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Dynamics and stability of Bose-Einstein solitons in tilted optical lattices
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Bloch oscillations of Bose-Einstein condensates realize sensitive matter-wave interferometers. We investigate
the dynamics and stability of bright-soliton wave packets in one-dimensional tilted optical lattices with a
modulated mean-field interaction g(¢). By means of a time-reversal argument, we prove the stability of Bloch
oscillations of breathing solitons that would be quasistatically unstable. Floquet theory shows that these breathing
solitons can be more stable against certain experimental perturbations than rigid solitons or even noninteracting

wave packets.
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Matter-wave interferometers are established as standard
tools for precision measurements of small forces. The tiny
wavelength of ultracold atoms is an asset, and using Bose-
Einstein condensates (BECs) can greatly enhance signal-to-
noise ratios [1,2]. In this context, Bloch oscillations (BOs) of
wave packets in tilted periodic potentials have been proven
very useful [3—-6]. Much after their early prediction by Zener
[7,8], BOs were observed with electrons in semiconductor
superlattices [9,10], with cold atoms in optical lattices [11,12],
and with photons in waveguide arrays [13,14]. BOs are very
sensitive to dephasing since they rely on coherent Bragg
scattering of k-vectors from one boundary of the Brillouin zone
to the other. The slightest lattice imperfection or interaction
causes random scattering of different k-components of a
wave packet, thus broadening its momentum distribution and
destroying coherent oscillations in real space.

Long-living BOs of up to 10* cycles with period T [15]
were achieved in a BEC experiment by tuning the scattering
length between Cs atoms to zero with the help of a suitable
Feshbach resonance [16,17]. At finite interaction, it appears
recommendable to use stable localized wave packets, namely
soliton solutions to the nonlinear Schrodinger equation, in
order to minimize the detrimental effects of interaction. Bright
solitons arise from a dispersion that counteracts the effect of
the nonlinearity. As a rule, a soliton can only be stable if
the effective mass and interaction parameter have opposite
signs. In the free-space case of positive mass, bright solitons
are realized with atoms that attract each other [18-20]. In
a lattice, the mass becomes negative close to the edge of
the Brillouin zone, and there solitons can be prepared with
repulsive interaction [21]. During BO cycles, the mass m(t)
changes its sign periodically. Thus, the interaction parameter
g(¢) has to change accordingly in order to respect the criterion
of opposite signs; both spatial and temporal nonlinearity
management schemes to this effect have been proposed within
the framework of the Gross-Pitaevskii equation [22,23].

Independently, we have investigated the stability of BOs
with an interaction parameter g(¢) that is modulated harmoni-
cally in time, and we have found a whole family of cases that
yield stable BOs of breathing wave packets [24]. Conversely,
many other instances of g(¢) result in rapid destruction of BOs.
Remarkably, the stability criterion developed in Ref. [24] is
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obviously incompatible with the simple sign rule mentioned
above. For instance, the Bloch-periodic modulations g(¢) =
+go cos(2wt/ Tg) with opposite signs lead both to stable BOs
for the same mass m(¢). This prompts a question that is
as fundamentally interesting as it is important for practical
applications: Is solitonic stability helpful to sustain BOs in
general?

In this work we show that the stability of BOs is not
conditioned on wave-packet rigidity. We first introduce a
bounded time in the equation of motion that predicts perfectly
stable breathing solutions, in full agreement with previous
results [24]. But even under these premises, rigid solitons
could be expected to be more robust against experimental
imperfections. We study in detail the relevant case of BO decay
caused by magnetic fields that oscillate off phase. Contrary
to expectations, we find that the breathing wave packet is
more stable than the rigid soliton. For the experimentally
realistic parameters chosen, the rigid soliton is very close to
being noninteracting. Thus, a harmonic modulation of finite
interaction turns out to effectively stabilize BOs.

