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Abstract
In this work, we present a thorough study of the thermoelectric properties of silicene
nanoribbons in the presence of a random distribution of atomic vacancies. By using a linear
approach within the Landauer formalism, we calculate phonon and electron thermal
conductances, the electric conductance, the Seebeck coefficient and the figure of merit of the
nanoribbons. We found a sizable reduction of the phonon thermal conductance as a function of
the vacancy concentration over a wide range of temperature. At the same time, the electric
properties are not severely deteriorated, leading to an overall remarkable thermoelectric
efficiency. We conclude that the incorporation of vacancies paves the way for designing better
and more efficient nanoscale thermoelectric devices.
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1. Introduction

Thermoelectric efficiency is achieved when the dimensionless
figure of merit ZT = S2σT/κ is high enough [1]. In the
definition of the figure of merit, S stands for the Seebeck coef-
ficient, and σ and κ are the electric and thermal conductances
at a temperature T, respectively (see, e.g., reference [2]). For
instance, values of ZT larger than unity represent a heat-to-
electricity conversion efficiency larger than 10%. Current
thermoelectric materials display efficiency in the range of 5%
to 20%. Thus, efficient thermoelectric devices demand mate-
rials with strongly suppressed thermal conductance to create a
large temperature gradient but still high electronic conduction
to minimize Joule heating. Both electrons and phonons
contribute to heat current and, consequently, thermal conduc-
tance can be split as κ = κel + κph. Strategies for enhancing
thermoelectric efficiency seek to reduce both contributions
simultaneously without affecting electronic conduction. In
conventional metals, however, the classical Wiede-
mann–Franz law imposes a limit because the ratio σT/κel is
a universal constant. Therefore, a decrease of κel is accompa-
nied by a concomitant decrease of σ in bulk metals. Hence,
reducing the lattice thermal conductance κph by increasing

phonon scattering is one of the most promising routes to
improve thermoelectric materials. Approaches such as nanos-
tructuring, nanocomposites and doping are found to enhance
the thermoelectric efficiency by simultaneously tuning various
properties of materials and, in particular, enhancing phonon
scattering (see references [3, 4] for recent reviews).

In the last few years, several works have provided theoret-
ical [5–8] and experimental evidence [9–12] that nanostruc-
turing yields thermoelectric efficiency unachievable with bulk
materials. On the one hand, quantum effects allow thermo-
electric devices to overcome the limitations arising from the
classical Wiedemann–Franz law. Nanodevices with sharp res-
onances in the electron transmission (such as Fano lineshapes)
are good candidates for highly efficient heat-to-electricity con-
verters because the ratio σT/κel increases well above the clas-
sical Wiedemann–Franz limit [13–19]. On the other hand,
nanometer-sized objects exhibit a reduced lattice thermal con-
ductance due to an increased phonon scattering [20–23].
Thus, nanostructuring facilitates achieving large ZT and, con-
sequently, more efficient thermoelectric devices like refrigera-
tors and generators [24].

Nanostructured graphene, such as nanoribbons and nanor-
ings, stand out because of the straightforward way in which
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they exploit quantum interference effects. Recently, we
demonstrated theoretically that graphene nanorings might be
useful as thermoelectric devices [25]. Thermal conductance
can be greatly reduced in graphene nanoribbons by rough
edges [26], hydrogen-passivation [27] and patterning [28–32].
Unfortunately, lattice heat conduction, which is expected to
be the most important contribution to heat transport in car-
bon materials due to the strong covalent sp2 or sp3 bonding,
is still large for thermoelectric applications. Thermal conduc-
tivity in bulk graphene is as high as 2000–4000Wm−1 K−1

at room temperature [33] but it is largely reduced in nar-
row nanoribbons (150Wm−1 K−1) and even more in nanorings
(100Wm−1 K−1) due to scattering of lattice vibration modes at
the bends [23].

