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Abstract
Proximity exchange interaction between graphene electrons and nearby magnetic insulators paves
the way to create spin-polarised currents for spintronics applications. Different ferro- and
ferrimagnetic insulators, such as europium chalcogenides, yttrium iron garnet and cobalt ferrite,
have been proposed in the literature to induce magnetic correlations in graphene. We theoretically
study electronic transport properties of graphene in close proximity to a strip of a magnetic
insulator, when the system is connected to nonmagnetic source and drain leads. To this end, we
describe graphene electrons by means of an effective Hamiltonian whose model parameters are
extracted from first-principle calculations. We compare the spin-polarization of the electron
current calculated for a number of different magnetic insulators, aiming at elucidating the effects
of the various model parameters on the efficiency of the device. In particular, we demonstrate that
the polarization of the electric current across the device can be tuned by the source–drain voltage.
We conclude that the heterostructures based on europium chalcogenides are ideal candidates to
achieve high polarisation at low temperature.

1. Introduction

Graphene is oftenly envisioned as a promising candidate to supersede semiconductors as the basic material
for the design of innovative nanodevices. The truly two-dimensional geometry as well as large carrier
mobility (over two order of magnitudes larger than silicon) make graphene suitable for a wide range of
applications in electronics [1]. In this context, spin-based electronics (spintronics) exploits the electron spin
degree of freedom [2] and put forward new ways for efficient and reliable manipulation and storage of data.
Therefore, spin-related and magnetic effects in graphene have been the focus of special interest for their
relevance in spintronics [3–7]. In particular, ferromagnetic insulators such as europium chalcogenides (EuO
and EuS, displaying giant proximity magnetoresistance [8]) deposited on graphene can induce
ferromagnetic correlations [9]. For instance, epitaxial growth of EuO onto graphene was reported in
reference [10] and magneto-optic measurements indicate that the Curie temperature of thin films reaches
the value of bulk EuO (∼69 K). Due to the proximity exchange interaction between magnetic ions and
graphene electrons, nanostructures such as tunnel barriers [9, 11], quantum rings [12–14] and superlattices
[15] can operate as spin filters and sustain spin-dependent Bloch oscillations.

As a first approximation, the proximity exchange interaction can be viewed as an effective Zeeman
splitting of the spin sublevels [9, 16, 17]. The interaction has the characteristic length scale of one atomic
layer. Therefore, the splitting is induced only in the regions of graphene which are in close contact to the
ferromagnetic insulator. As a consequence, electrons propagating along the sample will be subjected to a
spin-dependent potential, leading to spin-polarized currents. However, detailed ab initio calculations
demonstrate that the scenario is more intricate [18, 19]. According to density functional theory simulations,
the parameters of the effective electron Hamiltonian around the K and K′ valleys of graphene in close
proximity to a narrow film of a ferromagnetic or ferrimagnetic insulator (FMI) depend on the layer
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Table 1. Material-dependent parameters of the graphene/FMIs structures
used in our calculations, retrieved from references [8, 17, 19–21].
EuO/Gr/EuO aligned and misaligned structures differ by the alignment of
the EuO monolayer on opposite sides of the graphene layer [20].

Structure δ (meV) Δ (meV) m (meV) v↑/vF v↓/vF

EuO/Gr/EuO(1BL) aligned 199.5 326.5 −17.5 1.34 1.63
EuO/Gr/EuO(1BL) misaligned 215.5 159.5 −4.5 1.34 1.63
Gr/EuO(6BL) 66.0 116.0 18.0 1.34 1.63
Gr/EuS(6BL) 6.5 175.0 16.6 1.40 1.70
Gr/Y3Fe5O12 −83.5 84.0 31.5 0.54 0.60
Gr/CoFe3O4 −47.0 10.0 2.0 0.21 0.23

thickness. Furthermore, in addition to the aforementioned exchange coupling induced by the magnetic
ions, the fact that the graphene sublattices feel different potential might result in a spin-dependent gap
opening at the Dirac point [19]. Finally, a spin-dependent mass term in the effective electron Hamiltonian
is needed to reproduce the band structure obtained by first-principle calculations. The combination of all
these interactions have an impact on the spin-filtering capabilities of the device that remains rather
unexplored. The aim of this work is to present a thorough study of the effects of the various interaction
terms that arise in a realistic description of graphene electrons in close proximity to a strip of a
ferromagnetic insulator (EuO and EuS) or a FMI (yttrium iron garnet, YIG, and cobalt ferrite, CFO). The
spin-polarization of the electron current when the system is connected to nonmagnetic source and drain
leads will be used as a figure of merit for the assessment of the device. The combination of the exchange
splitting due to the interaction of the electron spin with the magnetic ions and the effect of the
source–drain voltage can result in a controllable spin-polarized electric current. Most importantly, we have
found that the highest value of the current density polarization at low temperature is reached with
EuO/Gr/EuO heterostructures.

