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Abstract

We present a preliminary summary of the zero temperature properties of the two-dimensional random sine-Gordon model
of surface growth on disordered substrates. We found that the properties of this model can be accurately computed by using
lattices of moderate size as the behavior of the model turns out to be independent of the size above certain length (~ 128 x 128
lattices). Subsequently, we show that the behavior of the height difference correlation function is of (log r)? type up to a certain
correlation length (§ = 20), which rules out predictions of log » behavior for all temperatures obtained by replica-variational
techniques. Our results open the way to a better understanding of the complex landscape presented by this system, which has

been the subject of very many (contradictory) analyses.
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1. Introduction

The two-dimensional (2D) random-phase sine-
Gordon model (RsGM) has attracted a lot of attention
after Toner and di Vicenzo [1] introduced the concept
of super-roughening. This system has been mainly
studied in connection to surface growth on disor-
dered substrates [2-16], but it is also very relevant
in many other contexts such as vortex-line systems
with random pinning [17], random-field vortex-free
XY models [14], phase degrees of freedom of pinned
charge-density waves [18,19], or Frenkel-Kontorova
models [20]. In addition to its ability to describe many
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physical problems of interest, the importarice of this
model stems from the fact that the advances made in
its investigation will certainly have far-reaching con-
sequences in understanding the statical and dynamical
landscape of glassy systems in general.

The RsGM is defined by the following hamiltonian:

H= 23 @ 0p° =~ VoY cos@y — o0, ()
{@.7) i
where ¢; is a continuous variable on a square lattice,
(i, j) stands for nearest neighbors, Vj stands explicitly
for the strength of the pinning potential compared to
that of the stiffness/surface tension term, and ¢l.0 are
quenched (i.e., time-independent) uncorrelated ran-
dom variables uniformly distributed in (0, 2x]. This is
nothing but a generalization of the sine-Gordon model
(sGM), first introduced by Chui and Weeks [21] as
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a continuous version of the solid-on-solid gaussian
model (see, e.g., [22]). In this context, the random
variable ¢>? represents simply deviation from flatness
of the substrate on top of which the surface is growing.
The equilibrium of the sGM is well known [21,22]
and consists of two phases separated by a roughen-
ing temperature, Tr, above which the periodic term
becomes irrelevant in the sense of the renormaliza-
tion group (RG). Therefore, for T > Tg, the surface
is rough because the cost of creating steps is strictly
zero, whereas for T < Tr the surface is macroscop-
ically flat. In fact, even the nonequilibrium problem
has been addressed and it is presently well understood
(see [23] and references therein).

As regards the RsGM, the situation is considerably
less clear. There is agreement between the different
groups in that there must be a roughening tempera-
ture 73 (which in principle might not coincide with
Tr) as well, above which the surface ceases to feel
the periodic potential, thus behaving exactly like the
sGM. The arguments supporting this idea are again
related to RG results, and can be briefly stated by say-
ing that temperature renormalization of the sine term
should wipe out the disorder. At present, Ty is not
well determined. The problems arise when T < TI’{,
as different techniques yield very different and contra-
dictory results. A good summary of these is contained
in [14], but the main point is that RG calculations
predict a super-rough low temperature phase (super-
rough meaning that the height-difference correlation
function C(r) ~ (log r)2, diverging faster than in the
high temperature phase, C(r) ~ logr if T > Ty),
whereas replica-symmetry breaking calculations yield
a quenching of C(r), i.e., it becomes independent of
temperature for 7 < T and equal to that at Ty (of
logarithmic type as stated). The available works on
this subject [2-14] have not solved this dilemma, and
hence our present research is intended to shed some
light on these questions.

2. Simulation results

We have carried out simulations of the RsGM using
Langevin molecular dynamics (see [23] for details),

which, at zero temperature, is a fully deterministic
procedure that integrates the (overdamped) equations
of motion, that read

b= (¢ — )+ Vo) _sin(@; —¢). @)

{i.) i

We have simulated systems of different sizes L x L,
ranging from L = 32 to L = 512 lattice sites. In
all cases, we have verified that the final configuration
obtained was (statistically) the same independently of
the initial conditions. This is a nontrivial question,
as the presence of disorder in this system could give
rise to glassy behavior, in particular, to the appearance
of many different ground states, as well as different
basins of attraction for each one of them.

