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Abstract
We study theoretically the level shift of massless Dirac fermions in a graphene
monolayer subjected to a quantizing perpendicular magnetic field under the
influence of short-range impurities. A Green function method is used to obtain
closed expressions for the Landau level shift for any sharply peaked impurity
potential approaching a δ-shell potential.
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1. Introduction

Electron properties in graphene have been an active research topic since the experimental
realization of a single layer of carbon atoms arranged in a honeycomb lattice [1, 2]. It is now
well established that low-energy electronic excitations in pristine monolayers of graphene can
be described by the massless (2 + 1) Dirac equation [3, 4]. In addition, breaking of sublattice
symmetry owing to the interaction with a substrate may open a gap in epitaxial graphene [5].
The gap enters as a mass term in the Dirac equation, usually referred to as a scalar potential
[6]. Thus, graphene provides an interesting realization of massless and massive quantum
electrodynamics in two dimensions [7].

The discovery of the integer [1, 8, 9] and fractional [10, 11] quantum Hall effects has
spurred the interest on electron transport in graphene under strong magnetic fields. The
transition from linear or parabolic bands in graphene to Landau levels as the magnetic field is
increased can be successfully studied using a tight-binding model for the π orbitals [12]. This
transition has also been observed in graphene quantum dots, as reported in [13]. In this work,
it was concluded that the details of the transition are strongly affected by the defects of the
underlying graphene lattice, among other effects. The dependence of the main features of the
transition on the imperfections of graphene prompts the development of the scattering theory
for Dirac fermions by point defects under a quantizing magnetic field, namely in the Landau
level regime.
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Our aim in this paper is to study the Landau level shift in the presence of a short-range
impurity in graphene. In this context, short-range impurity refers to the absence of long-
range tails in the interaction potential [14]. Bound electron states in monolayers of gapped
graphene with short-range defects have already been discussed by Firsova et al in [14].
These authors replaced the actual impurity potential of the types local chemical potential and
local gap by vector (the time component of a Lorentz vector) and scalar δ-shell functions,
respectively. Bound states of the (2+1) Dirac equation with a vector-like δ-shell potential were
also earlier discussed by Dong et al in [15] (there is a mistake in the characteristic equation of
the bound states, as noted in [14]). Bound and scattering states of the (3+1) Dirac equation with
both vector and scalar δ-shell potentials were also studied even earlier in [16]. Nevertheless,
in all cited references the effects of an applied magnetic field were not discussed. The first
attempt to solve the Landau quantization problem of strongly localized electrons in graphene is
found in [17]. In this work, electrons were assumed to be confined in a quantum dot, where the
dot was represented by a δ(2)(r)-potential well. Artificially representing the quantum dot by
such a strongly singular potential leads to divergences in the Lippmann–Schwinger equation.
To overcome the problem, the authors presented an approximate solution assuming that the
potential of the quantum dot occupies a small but finite region and then removed the singularity.
In this paper, we show that the (2 + 1) Dirac equation for the δ-shell potential is free of such
divergences and solve exactly the corresponding Lippmann–Schwinger equation.

2. Dirac equation with δ-shell interaction

The Dirac Hamiltonian in gapless graphene subjected to a perpendicular magnetic field reads

H = vF σ · (p + eA) + Vimp(r) ≡ H0 + Vimp(r), (1)

where vF ∼ 106 m s−1 is the Fermi velocity, the vector σ = (σx, σy) contains the Pauli
matrices and the vector potential is A = (1/2)Br eθ , eθ being the polar unitary vector. Note
that the above Hamiltonian involves only one of the Dirac cones since we neglect intervalley
mixing hereafter.

We are interested in the solution of the Dirac equation for the Hamiltonian (1) when the
impurity potential approaches the δ-shell limit. However, the resulting equation is not well
defined in this limiting case. The reason lies in the fact that the product of a discontinuous
function (the wavefunction) and the δ-function is ill defined from a strict distribution theory
sense. To overcome this ambiguity, we solve the Dirac equation (8) for any arbitrary sharply
peaked at r = R function, with R being the radius of the shell, and then take the δ-function
limit.