2. Model and effective Hamiltonian

We investigate spin-dependent electron transport through a hybrid nanostructure formed by a strip of a
ferro- or FMI grown on top (or top and below, see table 1) of bulk graphene. The hybrid system is
connected to nonmagnetic source and drain leads, as sketched in figure 1(a). A gate voltage creates a
potential energy barrier of height U0 for electrons in the region of graphene which is in close proximity to
the FMI. The electric potential profile due to the presence of the gate voltage can be calculated by solving
the Poisson and Schrödinger equations self-consistently. However, for simplicity, we assume a square
potential profile, as shown in figure 1(b). We address the current and its polarization at a finite bias voltage
between source (S) and drain (D), whose chemical potentials, μS = μ and μD = μ− eVSD, have the same
offset μ from the Dirac point. For concreteness, we restrict ourselves to the case μ = 0 in our calculations.

The Hamiltonian describing the electron dynamics in pristine graphene is given as

H0 = �vF𝟙s ⊗ σ · k, (1a)

where �vF = 658 meV nm. In the graphene region in close proximity to the FMI stripe (a < x < a + L), the
proximity exchange interaction leads to the following electron Hamiltonian [19]

HFMI = �𝕧s ⊗ σ · k +
δ

2
sz ⊗ 𝟙σ +

Δ

2
𝟙s ⊗ σz +

m

2
sz ⊗ σz + U0𝟙s ⊗ 𝟙σ , (1b)

with

𝕧s =

(
v↑ 0
0 v↓

)
, (1c)

where the matrix 𝕧s acts on spin space. 𝟙σ is the identity matrix and σx, σy and σz are the corresponding
Pauli matrices, acting on pseudospin space (sublattices A and B of graphene). Similarly, 𝟙s and sz are the
identity and a Pauli matrix acting on spin space, and the symbol ⊗ stands for the Kronecker product. The
proximity exchange splitting of the electronic states is accounted for by the first term of HFMI. The second
term takes into account that both graphene sublattices feel different potential and the third term is a
spin-dependent gap [19]. Notice that intervalley scattering opens up a trivial gap [20] but its magnitude is
small and it will be neglected in the present analysis. Parameters used in our calculations are listed in
table 1.
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Figure 1. (a) Sketch of the spintronic device. A strip of a ferro- or ferrimagnetic insulator (FMI) is grown of top (or top and
below, see table 1) of bulk graphene and the device is then connected to source (S) and drain (D) leads. (b) A gate voltage creates
an additional potential energy barrier of height U0 for electrons in the region of graphene which are in close proximity to the
FMI. For simplicity, the potential profile due to the gate voltage is assumed to be zero in regions I and III and constant in region
II. The device is assumed infinite along the transverse direction Y .

The Hamiltonian H = [1 − F(x)]H0 + F(x)HFMI acts upon the four-component wave function Ψ(x, y)
corresponding to the sublattice (A and B) and spin (↑ and ↓) degrees of freedom. Here F(x) = 1 for
a < x < a + L and vanishes otherwise (the proximity exchange interaction appears only when the graphene
electron is located in region II shown in figure 1). The four-component wave function can be cast in a more
compact form as

Ψ(x, y) =

(
ψ↑(x, y)
ψ↓(x, y)

)
=

⎛
⎜⎜⎝

A↑(x, y)
B↑(x, y)
A↓(x, y)
B↓(x, y)

⎞
⎟⎟⎠ . (2a)

Hence HΨ(x, y) = EΨ(x, y) with

H =

⎛
⎜⎜⎝

c1F(x) �ṽ↑(x)k− 0 0
�ṽ↑(x)k+ c2F(x) 0 0

0 0 c3F(x) �ṽ↓(x)k−
0 0 �ṽ↓(x)k+ c4F(x)