In the mean-field regime, the BEC is described by the
complex order parameter W (x,7) in a one-dimensional optical
lattice potential V(x) = Vpcos?(wx/b) with spacing b. If
the lattice is sufficiently deep, one may use a tight-binding
approximation, where the condensate is represented by a single
complex number W,(¢) at each lattice site [25]. Our starting
point is thus the nonlinear equation of motion

i, = —J(W,y1 + W, 1) + Fbn, + g0V, ¥, (1)

for the order parameter with normalization ), ;1% = 1.
Nearest-neighbor sites are coupled by the tunneling ele-
ment J/E ~ 4(Vy/E)¥* exp(—2+/Vo/E)/ /T, where E =
R%m?/2mb? is the lattice recoil energy [26]. The interaction
parameter g = ,/2w,wywim/wNa/J is derived from the
scattering length a, the atom number N, and the local
ground state determined by the lattice frequencies w; [25].
The dispersion relation of this single-band model reads
e(p) = —2J cos(pb/h). Its curvature or inverse mass m~! =
2Jb% cos(pb/h)/h? determines the wave-packet dynamics
under the influence of a constant force F that stems from
a uniform acceleration of the BEC by, for example, gravity. At
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fixed lattice geometry, the interaction parameter g(¢) can be
controlled by external magnetic fields using suitable Feshbach
resonances.

In the following, we use J and b as units of energy and
length, respectively, and set i = 1. We tackle Eq. (1) by sep-
arating the rapidly varying Bloch phase p(¢)n from a smooth
envelope A(z,t) that moves with the center of mass x(z):
W, (1) = PO A(n — x(1),1)e?®. With p(t) = —Ft, x(t) =
X0+ 2cos(Ft)/F, and ¢ = ¢o + 2sin(Ft)/F, the envelope
is found to obey the equation

. I > 2

i0,A = 2m(t)aZA +g@®)IA|"A, )
neglecting higher spatial derivatives of A. Note that choosing
an immobile wave packet with p(0) = 0 as the initial condition
fixes the phase for subsequent BOs. The inverse mass m (1)~ =
2 cos(F't) oscillates rapidly, but if the interaction is tuned
such that m(#)g(t) < 0 varies slowly enough, Eq. (2) admits a
soliton solution

1 1
\/_2_5 cosh(z/&)

whose quasistatic width is & = —2/[g(#)m(¢)] > 0. To be
stable, the soliton must be able to follow this width adiabati-
cally. Otherwise, its breathing mode will be driven, and other
excitations may be created. Therefore, the least disruptive
way of accelerating a soliton of width &, is to impose a
perfectly rigid envelope by choosing g.(t) = —2m(t)~' /& =
grcos(Ft)with g, = —4/&; < 0. More extensive studies based
on this idea have been put forward in Refs. [22,23].

Let us contrast this reasoning with an analytical time-
reversal argument that we developed after studying the stability
of BOs under harmonic modulations of g [24]. Quite generally,
a rigid wave packet is by no means necessary for persistent
BOs. Already for the case g(¢) = 0, breathing is the rule: In
the first quarter of the Bloch cycle, the mass is positive and the
wave packet spreads. When the mass changes sign, the time
evolution is reversed and the wave packet recovers its original
shape at the edge of the Brillouin zone. Thus, the wave packet
shows periodic breathing on top of the BO, independently of
its initial shape. Also in the interacting case, one can find
nontrivial functions g(¢) in Eq. (2) compatible with this time
reversal. Consider the class of periodic functions

A(z,1) = e, 3)

g(t) = cos(F1)P(sin(Ft)/F), 4)

where a factor cos(Ft) can be separated from a polynomial
P(n) in the bounded time variable

sin(F't)

7 ®)

1 1
n(t) = -/ m(s) " 'ds =
2 Jo
Because 9,7(t) = [2m(t)]7!, the explicit time dependence of
the mass factorizes from all terms in equation of motion (2)
for A(z,t) = A(z,n(0)):

id,A(z,n) = =32 A(z,n) + PIAI*A(z,n). (6)

The ensuing dynamics for A(z,7) as function of 7 may be quite
complicated. However, as n(t) itself is a periodic function of
time, the solution A(z,f) must also be periodic: Any dynamics
taking place in the first quarter of the Bloch period, while 7 runs
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FIG. 1. (Color online) Time evolution scheme of stable BOs. Left:
The inverse mass m ™!, the interaction parameter of the rigid soliton
&r» as well as that of a breathing soliton gy, are shown together with the
bounded time = sin(F't)/ F as function of time or momentum —p =
F't. Right: The k-space density [obtained by numerical integration of
Eq. (1)] of a breathing wave packet is a function of 7 and thus strictly
periodic in ¢; the points in time a and b as well as ¢ and d show the
same distribution, respectively.

from O to 1/F, is exactly reversed in the next quarter, when
n runs back. Figure 1 illustrates this argument by showing
the time dependence of several key quantities over one Bloch
cycle, as well as a k-space density plot with clearly visible
breathing dynamics.'