For the moment, we only assume that the impurity potential Vimp(r) is axially symmetric.
Then, the total angular momentum, Jz = Lz+σz/2 is conserved, and we look for eigenfunctions
of the form

ψ(r, θ ) = 1√
r

(
ei(κ−1/2)θ F(r)
iei(κ+1/2)θ G(r)

)
, κ = ±1

2
,±3

2
, · · · (2)

in polar coordinates. Using (1) and (2), the Dirac equation leads to

�vF

[
iσy

d

dr
+ σx

(
κ

r
+ eB

2�
r

)]
φ(r) + Vimp(r)φ(r) = Eφ(r), (3)

where the upper and lower components of the radial spinor φ(r) are F(r) and G(r), respectively.
We introduce a dimensionless radial coordinate z = r/lB in terms of the magnetic length

lB = √
�/eB. The radial Dirac equation (3) is then rewritten as[

iσy
d

dz
+ σx

(
κ

z
+ z

2

)
+ vimp(z)

]
φ(z) = εφ(z), (4)
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where for brevity we have defined vimp(z) ≡ Vimp(z)lB/�vF and ε = ElB/�vF . After
multiplying by −iσy, equation (4) is solved by a Newmann solution as follows [18]:

φ(z) = P̂ exp

{∫ z

z0

dz′
[
σz

(
κ

z′ + z′

2

)
+ iσy(vimp(z

′) − ε)

]}
φ(z0), (5)

where P̂ is the ordering operator. Let vimp(z) be any arbitrary function of z sharply peaked at
z = Z satisfying the limiting condition∫ Z+	Z

Z−	Z
vimp(z) dz = λ, 	Z → 0+, (6)

where λ is a dimensionless coupling constant. Taking z = Z+	Z and z0 = Z−	Z, neglecting
the nonsingular terms in the integral and using the limiting condition (6), we finally obtain the
following boundary condition:

φ(Z + 	Z) = exp(iλσy)φ(Z − 	Z), (7)

which becomes independent of how the δ-function limit is taken.

3. Landau level shift under the influence of the δ-shell interaction

The Lippmann–Schwinger solution of the dimensionless radial Dirac equation (4) is written
as

φ(z) = − lim
	Z→0+

∫ Z+	Z

Z−	Z
G(z, z′; ε)vimp(z

′)φ(z′) dz′, (8)

where the Green function for the unperturbed problem is a 2 × 2 matrix satisfying the
inhomogeneous differential equation[

iσy
∂

∂z
+ σx

(
κ

z
+ z

2

)
− ε

]
G(z, z′; E ) = I2δ(z − z′), (9)

where I2 stands for the 2 × 2 unity matrix. The Green function exhibits a jump discontinuity
at the line z = z′. The value of the jump can be obtained by integration of (9) in the vicinity
of this line. The result is

G(z + 	Z, z; ε) − G(z − 	Z, z; ε) = −iσy. (10)

As mentioned above, the product vimp(z)φ(z) is not well defined if one takes the limit
vimp(z) → λδ(z−Z) from the outset. Thus, we consider the same limiting procedure discussed
in the previous section and solve (8) for any arbitrary sharply peaked at z = Z function and
then take the δ-function limit.

Using the dimensionless radial Dirac equation (4), one finds that the integral equation (8)
leads to (see [19] for details)

φ(z) = iG(z, Z; ε)σy[φ(Z + 	Z) − φ(Z − 	Z)]. (11)

Hence, we have obtained a closed expression for the perturbed eigenfunctions. The energy
levels can be obtained by setting z = Z + 	Z in (11) and using the boundary condition (7)

det[I2 − iG(Z + 	Z, Z; ε)σy(I2 − e−iσyλ)] = 0. (12)

It should be mentioned that the same condition is obtained by setting z = Z − 	Z in (11)
because of equation (10). Equation (12) determines the Landau levels perturbed by a δ-shell
interaction, as long as the Green function of the unperturbed problem is known. Once the energy
levels have been calculated, the corresponding eigenfunctions are found by substitution of the
appropriate value of ε into (11).
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Figure 1. Shift of the dimensionless energy ε = ElB/�vF of the Landau levels as a function of the
dimensionless coupling constant λ. Left and right panels correspond to κ = −1/2 and κ = 1/2,
respectively. Solid (dashed) lines correspond to the results for Z = 0.3 (Z = 3).

4. The radial Green function for Landau levels

The radial Green function is a 2 × 2 matrix-valued function

G(z, z′; ε) =
(

G++(z, z′; ε) G+−(z, z′; ε)

G−+(z, z′; ε) G−−(z, z′; ε)

)
(13)

satisfying the inhomogeneous differential equation (9) subjected to suitable boundary
conditions. For brevity, we define the differential operators ∂± = ±∂/∂z + κ/z + z/2. From
(9) we readily obtain the off-diagonal elements of the Green function

G±∓(z, z′; ε) = 1

ε
∂±G±±(z, z′; ε), (14)

and also the inhomogeneous equations for the diagonal elements
1

ε
(∂±∂∓ − ε2)G±±(z, z′; ε) = δ(z − z′). (15)

Solution of the homogeneous equations can be expressed in terms of Whittaker functions, Mμν

and Wμν [20]. Thus, the Sturm–Liouville theory leads to [21]

Gss(z, z′; ε) = ε√
zz′


(νs − μs + 1/2)


(2νs + 1)
Mμsνs

(
z2
<

2

)
Wμsνs

(
z2
>

2

)
, (16)

with s = ±. Here, z> (z<) denotes the larger (smaller) value of the pair (z, z′) and we define
μ± = (ε2 − κ ∓ 1/2)/2 and ν± = |κ ∓ 1/2|/2. Once the diagonal elements of the Green
function are known, the off-diagonal elements are obtained from (14).