⎞
⎟⎟⎠+ U0F(x)𝟙4, (2b)

where 𝟙4 is the 4 × 4 unity matrix. We have also defined k± = kx ± iky, ṽs(x) = [1 − F(x)]vF + F(x)vs

(s = ↑, ↓) and the following material-dependent parameters

c1 =
m

2
+

δ

2
+

Δ

2
, c2 = −m

2
+

δ

2
− Δ

2
,

c3 = −m

2
− δ

2
+

Δ

2
, c4 =

m

2
− δ

2
− Δ

2
. (2c)

3. Energy bands of hybrid graphene/FMI structures

Before calculating the electric current through the device sketched in figure 1, it is instructive to discuss the
band structure of hybrid graphene/FMI systems. In our model this can be accomplished by taking the width
of the FMI strip L →∞, i.e. we replace F(x) → 1 in the Hamiltonian H given in equation (2b). Spin-up and
spin-down conduction and valence bands are then easily calculated by direct diagonalization of the
Hamiltonian H

E↑(k) = U0 +
δ

2
±
√

1

4
(Δ+ m)2 + �2v2

↑
(
k2

x + k2
y

)
,

E↓(k) = U0 −
δ

2
±
√

1

4
(Δ− m)2 + �2v2

↓
(
k2

x + k2
y

)
. (3)
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Figure 2. Calculated spin-dependent energy bands (3) for the EuO/Gr/EuO(1BL) aligned hybrid structure, using the parameters
given in table 1 with U0 = 0. The proximity exchange interaction of graphene electrons with the FMI splits the bands and open
spin-dependent gaps. The blue and red lines indicate the bands for spin-up and spin-down states, respectively.

The proximity exchange interaction of graphene electrons with the FMI opens a sizable gap of magnitude
|Δ+ m| and |Δ− m| for spin-up and spin-down electrons, respectively. As an example, figure 2 shows the
spin-dependent energy bands (3) for the EuO/Gr/EuO(1BL) aligned hybrid structure, calculated with the
parameters given in table 1. The band structure can be shifted upwards or downwards an amount U0 by
means of a gate voltage, what is crucial to control the spin-polarized current through the device shown in
figure 1.

4. Spin-polarized current

In this section we focus on the spin-polarized current through the nanodevice. Assuming that
electron–phonon scattering in our samples is reduced, we consider electrons in fully coherent regime
transferring ballistically through the system. We obtain the transmission coefficient as a function of energy
in a device with an FMI barrier of finite width L and use the Landauer–Büttiker scattering formalism to
calculate the current.

Since the system is translationally invariant in the transverse direction, the corresponding component of
the wave vector is conserved. Therefore, the wave function (2a) can be factorized as follows

Ψ(x, y) = eikyy

(
ϕ↑(x)
ϕ↓(x)

)
. (4)

In the biased nanostructure (VSD 
= 0), the longitudinal component of the wave vector in regions I and III
(pristine graphene) reads

kIx =

√(
E

�vF

)2

− k2
y , kIIIx =

√(
E + eVSD

�vF

)2

− k2
y . (5)

Electron states are spin-degenerate in these two regions (j = I, III)

ϕj(x) = Cj eikxx

(
1

±kj+/k

)
+ Dj e−ikxx

(
1

∓kj−/k

)
, (6)

where the upper (lower) sign refers to the conduction (valence) bands and Cj and Dj are integration
constants. We defined kj± = kjx ± iky for the sake of brevity. The proximity exchange interaction of
graphene electrons with the magnetic ions in region II breaks the spin degeneracy and the wave function is
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written down as follows

ϕ↑,II(x) = C↑,II eiq↑x

⎛
⎝ 1

2�v↑(q↑ + iky)

Δ+ m ± ρ↑

⎞
⎠+ D↑,II e−iq↑x

⎛
⎝ 1

−2�v↑(q↑ − iky)

Δ+ m ± ρ↑

⎞
⎠ ,

ϕ↓,II(x) = C↓,II eiq↓x

⎛
⎝ 1

2�v↓(q↓ + iky)

Δ− m ± ρ↓

⎞
⎠+ D↓,II e−iq↓x

⎛
⎝ 1

−2�v↓(q↓ − iky)

Δ− m ± ρ↓

⎞
⎠ , (7)

for spin-up and spin-down electrons, respectively. We have the following parameters for spin-up states

q↑ =

√(
E − U0 − δ/2

�v↑

)2

−
(
Δ+ m

2�v↑

)2

− k2
y ,

ρ↑ = |2 (E − U0) − δ|. (8)

The corresponding parameters q↓ and ρ↓ for spin-down states are obtained by replacing v↑ by v↓, m by −m
and δ by −δ in the above expressions.