We stress that Eq. (4) includes both cases, g(t) =
+gocos(Ft). Although the +cos case does not fulfill the
soliton stability criterion m(t)g(¢) < O, the preceding time-
reversal argument ensures that both cases lead to undamped
Bloch oscillations—at least within the approximations under-
lying equation of motion (2). As shown in the right-hand panel
of Fig. 1, this prediction is confirmed by numerical integration
of the tight-binding model (1) with a standard fourth-order
Runge-Kutta method.

Which of these stable solutions are the most robust under
variations of experimental control parameters? Indeed, even
cold-atom experiments suffer from slight imperfections such
as residual uncertainties in the magnetic field controlling the
interaction term g(¢). For instance, in the Innsbruck experiment
[15], the magnetic field is controlled up to 1 mG. The slope
of 61ay/G at the zero of the Feshbach resonance turns this
into an uncertainty Aa = 0.06ay in the scattering length,
which is converted to the uncertainty of the dimensionless
tight-binding interaction Ag ~ 0.4. Note that this uncertainty
Ag is larger than the interaction g, = —4/&, needed to create
arigid soliton of only moderate width &, > 10. From this point
of view, realizing a wide rigid soliton is practically equivalent
to switching the interaction off altogether.

We study numerically the effect of perturbations of g(#) by
numerical integration of Eq. (1). Rather than the strong force
F =~ 34 in a vertical lattice [15], we choose a smaller force

'Equation (4) covers all stable cases that are Bloch periodic; that
is, v, = 1 in Eq. (8) of [24]. The cases v, # 1 are also covered by
generalizing the bounded-time argument [27].
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FIG. 2. (Color online) Momentum width (Ak)? of a wave packet,
Eq. (3), with initial spatial width & = 66.16 (plus a small seed noise
of 1073 mimicking experimental inhomogeneities), Bloch-oscillating
in a tilted lattice with F = 27/ Tg = 0.15. The interaction parameter
is modulated as g(t) = gocos(Ft) + v(¢). (a) Random perturbation
with frequencies €2, = nF /N below and above the Bloch frequency
v(t) = Zfﬁl Rela, exp(i€2,1)], N = 5. The a, are complex random
numbers with @, =0, |a,|*> =0.5. (b) Sine perturbation v(r) =
0.5sin(F't). In all cases the lifetime increases with the perturbation
amplitude gy, from the antibreathing wave packet gop = —10, over the
rigid soliton gy = g, = —0.06 and the linear wave packet gy = 0, to
the breathing soliton gy = +10.

F = 0.15, corresponding to a slighter tilt. This results in a
longer Bloch period and a higher sensitivity to dephasing. The
broadening of the momentum distribution is directly measur-
able from the experimental time-of-flight images and it signals
the decay of the wave packet and destruction of BOs in real
space. In Fig. 2, the k-space variance (Ak)? is shown for g(1) =
go cos(Ft) + v(t) with two different types of perturbations v(¢)
and different modulation strengths g¢. In all cases, the momen-
tum distribution starts to broaden at a certain time. At a given
perturbation, the rigid soliton and the linear wave packet show
greater resilience than the strongly antibreathing wave packet,
but surprisingly the breathing wave packet survives even
longer. Obviously, the 4+-cos modulation stabilizes the Bloch
oscillations against uncontrolled variations of the interaction
parameter g.