Bulk silicene, the silicon analog of graphene, exhibits an
in-plane thermal conductivity of 20 W m−1 K−1 at room tem-
perature, according to equilibrium molecular dynamics simu-
lations [34] (see reference [35] for a review on recent advances
in silicene). This value is one order of magnitude lower than
that of bulk silicon. Graphene and silicene share a common
honeycomb lattice structure, but the larger ionic radius of sil-
icon compared to carbon induces a buckling of the lattice
[36, 37]. Buckling has an impact on the vibrational modes
of silicene that undergo phonon softening and stiffening, thus
reducing phonon heat conduction. Besides, in these systems,
the presence of point defects such as monovacancies and diva-
cancies generate a significant diminution of the thermal con-
ductance of silicene sheets owing to phonon-defect scattering
[34].

In this paper, we study the thermal and thermoelectric prop-
erties of silicene nanoribbons (SNRs) at low temperatures. We
have calculated the thermal conductance κph when a random
distribution of point defects (such as vacancies) in a diluted
regime is created in the SNR. We have then focused on the
impact of vacancies concentration on the phonon thermal con-
ductance of SNRs at different temperatures. We have found
a sizable reduction of κph as a consequence of the reduced
phonon mean free path. This decrease depends on the defect
concentration and temperature, especially in narrow SNRs.
Furthermore, we have observed that the presence of vacan-
cies leads to an enhancement of the Seebeck coefficient, which
is mainly due to the quantum interference phenomena within
the device. These features affect the thermoelectric conversion
efficiency factor and, most importantly, enhanced values of ZT
arise at low defects concentration. In this sense, we suggest that
point defects, such as monovacancies,divacancies, or adatoms,
might improve the thermoelectric behavior of SNR by exploit-
ing interference effects and reducing the phonon mean free
path.

2. Theoretical model

The system under study consists of a rectangular SNR of
width W and length L connected to the source and drain
leads, as shown schematically in figure 1. In order to pre-
vent topologically protected edge states that appear at the
Fermi energy in zig-zag nanoribbons, we restrict ourselves
to nanoribbons with fully hydrogen saturated armchair edges

Figure 1. Schematic view of the device. The central A-SNR is
connected to left (L) and right (R) leads of the same material. The
translucent circles represent the atomic vacancies on the nanoribbon.

(A-SNR) hereafter. The electronic properties of these ribbons
have been widely studied by using both DFT calculations and
single-band tight-binding (TB) Hamiltonian [35, 38–41]. Both
approximations give reasonable quantitative (DFT) and qual-
itative (TB) descriptions of the physical properties of SNR.
In these approaches, hydrogen saturated A-SNR behaves as
semiconductor or semi-metallic, depending on the number
of silicon dimers along the transverse direction of the rib-
bon. Thus, for widths W = 3p and W = 3p + 1 (p being an
integer number), A-SNRs behave as semiconductors with a
decreasing electronic gap as W increase; whereas for
W = 3p − 1 A-SNRs behave as semi-metallic, with a zero
energy gap at the charge neutrality point [40, 41].

In this context, and by adopting the single band TB frame-
work, we have considered a random distribution of vacan-
cies in the central region of a semi-metallic ribbon, which
are represented with translucent circles in figure 1. From the
numerical point of view, for the electronic part of the calcula-
tions, the way to simulate vacancies in the lattice is by setting
large on-site energy, around 104 times the energy scale of the
A-SNR. It prevents electrons from occupying those sites. On
the other hand, for the phonon thermal conductance calcula-
tions, we randomly removed atoms in the lattice by setting
zero to the inter-atomic potential between the vacancy and the
nearest-neighbor atoms.