The continuity of the wave function at the edges of region II implies that ϕI(a) = ϕs,II(a) and
ϕs,II(a + L) = ϕIII(a + L) with s = ↑, ↓. These conditions make it possible to relate the output coefficients
CIII and DIII with the input coefficients CI and DI by means of the 2 × 2 transmission matrix as follows(

CIII

DIII

)
=

(
M11,s(E,φ) M12,s(E,φ)
M21,s(E,φ) M22,s(E,φ)

)(
CI

DI

)
, (9)

where φ = arctan(ky/kx) is the angle of incidence. Direct calculation of the transmission matrix shows that,
for propagating states in regions I and III, the only ones relevant for transport, the conditions M22 = M∗

11

and M21 = M∗
12 hold, and det(M) = (kIx/kIIIx)(1 + eVSD/E). The transmission matrix allows us to obtain

the spin-dependent transmission coefficients τ s(E,φ) setting CI = 1 and DIII = 0, yielding

τs(E,φ) =

∣∣∣∣ kIx

kIIIx

(
1 + e

VSD

E

)∣∣∣∣ |M22,s(E,φ)|−2. (10)

After a lengthy but straightforward calculation we get the transmission coefficient for spin-up states of the
conduction and valence bands

τ↑(E,φ) =
8�

2v2
↑sIsIIIkIxkIIIxq2

↑
A↑(E,φ) sin(2Lq↑) + B↑(E,φ) cos(2Lq↑) + C↑(E,φ)

, (11)

with

A↑(E,φ) = −2e
v↑
vF

(Δ+ m)VSDkyq↑

B↑(E,φ) = 2
v↑
vF

[2(E − U0) − δ](2E + eVSD)k2
y − 4�

2v2
↑(k2

y + q2
↑)k2

y−

−
(Δ+ m)2 + 4�

2v2
↑k2

y

�2v2
F

(E + eVSD)E

C↑(E,φ) =
[2(E − U0) − δ]2

�2v2
F

(E + eVSD)E + 4�
2v2

↑(k4
y + sIsIIIkIxkIIIxq2

↑)−

− 2
v↑
vF

[2(E − U0) − δ](2E + eVSD)k2
y , (12)

where sI = sgn(E) and sIII = sgn(E + eVSD). The corresponding transmission coefficient for spin-down
states, τ ↓(E,φ), is obtained by replacing m by −m, v↑ by v↓, q↑ by q↓ and ρ↑ by ρ↓ in the above expressions.

Finally, following the Büttiker–Landauer method [22–24], the spin-dependent current density is
obtained as follows

jx,s = − 2e

h2vF

∫ ∞

−∞

∫ π/2

−π/2

[
f0(E,μS) − f0(E,μD)

]
τs(E,φ)E cos φ dE dφ, (13)

where f0 stands for the Fermi–Dirac distribution function of the contacts. At low and moderate
temperature we can approximate f0(E, μα) ≈ θ(−E, μα), θ being the Heaviside step function and

5



New J. Phys. 23 (2021) 053029 C H Fuentevilla et al

Figure 3. Spin-dependent transmission coefficient as a function of the graphene electron energy for U0 = 500 meV,
VSD = 0.5 V, L = 50 nm and two different angles of incidence (a) φ = 0 and (b) φ = π/10 in the EuO/Gr/EuO(1BL) aligned
nanostructure. Blue and red lines correspond to spin-up and spin-down states, respectively. The inset shows the transmission
polarization Pτ as a function of energy at normal incidence, obtained from the data shown in panel (a).

α = S, D. Therefore

jx,s = − 2e

h2vF

∫ μD

μS

∫ π/2

−π/2
τs(E,φ)E cos φ dE dφ . (14)

We have checked that the current density calculated from equations (13) and (14) are essentially the same
even at room temperature. Hence, in the next section we will calculate the current density by using (13) and
(14) with μS = 0 and μD = −eVSD.