Comparing a random superposition of different frequencies
[Fig. 2(a)] to a Bloch-periodic off-phase perturbation propor-
tional to sin(F't) [Fig. 2(b)], we trace back the differences in
lifetime to different sensitivities to the sine perturbation. In the
following, we thus consider g(z) = gocos(Ft) + g sin(F't)
with an off-phase perturbation with amplitude g; of order Ag.
In order to understand quantitatively why the 4+-cos-modulated
wave packet can be more robust than the rigid soliton, we
perform a homogeneous stability analysis. The sudden growth
of the momentum variance suggests an instability due to the
creation of small fluctuations. If these perturbations occur on
a length scale much shorter than the size of the wave packet,
the wave packet can be taken to be locally homogeneous:
|A(z,1)|* ~ ng = 1/2£. The real and imaginary parts of the
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FIG. 3. (Color online) Decay of a (left) rigid and a (right)
breathing soliton under the harmonic perturbation of Fig. 2(b). Upper
panel, linear stability growth rate, Eq. (8); lower panel, stroboscopic
plot of the k-space density on a logarithmic color scale; inset, the
location and growth of the most unstable mode agree with the
analytical prediction.

small fluctuations in the linear order, s and d, respectively,
obey equations of motion that decouple in Fourier modes [24]:

dy = —[k? cos(Ft) + 2nog(t)]sk,

o )
S = k“ cos(Ft)d,.

Thanks to their linearity and time periodicity, these equations
allow us to apply Floquet theory [28]. Integrating Eq. (7)
over a single period allows calculation of the Lyapunov
exponent X, that characterizes the exponential growth of
mode k. For the present case, g(t) = go cos(Ft) + g; sin(Ft),
Eq. (7) can be solved analytically for g; =0, using a
Bogoliubov transformation y; = \/a)k [k +i \/ k2w dy,
with wy = /k2(k% 4 2ngo). Perturbation theory to first order
in g; then predicts the growth of mode y; with

=k %mwm : ®)
k

where J; is the Bessel function of the first kind. For the
two cases of primary interest—the rigid soliton and the
breathing soliton—the top of Fig. 3 shows this Lyapunov
exponent, which is indistinguishable from the value obtained
by numerical solution of Eq. (7), as function of k. Mainly the
prefactor k% /|wk| = |1 + 2gono/k*|~" makes the Lyapunov
exponents of the breathing wave packet (go = 10) smaller than
those of the rigid soliton (go = g; = —0.06).>

The Lyapunov exponent (8) provides a rather faithful
portrait of the k-space evolution as obtained by the numerics,
plotted in the lower panels of Fig. 3. Notably, excitations

2For gy <0, very small k-values such that k> < 2ng|go| have
imaginary Bogoliubov frequencies wy, but Eq. (8) allows for a smooth
analytic continuation (cf. Fig. 3).
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grow exclusively in the intervals with the largest Lyapunov
exponents, which are found at k-values such that k* > nygo.
Thus, the most unstable mode (indicated by the vertical
line) is found close to k, defined by J| (2k£ /F) =0, which
gives k, ~ 0.96+/F a2 0.37. The predicted growth rate agrees
very well with the numerical data (inset in the top panel of
Fig. 3). These predictions also remain valid for smaller g.
In the limit gy — 0, the differences between different wave
packets disappear, and we recover the case of a pure sin(F't)
modulation that was analyzed in Ref. [24] and for which Eq. (8)
now provides an analytical expression.

In essence, this linear-stability analysis applies whenever
the excitations are well decoupled in k-space from the original
wave packet (the central peak around k = 0 visible in Fig. 3).
Note that other types of perturbations, for example, a constant
offset g, as in g(t) = go cos(F't) + g» [29], can cause a more
homogeneous broadening of the k-space distribution. Its effect
is better captured by an ansatz in terms of collective variables
(cf. [24]). A detailed analysis is beyond the scope of the present
work and will be addressed in a forthcoming publication.

In conclusion, we have connected the physics of solitons
in lattices with a stability analysis of BOs under harmonic
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variations of the interaction. The stability of BOs does not rely
on a stable soliton configuration. Instead, the wave packet may
start to fall apart, but it comes back by virtue of periodic time
reversal. In the presence of instability-inducing perturbations,
a modulation of the interaction can make the wave packet
more robust. We explain this behavior quantitatively via
linear stability analysis within Floquet theory. Finally, let us
stress that these results play an important role in the design
of accurate and reliable matter-wave interferometers based
on BOs.
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