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Thermoelectric materials enable us to harness dissipated energy and make electronic devices less energy-
demanding. Heat-to-electricity conversion requires materials with a strongly suppressed thermal conductivity
but still high electronic conduction. This goal is largely achieved with the help of nanostructured materials,
even if the bulk counterpart is not highly efficient. In this work, we investigate how thermoelectric efficiency
is enhanced by many-body effects in graphene nanoribbons at low temperature. To this end, starting from
the Kane-Mele-Hubbard model within a mean-field approximation, we carry out an extensive numerical study
of the impact of electron-electron interactions on the thermoelectric efficiency of graphene nanoribbons with
armchair or zigzag edges. We consider two different regimes, namely trivial and topological insulators. We find
that electron-electron interactions are crucial for the appearance of interference phenomena that give rise to an
enhancement of the thermoelectric efficiency of the nanoribbons. Lastly, we also propose an experimental setup
that would help to test the validity of our conclusions.
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I. INTRODUCTION

Understanding the mechanisms behind heat-to-electricity
conversion is crucial for developing efficient and functional
thermoelectric devices. Unfortunately, the lack of efficiency
has been a burden since the dawn of thermoelectricity re-
search, hindering the development of devices with widespread
applications. During the past three decades, theoretical
[1] and experimental [2] evidence arose for the enhance-
ment of thermoelectric properties in the nanoscale. Since
then, nanotechnology has been put forward as a promising
framework for research and development of the aforemen-
tioned devices.

One way to quantify the thermoelectric efficiency of a
certain material or device is the dimensionless figure of merit,
defined as ZT = S2σT/κ , where S is the Seebeck coefficient
and σ and κ are the electric and thermal conductivity, re-
spectively [3]. For example, with ZT = 4 considered to be
a suitable value for widespread applications, efficient bulk
materials have displayed values for ZT of the order of unity
[4], while figures of merit around ZT = 2.4 have been ob-
tained for thin-film superlattices even at room temperature
[5]. There are a plethora of mechanisms by which ZT can be
increased in the nanoscale, from strong phonon scattering [6]
to nanopore tailoring in graphene nanoribbons [7], to name
a few. One of these mechanisms consists in the enhance-
ment of thermoelectric response through interference-related
phenomena. This mechanism has been widely investigated
in molecule heterojunctions [8], quantum dots [9], and other
nanostructures [10,11]. In addition, interference between res-
onant and nonresonant processes leads to the appearance of
Fano resonances [12] in the transmission coefficient, which
are predicted to have a positive impact on efficiency [13].

In this work, we explore how such interference phenomena
can also be related to electron-electron interactions.

Therefore, in order to uncover the impact of electron-
electron (e-e) interactions in the thermoelectric efficiency of a
certain material or nanostructure, we shall first understand its
role in the occurrence of interference phenomena in electron
transmission through these systems. The effect of e-e interac-
tions on electronic transport in two-dimensional topological
insulators (2DTIs) and trivial insulators, which can be used
in quantum point contacts, is still poorly understood. Despite
that, it is a topic of interest in current research (see, e.g.,
Ref. [14]), where the breakdown of quantized conductance in
2DTIs is addressed by employing a mean-field approach to the
Kane-Mele model [15], successfully reproducing experimen-
tal results for quantum wells [16] and atomically thin crystals
[17].

Within this framework, we present a mean-field ap-
proach that captures the interplay between e-e interactions,
topologically protected helical edge states, transport, and
thermoelectric efficiency. Moreover, we propose and con-
sider graphene nanoribbons (GNRs) as the system of study
and a possible experimental realization of this model. This
choice is grounded in several arguments. To begin with, there
is a great deal of background knowledge and accessibility,
as graphene has been widely studied and understood both
theoretically [18] and experimentally since its discovery in
2004 [19]. In addition, because of its transport properties,
graphene stands out as a very useful material for construct-
ing electronic devices due to its robust coherent electronic
transport against disorder and modifications on its geometry
[20]. Finally, the experimental implementation of this work is
feasible due to new fabrication techniques [21], making high-
quality graphene nanostructures and characterization fairly
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FIG. 1. Sketch of the device. The GNR is connected to two ideal
leads, labeled L and R. The device is driven out of equilibrium by a
temperature gradient (TL �= TR) and/or a source-drain voltage (μL �=
μR).