In order to study the thermal transport of the ribbons, we
have assumed the linear response approximation taking into
account a small temperature difference between both leads,
TL and TR, respectively (with TL > TR). In our study, we
can neglect electron–phonon and phonon–phonon interactions
[42, 43] within the conductor because these interactions are of
higher order in comparison to the harmonic interaction term,
which we have used to describe qualitatively ballistic ther-
mal transport. In this approximation, phonon transport can be
calculated similarly as the electronic counterpart. Thus, it is
necessary to solve the eigenvalue equation Kψ(r) = ω2Mψ(r),
where M is the diagonal mass matrix and K is the dynam-
ical matrix of the system, which is calculated by using the
finite difference method. Matrix elements of K are given by
Kiα,jβ = dFiβ/driα where Fjβ is the force on the jth atom in
the β Cartesian direction due to the displacement of the ith
atom in the α Cartesian direction. In order to calculate the
interatomic forces, one needs to know the interaction poten-
tial, which is here parameterized by a semi-empirical potential.
In our case, we have chosen the well-known Stillinger–Weber
potential [44]. Under these assumptions, Landauer’s formula-
tion is flawless and reliable for calculating phonon transport

2



J. Phys.: Condens. Matter 32 (2020) 275301 C Núñez et al

properties [45]. The key magnitude then is the ribbon width
dependent phonon transmission TN(ω) through the A-SNR
(where N stands for the number of Si-atoms dimers along the
ribbon width) that will be addressed by the non-equilibrium
Green’s functions (NEGF) method. This formalism is a use-
ful and powerful method to study dynamical processes in
non-equilibrium many-body systems. To this end, the sys-
tem is split into three spatial regions, namely left contact,
scattering region (conductor), and right contact. Landauer’s
approach makes no distinction between fermions and bosons,
and, as a consequence, transport equations are essentially the
same in both cases, except for the occupation functions of the
leads.

In this regard, the thermal current of phonons at a tempera-
ture T can be calculated from the transmission function TN(ω)
as follows [46, 47]

Jph =
1

2π

∫ ∞

0
�ωTN(ω) [nB(TL) − nB(TR)] dω, (1)

where nB(T) = 1/
(
e�ω/kBT − 1

)
is the phonon occupation

number at a given temperature T, and TL = T +ΔT/2 and
TR = T −ΔT/2. In the linear regime, when ΔT is small, the
phonon contribution to the thermal conductance of the A-SNR,
κph(T) = Jph/ΔT, is given as

κph(T) =
�

2

2πkBT2

∫ ∞

0
ω2TN(ω)

e�ω/kBT(
e�ω/kBT − 1

)2 dω. (2)

This expression holds in the ballistic regime since it is
assumed that TN(ω) includes only the coherent part of the
transmission. For this purpose, we used QuantumATK 2017.0
[48]. Phonon–phonon interaction is the major limiting fac-
tor of the thermal conductance at high temperatures (T > ΘS,
where ΘS � 640 K is the Debye temperature in bulk silicene
[49]) and it is not entering into the calculation of TN(ω). There-
fore, equation (2) will overestimate the value of the thermal
conductance at high temperature. Phonon–phonon interaction
could be included through a non-linear fit of the self-energy in
the NEGF equations, or they can be treated by the Boltzmann
transport theory if needed. The main advantage of Landauer’s
formulation (besides its computational speed in comparison to
other approaches) is that no further approximations are needed.
It is worth mentioning that all curves presented in this work
are averaged over a hundred random realizations of disor-
der, avoiding any spurious results originated from statistical
fluctuations.

3. Results

We start our analysis by considering the confinement effects
on the phonon thermal transport properties of the considered
A-SNR. In figure 2, we show the phonon thermal conductance
κph as a function of temperature for different values of the num-
ber of dimers N along the transverse direction of the ribbon.
As expected, the thermal conductance κph shows higher val-
ues as the ribbon width is increased because the number of
allowed phonon modes available for heat transport increases
[50, 51]. The thermal conductance at temperatures lower than

Figure 2. Phonon thermal conductance as a function of temperature
for different A-SNR widths and for a length L � 26nm.