5. Results

The sample that we address to show the capabilities of the proposed device as a spin-filter is the
EuO/Gr/EuO(1BL) aligned nanostructure with a width L = 50 nm and a gate voltage such that
U0 = 500 meV. Other materials show similar trends and the comparison between them will be discussed at
the end of the section. In figure 3 we show the transmission coefficient as a function of the graphene
electron energy for two different angles of incidence when VSD = 0.5 V. A spin-dependent stop-band is
clearly revealed in the transmission spectrum at normal incidence (see figure 3(a)), in agreement with the
band structure presented in figure 2. The stop-band can be shifted upwards or downwards in energy by
changing U0, enabling tunability of the device. The inset shows the transmission polarization, defined as
Pτ ≡ (τ ↑ − τ ↓)/(τ ↑ + τ ↓), as a function of energy at normal incidence. We observe that full polarization is
achieved over two wide energy windows centred at 0.35 eV (spin-up electrons) and 0.65 eV (spin-down
electrons), respectively. Figure 3(b) displays the transmission spectrum at an incidence angle φ = π/10. In
this case, a spin-independent stop-band appears at lower energy, centred at about −0.55 eV. The origin of
this spin-independent stop-band is not related to the EuO layer but to the oblique incidence of carriers
considered in figure 3(b) (φ = π/10) that breaks the usual Klein tunneling found at normal incidence
(φ = 0) [25, 26]. However, the two stop-bands widen upon increasing the angle of incidence but they never
overlap. We have also found that the main stop-band is quite robust against variations of the incidence
angle, φ, the width of the FMI barrier, L, and the source–drain voltage, VSD. This implies that the
polarization shown in the inset of figure 3(a) will determine to a large extend the current density, thus
allowing the device to operate as a tunable source of polarized electrons. Below we will discuss the
polarization of the current density.

6



New J. Phys. 23 (2021) 053029 C H Fuentevilla et al

Figure 4. Current density as a function of the applied voltage between source and drain contacts for U0 = 500 meV, L = 50 nm
and T = 20 K in the EuO/Gr/EuO(1BL) aligned nanostructure (left axis). Blue and red solid lines correspond to spin-up and
spin-down electrons, respectively. Dashed black line corresponds to the current density polarization P (right axis). Shaded area
shows the voltage range of high polarisation of the current density.

Figure 5. Current density polarisation P as a function of the source–drain voltage VSD for different FMI of table 1. The
parameters U0, L and T are the same as in figure 4. Shaded area shows the voltage range of high polarisation of the current
density.

The polarization of the current density is defined as

P =
jx,↑ − jx,↓
jx,↑ + jx,↓

, (15)

and it will be the figure of merit to assess the spin-filtering properties of the device. Figure 4 displays the
current density of spin-up and spin-down electrons as well as the polarization of the current density as a
function of the applied voltage between the source and the drain contacts in the EuO/Gr/EuO(1BL) aligned
nanostructure. We observe the appearance of high spin-polarization of the current density over a broad
range at negative values of VSD (shaded area in figure 4), where P ∼ 50%. It is most important to remark
that the plateau of high polarization occurs at relatively high source–drain voltage and consequently the
current density is not small. It is feasible to enhance the polarization up to perfect efficiency (100%) but
usually this happens at very low source–drain voltage VSD and low values of U0 (e.g. U0 = 100 meV).
Hence the current density is vanishingly small, which makes it impractical for applications. In other words,
one needs to seek for a balance between high efficiency and not too low current density.

Finally, we have studied the current density polarization for when the FMI stripe is fabricated with the
materials listed in table 1, for the same parameters as in figure 4. The results are collected in figure 5. It
becomes apparent that the highest polarization is achieved with EuO/Gr/EuO heterostructures, with
P ∼ 50% over a broad range of voltages. Other hybrid structures shows much lower values of the
polarization of the current density for the same set of parameters.
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6. Conclusions

In summary, we have proposed and studied a novel spin filter which exploits quantum interference effects.
The device comprises an FMI strip grown on top and/or below single-layer graphene. We showed that due
to the exchange splitting induced by the magnetic ions of the FMI, the transmission coefficient is different
for spin-up and spin-down electrons, giving rise to the polarization of the current density. By comparing
different FMIs we found that those based on EuO/Gr/EuO heterostructures yield the highest efficiency. We
conclude that the proposed device is a promising candidate for real world applications. In particular, it can
be used as a tunable source of polarized electrons.
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