accessible. In addition, when exposed to an in-plane magnetic
field [22], GNRs are shown to display helical edge transport
intrinsic to a quantum spin Hall (QSH) phase, hence encapsu-
lating the behavior of 2DTIs. Furthermore, recent studies [23]
show that e-e interactions can be modulated in graphene by
using proximity screening.

This paper is organized as follows. In Sec. II we present the
theoretical framework and the methods we apply for obtaining
the transport and hence thermoelectric properties of GNRs. In
Sec. III we present our results in two steps. First, in Secs. III A
and III B we investigate the effect of e-e interactions in GNRs
with and without helical edge states. Second, in Sec. III C we
relate this effect to the thermoelectric efficiency of each GNR
considered. Lastly, in Sec. IV we make a brief summary of
these results as a conclusion, and we present an experimental
proposal.

II. SYSTEM AND MODEL HAMILTONIAN

In this section, we present the systems under consideration
(see Fig. 1) and the procedure for evaluating their thermo-
electric efficiency through transport. Since the presence of
point defects such as monovacancies can affect the electronic
properties of GNRs due to electron-defect scattering [24] and,
in turn, enhance their thermoelectric response via gap opening
[25], we consider both GNRs with and without vacancies
to clarify the role of e-e interactions in combination with
electron-vacancy scattering.

Throughout this work, we evaluate the impact of e-e inter-
actions in the thermoelectric efficiency of GNRs with different
edge terminations in two scenarios, namely when helical edge
states contribute to transport and when they do not. To this
end, we study the transport properties of two types of GNRs,
one with zigzag edges (zGNR) and another with armchair
edges (aGNR).

To study the electronic structure of the GNRs, we consider
a Kane-Mele-Hubbard model [15]. The choice of the model is
justified for two reasons. On the one hand, it allows us to study
the effect of local Coulomb interaction between electrons, and
on the other, it enables us to easily control the appearance of
helical edge modes. The Hamiltonian of this model reads [14]

H = t
∑
〈i j〉

∑
α

c†
iαc jα + iλ

∑
〈〈i j〉〉

∑
αβ

νi jσ
z
αβc†

iαc jβ

+ U
∑

i

ni↑ni↓, (1)

where ciα (c†
iα ) annihilates (creates) an electron with spin

α =↑,↓ at the ith site of the lattice and niα = c†
iαciα is

the number operator. The Hamiltonian (1) splits into three
terms. The first one is the conventional nearest-neighbor tight-
binding term, and the sum 〈i j〉 runs over nearest neighbors.
The contribution of this term is modulated by the tunnel en-
ergy t , which is set to be t = 2.7 eV [26]. The second term
accounts for the hopping of electrons between second-nearest
neighbors, where the sum is intended between second neigh-
bors 〈〈i j〉〉, allowing spin-flip events due to the third Pauli
2 × 2 matrix σ z, acting on spin space. This term was intro-
duced by Kane and Mele and is responsible for the appearance
of the aforementioned helical edge modes by virtue of νi j .
It acts as an intrinsic spin-orbit coupling introducing a factor
−1 (+1) if the hopping of the electron is (counter)clockwise.
The contribution of this term is modulated by the parameter
λ, which we will express in units of t hereafter. The intrinsic
spin-orbit coupling in graphene is very weak and the QSH
phase is not expected. However, a strong in-plane magnetic
field favors the appearance of a spin-polarized QSH phase,
as discussed in Ref. [22], and the Kane-Mele coupling term
correctly describes this scenario. In the case λ = 0, helical
edge states disappear and we recover a standard tight-binding
model with e-e interactions. The last term accounts for the
local repulsive Coulomb force between electrons of opposite
spin, and it is modulated by U . To solve this many-body
Hamiltonian, we use an unrestricted Hartree-Fock approxima-
tion that we derive in Appendix.