100K takes values in the range 0.1–0.5n W K−1 while at
higher temperatures, the value of the κph saturates. This trend
is due to the activation of different phonon modes as temper-
ature increases. At low temperature (lower than 100K) only
longitudinal and transverse acoustic phonon modes contribute
to the thermal conductance [50]. As soon as the temperature is
increased, but still in the ballistic regime condition, all phonons
of the optical branches and mostly the long-wavelength acous-
tic modes contribute to κph and the conductance reaches a
constant value. It is worth mentioning that anharmonic terms,
such as phonon–phonon and electron–phonon interactions,
are always present in the system; however, at temperatures
lower than T > ΘS = 640K these effects play a minor role
and are considered perturbations of the second order. At higher
temperatures, they must be taken into account, because the
anharmonicity of these terms dominates the thermal response
of the sample. In that case, the ballistic regime is no longer
valid, and the calculated phonon thermal conductance is
overestimated.

3.1. Impact of vacancies on the thermal conductance

During growth, synthesis, and physical manipulation of mate-
rials at the nanoscale, it is common to observe the occur-
rence of different kinds of defects in the nanostructure, such
as dislocations, Stone–Wales defects, vacancies, impurities or
adatoms, among others. These defects not only significantly
affect the electronic properties of the material, but also act
as phonon localization/delocalization centers, with the conse-
quent deterioration of the thermal properties [34, 52, 53]. By
using first-principles calculation, several authors have studied
different configurations of defects in silicene, considering sin-
gle vacancies, groups of vacancies (clusters), or even extended
line of defects [54, 55]. In these works, it is shown that due
to silicene partially presenting sp3 hybridization, the forma-
tion energy of these defects is reduced, and consequently, the
defective silicene becomes a stable structure. This behavior has
been observed in other two-dimensional systems as well, such
as graphene, black phosphorous and MoS2 layers. Recent stud-
ies have shown that defects can dramatically reduce phonon
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transport in graphene [56], silicene nanowires [57] and silicene
nanoribbons [34, 58]. For instance, Li et al [34] have shown
that a single vacancy in silicene sheets, of a total of approxi-
mately 400 atoms, can diminish the thermal conductance about
78% in comparison with a pristine sample. These results point
out the relevance of vacancies in thermal transport, being a
suitable mechanism to reduce the phonon thermal conductance
in nanometric systems.

In this context, in what follows, we focus on the effects of
a random distribution of single vacancy defects in a diluted
regime, on phonon thermal transport of narrow SNRs. We
address the impact of the disorder potential (Anderson-like
potential caused by the random distribution of defects) on the
phonon thermal transport properties. Despite the fact that sin-
gle vacancies present higher formation energy per atom in
comparison to other defects (such as divacancies or cluster
of vacancies), this atomic defect is stable under a wide range
of temperatures and, without loss of generality, it represents
a convenient way to model a random distribution of defects
in the system. It is most important to mention that we have
compared the results with those corresponding to divacancy
defects, and we have not observed dramatic differences in the
general trends of the thermal conductance. Bearing these con-
siderations in mind, we used the Landauer’s formulation as
given by equation (2). Results of the average phonon ther-
mal conductance 〈κph〉, over a hundred of realizations, of an
A-SNR of width N = 20 dimers and length L � 26nm are
shown in figure 3(a), for different concentrations of vacan-
cies n = 0.1%, 1%, 3% and 5%. We define the concentration
of vacancies n as the ratio between the number of removed
atoms and the total number of Si atoms in the pristine A-
SNR and is contained in the dynamical matrix K. In order
to assess the reduction of κph in the disordered system, for
comparison, we have also included the pristine case in this
figure.

