand, we can
see that the so-called Friedel oscillations appear, which are more
difficult to see as we approach the band edge. It is worth noting
that for the lowest resonant energy, the LDOS at r = 0 is zero.
This implies that the presence of the impurity shifts and rear-
ranges the probability density around it, whereas as we move to
the band edge, the probability density localizes at the position of
the impurity. Furthermore, since the impurity does not generate
any interaction with the electron spin, the sLDOS is expected to
be half of the LDOS, and therefore the ST is zero.

4. Magnetic Impurity

For this kind of impurity, we will focus on the sLDOS and ST,
whose main contribution comes from the second term of Equa-
tion (9). This term can be analytically calculated taking into ac-
count that [a ⋅ 𝝈, b ⋅ 𝝈] = 2i(a × b) ⋅ 𝝈 for any arbitrary pair of vec-
tors a and b. Considering a magnetic impurity with an arbitrary
spin direction 𝝀 = (𝜆x, 𝜆y, 𝜆z), Equations (8b) and (8c) can be writ-
ten as

𝜌±i (r, z) =
𝜌(r, z)
2

± 𝛾
∑
j=x,y,z

(𝝀 × r)j𝛿i,j (12a)

s(r, z) = 𝛾 𝝀 × r (12b)

where we have defined 𝛾 = (4∕𝜋) Im[zf (z, 𝜆)F0F1] and 𝝀 × r =
−𝜆z sin 𝜃ex + 𝜆z cos 𝜃ey + (𝜆x sin 𝜃 − 𝜆y cos 𝜃)ez. This ST gives
rise to a Dzyaloshinskii–Moriya interaction (DMI)[16] which is
one of the most relevant interactions for specific chiral textures
such as magnetic skyrmions. Therefore, our system is prone to
have this kind of magnetic texture. However, when we calculate
the skyrmion number, we obtain

1
4𝜋 ∫ s ⋅

(
𝜕s
𝜕x

× 𝜕s
𝜕y

)
dx dy = 0 (13)
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Figure 1. LDOS at resonance energies Re(zR) a) 0.0067, b) 0.2020, and c) 0.9791. A height map has been plotted at the top of each figure to highlight
the shape of the LDOS.

Figure 2. LDOS and sLDOS along the y-axis for an impurity with spin oriented parallel to the x-axis at energy Re(zR) a) = 0.0067, b) = 0.2020, and c)
= 0.9791.

Therefore, even though we have DMI, textures such as mag-
netic skyrmions do not show up.
Finally, we can see that x and y components of both quantities

are exactly the same upon changing 𝜃 → 𝜃 + 𝜋∕2 so we will only
write 𝜌±x (r, z). Since the system is also cylindrically symmetric,
we will consider only two types of impurities, one whose spin is
oriented in the plane, 𝝀 = 𝜆ex, and another whose spin is perpen-
dicular to the plane, 𝝀 = 𝜆ez.

4.1. Impurity with In-Plane Spin Orientation

In this situation, the sLDOS can be obtained from Equation (12a)
taking into account that 𝝀 = 𝜆xex. Hence, for this kind of impu-
rity, we get

𝜌±x (r, z) =
𝜌(r, z)
2

(14a)

𝜌±z (r, z) =
𝜌(r, z)
2

± 𝛾 sin 𝜃 (14b)

In Figure 2 we plot the LDOS and sLDOS for the z spin direc-
tion for all energies Re(zR) = 0.0067, 0.2020, and 0.9791. It can
be noticed that as the energy increases toward the upper edge of
the band, the difference between the spin projection originated
by the impurity disappears. This behavior reinforces the claim
that the interaction is decreasing. Moreover, we can clearly see
Friedel oscillations decreasing in period and amplitude.
The ST can be obtained following Equation (12b). Thus, for

this impurity

s(r, z) = 𝛾 sin 𝜃 ez (15)

From Figure 3we can see that the component along the z direc-
tion is asymmetric in the y direction, presenting clear signatures
of Friedel oscillations. This could be the reason of the observed
variation of the period of the ST as the energy increases. Further-
more, we can notice that as we increase energy, the spin orienta-
tion changes and starts to alternate at each oscillation period. In
addition, an inversion of the ST near the impurity also occurs at
high energies.