After this satisfactory check, we proceeded to estab-
lish which was the dependence on the lattice size. This
we show in Fig. 1, where we plot the time evolution of
the interface width, defined as (((¢% — (¢;))*)}q ((-- )
meaning average over the lattice, and (- - )4 average
over substrates). We pick this quantity as a relevant
global indicator of convergence to an asymptotic state
but of course we monitored other quantities, such as
the mean height or the mean velocity as independent
checks of our conclusions (see also the discussion of
correlation functions below). Snapshots of the final
state (see Fig. 2) of the surface confirm this picture
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Fig. 1. Log-log plot of the squared interface width (roughness)
as a function of time for typical realizations and different lattice
sizes. Inset: same plot with normal axes.
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Fig. 2. Snapshot of the asymptotic state of a L = 256 simulation.
In the bottom left corner, superimposed for comparison, same
for L =32, L =64, and L = 128. Notice the similarity of the
results when L > 64.

as well. From all these magnitudes, in particular from
the plots in Fig. 1, we conclude that systems with L >
128 yield basically the same results, and therefore we
can discuss our measurements on those simulations as
representative of large lattices behavior. We note in
passing that the values we have obtained so far for the
saturated roughness at zero temperature do not clarify
whether it exhibits scaling [22] or not, although from
Fig. 1 one can conjecture the existence of a dynamic
exponent 8. We will pursue further this issue in the
near future.

We now come to the main point of the work we are
summarizing in this paper. Fig. 3 collects the simula-
tion program outcome about the correlation function
for all the studied lattices averaged over 10 realiza-
tions. From this plot, we can conclude with a high
degree of confidence that, first, our results are inde-
pendent of the system size, and second, that the corre-
lation function is of (logr)? type (cf. the inset where
we plot C(r) versus (logr)?, yielding a clear straight
line, for L = 256). Nevertheless, this is not the only
information we extract from this function: Indeed, we
also see that there is a well-defined correlation length
& ~ 20 lattice units, beyond which the surface is un-
correlated. This characteristic value can also be seen
in Fig. 2 as the typical length scale of the surface
features.
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Fig. 3. Height difference correlation function Inset: C(r) vs.
(logr)? for L = 256. Averages comprise 10 realizations of
the substrate disorder. Error bars correspond to the rms of the
average.

3. Discussion and conclusions

Among the results summarized in the previous para-
graph, we first discuss the finding of a particularly
noted length scale. This is coherent with the fact that
lattices of sizes above 64 x 64 yield basically the same
results: This is to be expected if the surface characteris-
tics do no extend beyond a range of about 20 sites. Pre-
liminary analytical and numerical calculations show
that this length arises at sites where the disorder takes
values around 7, which turn out to be the ones respon-
sible for the most noticeable distortions of the surface.
These distortions adopt a more or less conical form,
their radius being very close to the correlation length
&. Therefore, we provisorily conclude that at the phys-
ical roots for the appearance of a correlation length
lies the effect of “more disordered” sites.

However, probably our most relevant achievement
in this work is the fact that we have shown that the
height-difference correlation function behaves very
approximately like (logr)?. We do not claim that
C(r) is exactly a squared logarithm, as the contribu-
tion of corrections to this behavior cannot be excluded
from the present state of our simulation program.
Although this is something that remains to be settled,
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what we do claim is that C(r) is by no means simply
logarithmic. This is very important, since variational
replica-symmetry breaking calculations predicted that
C(r)y = A(Tg) logr for all T < Ty including T = 0.
We believe that our simulations rule out the possibiliy
of this prediction being correct. Recent work from
the Rome group analyzing higher moments of C(r)
supports this conclusion as well {24]; another group
has subsequently found the same behavior [25].1
We note that this conclusion raises the possibility
of multiscale homogenization issues and associated
averaging and nonergodicity features. On the other
hand, we do not think that our results should be taken
as grounds to establish the validity of RG calcula-
tions, because these are only expected to be valid in a
temperature interval around 73'; RG predicts nothing
about the very low temperature regime we are dealing
with here. Therefore, till now we can only provide
the negative result of the invalidation of variational
predictions, whereas on the positive side we can only
say that there are indications that RG results may be
closer to the actual physical behavior. We hope that
the extension of our results to nonzero temperatures,
which we are currently addressing, will allow us to
find out what is the actual landscape of this system
and whether RG is still a good theory to understand it.
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