For all cases, a strong reduction of 〈κph〉 with respect to the
pristine A-SNR is observed in the whole temperature range.
The defect-phonon scattering [59, 60] mainly cause this sig-
nificant decrease. Similar effects have been reported in silicene
sheets, where κph decreases about 30% at temperatures greater
than 200K by the presence of only a single vacancy [34].
At low temperatures, the long-wavelength acoustic phonons
dominate the thermal transport, and 〈κph〉 takes values lower
than to those in pristine samples. Although the curves have
the same trend as a function of temperature, it is clear that
for concentrations above 1%, the reduction of 〈κph〉 could be
higher than 60%, reaching the saturation limit at tempera-
tures around 300K. It indicates that vacancies not only reduce
the mean-free-path of the optical phonons but also affects the
acoustic phonons as well. This behavior is well reflected in
the phonon transmission function presented in figure 3(b). In
this plot, it is possible to observe that the acoustic branches
(lower energy values) are less affected, in comparison with the
optical branches (higher energy values) as the vacancy concen-
tration increases. This can be easily understood because both
sub-lattices vibrate almost in phase in an acoustic mode, at
least over regions smaller than the phonon wavelength, being
less affected at low energy. On the other hand, in the optical

Figure 3. (a) Average phonon thermal conductance as a function of
temperature for an A-SNR of width N = 20 and length L � 26nm.
These curves correspond to averages over a hundred of random
realizations of the disorder. The standard deviation is represented by
the error bars. (b) Phonon transmission probability as a function of
the phonon energy and for the different vacancy concentrations n.

branches, the sub-lattices vibrate out of phase. Hence, even
for high wavelengths (k → 0), optical modes are sensitive to
scales of the order of the lattice parameter and, therefore, they
are more affected by the disorder.

These results point out that the appearance of a low con-
centration of randomly distributed vacancies may enhance the
thermoelectric behavior of A-SNRs, as we will discuss in the
next section.

3.2. Thermoelectric properties of A-SNRs

In bulk metals, high values of the figure of merit ZT cannot be
obtained because of the Wiedemann–Franz law is generally
valid. However, in nanoscale systems, thermal and electronic
properties can be tuned independently in order to achieve
improved efficiency above this limit. Therefore, the Wiede-
mann–Franz law may not hold at the nanoscale thanks to
interference effects, which in general terms, modify the uni-
versal ratio between the electronic contribution to the thermal
conductance and the electronic conductance (reflected in the
Lorentz number, defined as the ratio of the electric and electron
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thermal conductivities). Thus, it has been reported ZT values
greater than 2.4 in tailored nanostructured materials such as
superlattices [9], nanowires [11] or quantum dots [10]. These
high efficiencies are obtained by an appropriated combination
of phonon suppression and the enhancement of the electronic
properties of the device. Therefore, nanostructures made of
silicene sheets and silicene nanoribbons seem to be good can-
didates to exhibits this improved behavior [51, 58]. In this
context, in what follows, we will focus on the thermoelectric
response of A-SNRs with vacancy defects. As we discussed
above, the random distribution of vacancies largely reduces
the phonon thermal conductance of the A-SNR, which is the
key ingredient to improve the thermoelectric efficiency of the
system.

To analyze the thermoelectric behavior of the disordered A-
SNR, we have adopted the linear response approximation, in
which an effective voltage drop ΔV and a temperature differ-
enceΔT are applied between the left and right contacts. Within
this approach, the electronic current Ie and the heat current IQ

are given by [61]

Ie = −e2L0ΔV +
e
T

L1ΔT, (3)

IQ = eL1ΔV − 1
T

L2ΔT, (4)

where e is the elementary charge, T is the absolute temperature
and Ln (with n = 0, 1, 2) are integrals defined as

Ln(μ, T) =
2
h

∫ ∞

0
T (E) (E − μ)n

(
−∂ f (E, T)

∂E

)
dE. (5)

Here h is the Planck constant, μ is the chemical potential,
f(E, T) is the equilibrium Fermi–Dirac distribution and T (E)
is the energy-dependent electron transmission probability.