Ann. Phys. (Berlin) 2023, 2300072 © 2023 The Authors. Annalen der Physik published by Wiley-VCH GmbH2300072 (4 of 6)
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Figure 3. Quasi-normalized ST at energies Re(zR) a) = 0.0067, b) = 0.2020, and c) = 0.9791 for an impurity spin oriented parallel to the x-axis. A color
scale has been used for the z component while the x and y components are zero.

Figure 4. LDOS and sLDOS along the y-axis for an impurity with spin oriented parallel to the z-axis at energy Re(zR) a) = 0.0067, b) = 0.2020, and c)
= 0.9791.

4.2. Impurity with Spin Oriented Perpendicular to the Plane

Following the same steps as in Section 4.1, the sLDOS can be
obtained as

𝜌±x (r, z) =
𝜌(r, z)
2

∓ 𝛾 sin 𝜃 (16a)

𝜌±z (r, z) =
𝜌(r, z)
2

(16b)

In this case, the ST will vanish in the z direction. In Figure 4
we show that the behavior is similar to the one observed in Fig-
ure 2. However, this similarity is due to the choice of axes in the
figure since now the impurity modifies the spin behavior, both
for the x direction and in the y direction, as we will see in the
spin textures. Only 𝜌±x (r, z) has been shown for all the resonance
energies since 𝜌±y (r, z) can be obtained from it and 𝜌±z (r, z) turns
out to be zero. The ST can be written as

s(r, z) = −𝛾(sin 𝜃 ex − cos 𝜃 ey) (17)

From Figure 5 we notice that the STs induced by the impurity
are similar to that of a vortex, with a wavelike behavior, as shown

in Figure 3. There is also an alternation of the ST as long as the
energy increases and an inversion arises near the impurity.

5. Conclusions

Unlike what happens in conventional superconductors,[27] when
dealing with topological superconductivity, the introduction of a
magnetic impurity does not induce states within the supercon-
ducting gap, even when the impurity potential breaks the time-
reversal symmetry of the system.
Furthermore, the LDOS is unaffected by the magnetic or non-

magnetic nature of the impurities.
Moreover, the contribution of the topological insulator to Equa-

tion (7b) is the only one that introduces a dependence on the
type of impurity of the form [𝜎𝜌,𝝈] in Equation (9). This depen-
dence makes the magnetic impurities affect only the perpendic-
ular components, that is, an impurity whose spin is oriented per-
pendicular to the plane affects only the in-plane component of
the ST and vice-versa. This term is related to the DMI as it repre-
sents a strong spin-orbit coupling system with broken symmetry.
However, it does not induce topological skyrmions.

Ann. Phys. (Berlin) 2023, 2300072 © 2023 The Authors. Annalen der Physik published by Wiley-VCH GmbH2300072 (5 of 6)
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Figure 5. Quasi-normalized ST at energies Re(zR) a) = 0.0067 and b) = 0.2020 for an impurity spin oriented parallel to the z-axis. Arrows have been
used to represent the x and y directions of the ST while the z direction is zero.

Finally, we can highlight a change in the behavior of the spin
textures as we increase the energy. Due to the similarity of the ob-
tained spin textures to the results presented by Balatsky et al.[16]

in the context of TIs, we can consider that these changes are re-
lated to the Ruderman–Kittel–Kasuya–Yosida interaction so that
as we increase the energy and with it the Fermi momentum, the
magnetic interaction between two magnetic impurities in this
material would change from ferromagnetic to antiferromagnetic,
whose behavior is mediated by the spin textures.
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