5. Results

Let us now turn to the results. We have summarized the most interesting ones in figures 1–3.
Equation (12) allows us to calculate the Landau levels perturbed by the short-range impurity
potentials as a function of the potential parameters, namely the dimensionless range Z and the
strength λ.

Figure 1 shows the Landau levels as a function of the dimensionless coupling constant λ,
for two different values of the parameter Z = R/lB. The energy levels increase monotonically
as function of λ, as expected from a system whose average potential energy increases. A
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Figure 2. Shift of the dimensionless energy ε = ElB/�vF of the Landau levels as a function of the
dimensionless radius Z, for κ = −1/2 and λ = π/5. Dotted lines represent the Landau levels of
the unperturbed system. The wavefunctions at points marked a − d are shown in figure 3 below.

remarkable feature of the perturbed Landau levels is their π -periodicity on the coupling
constant, as shown in figure 1. This π -periodicity is also found in the energy levels of the
(1 + 1) Dirac with a δ-function potential [22]. It is also worth mentioning that the electron
energy remains finite even if the impurity potential is rather strong. Therefore, the particle
cannot fall into the center, thus avoiding an anomaly of the Coulomb potential in graphene
called the supercritical Coulomb center [23].

When the impurity potential is adiabatically turned off (λ → 0), the energy levels reduce
to the Landau levels in pristine graphene. These levels correspond to the poles of the radial
Green function (16), appearing when νs−μs+1/2 = −n′, with n′ being a non-negative integer,
namely ε2 = 2n′ + |κ ∓ 1/2| + κ ± 1/2 + 1. This condition can be rewritten as ε = ±√

2n,
with n being a non-negative integer, in perfect agreement with previous results [4].

Two spatial scales are involved in the problem. Firstly, the range of the impurity potential
is parameterized by the radius R of the δ-shell. On the other hand, the magnetic length lB
determines the spatial extent of the electronic states in the Landau level regime without
impurity. Therefore, in the strong magnetic field regime lB � R, namely Z 	 1, one expects
that the wavefunction is only slightly distorted by the impurity potential. Moreover, in the weak
magnetic field limit (lB 	 R, Z � 1), only the wavefunction around the origin is affected.
These two limiting situations are clearly revealed in figure 2, which shows the evolution of the
energy levels as a function of Z, for κ = −1/2 and λ = π/3. As expected, the dimensionless
energy approaches ±√

2n with n = 0, 1, . . . as Z � 1 or Z 	 1 (dashed lines in figure 2).
When the dimensionless coupling constant λ is large, the energy levels display anticrossings,
as shown in the inset of figure 2. Moreover, each energy level approaches the same Landau
level of the unperturbed system in the two limiting situations, Z � 1 and Z 	 1.

In figure 3, the effect of the potential on the probability density |ψ(r, θ )|2 ∼ |φ(z)|2/z is
shown for the four different values of the dimensionless range Z indicated in figure 2 by solid
circles. When Z � 1 or Z 	 1 (panels (a) and (d) respectively), the wavefunctions are rather
similar except around the origin. In contrast, when Z ∼ 1 (panels (b) and (c)) the wavefunction
is strongly affected around z = Z, as expected.

6. Conclusions

We have proved that effects of δ-shell potentials on massless Dirac electrons in graphene under
strong magnetic fields can be exactly evaluated using a Green function technique. The method
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Figure 3. Plots of |φ(z)|2/z as a function of the dimensionless radial coordinate z = r/lB for the
four different values of the dimensionless range Z indicated in figure 2 by circles, when κ = −1/2
and λ = π/5.

is independent of how the δ-function is taken and consequently it is free of the ambiguities
appearing in defining relativistic δ-interactions [18]. In particular, there is no need to regularize
the potential in the Lippmann–Schwinger equation, in contrast to what happens in the case
of the δ(2)(r)-potential well [17]. In addition, the δ-shell potential is free of the supercritical
effects found in Coulomb potentials [23]. Therefore, δ-shell potentials are good candidates to
successfully replace actual and more complex impurity potentials in graphene.
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