The electronic conductance is defined as σ = −Ie/ΔV and
it can be obtained directly from equation (3), when ΔT → 0:

σ(μ, T) = e2L0. (6)

The Seebeck coefficient S is calculated in the linear response
regime, namely |ΔT| � T and |eΔV| � μ. It is defined as the
voltage drop induced by a temperature gradient at zero elec-
tric current, S = ΔV/ΔT|Ie = 0 [see equation (3)], in the limit
ΔT → 0. Thus

S(μ, T) = − 1
eT

L1

L0
. (7)

The electron contribution to the thermal conductance is
defined as the ratio between the thermal current IQ and the
temperature gradient ΔT when the electric current Ie is zero,
κel = IQ/ΔT|Ie=0. Written in terms of the integrals (5), it is
given by

κel(μ, T) =
1
T

(
L2 −

L2
1

L0

)
. (8)

The total thermal conductance of the SNRs is obtained as
κ(μ, T) = κel(μ, T) + κph(T). It should be stressed that κph(T)
depends only on temperature but not on the chemical potential
μ. Finally, the thermoelectric efficiency is determined by the
figure of merit

Figure 4. (a) Electronic conductance, (b) total thermal conductance,
(c) Seebeck coefficient, (d) figure of merit and (e) Lorentz number
as a function of the chemical potential μ, for a fixed temperature
T = 300K. Results are shown for a pristine sample and disordered
samples with vacancy concentrations of 1%, 3%, 4% and 5%.

ZT(μ, T) =
σS2T

κel(μ, T) + κph(T)
. (9)

In figure 4 we show the results of the average values
(over a hundred of realizations) of the electron conduc-
tance, the Seebeck coefficient, the total thermal conductance
〈κtotal〉 = 〈κph〉+ 〈κel〉, the figure of merit and the Lorentz
number of the disordered SNR, for a fixed temperature of
300K. These plots show the different thermoelectric quanti-
ties for pristine (black lines) and the disordered A-SNRs, with
vacancy concentration of 1% (violet lines), 3% (light-green
lines), 4% (mustard-yellow lines) and 5% (red lines). The elec-
tronic conductance and the total thermal conductance as a
function of the chemical potential [figures 4(a) and (b)] exhibit
a marked reduction at the center of the band (μ = 0) as the
concentration of vacancies increases. For instance, for concen-
trations of 1% and 3%, the electronic conductance decreases
about 45% and 80%, respectively. The occurrence of Ander-
son electron localization [62] explains the overall decrease of
the electronic conductance due to the existence of a disordered
potential landscape caused by vacancies. We observed simi-
lar results in a previous work, where we calculated the elec-
tron localization length λe for different vacancy concentration
[63]. In the case of the total thermal conductance, the com-
bination of the reduction of the phonon mean-free-path due
to phonon-defect scattering and the Anderson electron local-
ization (which affects the electron transmission function and
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consequently the electronic contribution to the thermal con-
ductance) generate the remarkable reduction of 〈κtotal〉. On the
other hand, due to the breaking of electron–hole symmetry and
the destructive quantum interference effects within the con-
ductor (Fano-like effect), the Seebeck coefficient displays an
enhancement of the absolute maximum values as the vacancy
concentration increases, as shown in figure 4(c). The Seebeck
coefficient is sensitive to abrupt changes in the transmission
function T (E) because, in the first order of approximation, it
depends directly on the derivative of T (E) with respect to the
energy, known as Mott’s formula [61, 64]. Thus, the sharp
reduction of the transmission probability through the disor-
dered conductor (which is very similar to the conductance
behavior) explains the enhancement of the Seebeck coeffi-
cient. Finally, the figure of merit ZT does not show a mono-
tonic trend but reaches the highest values at a concentration of
3% [figure 4(d)], which corresponds to an optimal combina-
tion of the physical properties that determine the thermoelec-
tric efficiency. We calculate the Lorentz number for different
vacancy concentrations, averaged over a hundred of random
configurations. The average Lorentz number decreases as the
vacancy concentration increases. It is due to the reduction of
the electronic contribution to the thermal conductance. The
faster reduction of the thermal conductance on increasing the
magnitude of disorder compared to the electric conductance
can be understood as follows. The disorder has stronger impact
on electron states of higher energy, that become more spa-
tially localized (Anderson localization) due to their smaller
wavelength. Therefore, electron transmission at high energy
is dramatically reduced while it is less affected at low energy.
This change in transmission compared to the pristine nanorib-
bon results in a decrease of L0 [see equation (5)] and then a
reduction of σ is expected. However, the reduction of L2 is
more pronounced due to the weighting factor (E − μ)2 in the
integral appearing in equation (5). Hence, the ratio L2/L0 (i.e.
the Lorenz number) decreases with disorder, as observed in
figure 4(e).

We can gain insight into the above result by plotting the
maximum of the figure of merit, ZTmax, as a function of temper-
ature, as shown in figure 5(a). Again, ZTmax reaches its highest
value at a vacancy concentration of 3%. The behavior of ZTmax

can be explained by the interplay between κel, κph and S. In
our system, we have confirmed that the Wiedemann–Franz
law holds to a large extend, i.e., κel/σT � (π2/3)(kB/e)2.
Thus

ZT � 3
π2

(
e

kB

)2 S2

1 + κph/κel
. (10)

In figure 5(b), we plot κph/κel as a function of the chem-
ical potential at T = 300K for various values of the concen-
tration of vacancies. We can see that the maximum of κph/κel

decreases with the concentration of vacancies, provided that
the concentration does not exceed ∼ 1%. The opposite behav-
ior is observed at larger concentrations. As the maximum
of κph/κel begins to grow faster than S2, ZT decreases with
the concentration of vacancies. Our simulations indicate that
the optimum concentration of vacancies is about 3%. Larger

Figure 5. (a) Maximum figure of merit as a function of temperature
for concentrations of 1%, 3%, 4% and 5%. As a comparison, the
pristine case is also shown; (b) ratio κph/κel as a function of the
chemical potential at T = 300K for various values of the
concentration of vacancies. For comparison, the result for the
pristine SNR is also shown (black line).

values of the concentration worsen the thermoelectric effi-
ciency of the A-SNRs. It is worth noticing that for the whole
range of the concentration of vacancies studied in this work
κph < κel. Therefore, vacancy defects efficiently reduce the
lattice thermal conductance while electron thermal transport
is less affected.

4. Conclusions

In this work, we have investigated the thermoelectric prop-
erties of silicene nanoribbons in the presence of a random
distribution of atomic vacancies in a diluted regime. We have
obtained the phonon and electron contribution to the thermal
conductance, the electronic conductance, the Seebeck coef-
ficient, the figure of merit, and the Lorentz number of these
nanoribbons. Due to the phonon-defect scattering within the
conductor, which suppresses some optical and acoustic vibra-
tional modes, we have found a significant decrease of the
phonon thermal conductance as a function of the defect con-
centration, over a wide range of temperature. Besides, due
to the break of electron–hole symmetry and the destructive
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quantum interference effects within the conductor, we have
obtained an enhancement of the Seebeck coefficient as the
vacancy concentration is increased, reaching an asymptotic
value at concentrations above 5%. We have observed that the
figure of merit ZTmax exhibits a maximum behavior for a con-
centration of 3%, which corresponds to an optimal value of the
factor S2/κtotal in the diluted regime. Finally, the ratio between
the electron and the phonon thermal conductances reaches
an optimum value for a specific concentration, leading to an
overall remarkable thermoelectric efficiency. With the above
findings, we can conclude that the addition of vacancies is a
suitable method for designing better and more efficient
nanoscale thermoelectric devices based on silicene.
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