Throughout this work, we consider only the electronic con-
tribution to heat transport. We make this consideration on the
grounds that for graphene nanostructures, phonon contribu-
tion to heat transport can be studied separate from electronic
contribution [27], and, furthermore, at the considered temper-
ature (T = 4 K) it is rather negligible in GNRs [28,29] and
thus κtot = κel + κph ≈ κel. In this section, we derive the fig-
ure of merit ZTel ≈ ZT , which will be used as an indicator of
the thermoelectric efficiency of our systems [3]. The figure of
merit at low temperature then reads

ZT = S2σT

κel
, (2)

where S is the Seebeck coefficient while σ and κe are the
electric and thermal conductivities at a given temperature T .

In the linear regime (TL � TR ≡ T and μL � μR ≡ μ), the
magnitudes of interest can be expressed as [30–32]

S = − 1

eT

K1

K0
,

σ = e2K0, (3a)

κel = 1

T

(
K2 − K2

1

K0

)
,

where we defined

Kn = 1

h

∫
dE τ (E )

(
− ∂ f

∂E

)
(E − μ)n. (3b)

Here τ (E ) is the transmission coefficient and f (E , T, μ) is the
Fermi-Dirac distribution. Therefore, the figure of merit (2) can
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be cast in the form

ZT = K2
1

K0K2 − K2
1

. (4)

It is worth stressing that this expression is valid in the linear-
response regime, assuming coherent electron transport.

III. RESULTS

In this section, we present the results obtained by apply-
ing the methods introduced in Sec. II. First, in Secs. III A
and III B, we present and compare the transport properties
at low energies for aGNRs and zGNRs in two regimes:
QSH, where λ,U �= 0 and thus topologically protected helical
edge modes are present; and tight-binding Hubbard (TBH),
where λ = 0 and U �= 0. The results were obtained close to
the Fermi energy (E ∼ EF ) for two main reasons. On the one
hand, the impact of protected helical edge modes in electronic
transport is greater for energies lying in the energy gap for
bulk modes, and on the other, electron-vacancy interference
events that enhance thermoelectric efficiency arise mainly at
low energies [33,34]. Afterwards, in Sec. III C we make use of
the results obtained in Secs. III A and III B to understand the
interplay between Coulomb interaction, helical edge states,
and vacancy-induced interference phenomena in the thermo-
electric response of GNRs.

A. QSH regime

In Figs. 2 and 4 we present the conductance as a function
of energy for aGNRs and zGNRs in the QSH regime. For both
of them, we set λ = 0.09t and we plotted the conductance for
various values of U/t in the range 0.1–1.0. In those figures,
dashed lines represent the conductance for pristine GNRs,
and solid lines stand for the conductance of GNRs with a
vacancy at a distance 1.5a from the edge, where a is the
lattice constant. Vacancies were placed near the edge in order
to study the interplay between topologically protected edge
modes and the possible quasibound state expected around the
vacancy [35].

The results shown in Fig. 2 correspond to gapped aGNRs of
width W ∼ 11 nm (N = 51 [36]) and length L ∼ 15 nm. All
these results present oscillations of the transmission coeffi-
cient between τ = 2 and 3 at energies in the range U − 0.1t <

E < U + 0.1t both for pristine and defective GNRs. We relate
these oscillations with a possible hybridization between the
helical edge modes and bulk modes lying near EF due to
the sizable width of the GNR. This hybridization arises be-
cause the energy gap for bulk states is inversely proportional
to aGNRs with N = 3p (with p an integer) [37], allowing
those modes to lie near EF . Despite the aforementioned hy-
bridization, at energies very close to Fermi energy, E ≈ U , the
transmission coefficient is τ (U ) = 2 for pristine GNRs due to
the two propagating edge modes arising from the Kane-Mele
term as expected.

From the curves in Fig. 2 we can make two statements.
First, e-e interactions have a negligible impact on transmission
in pristine GNRs, at least at low energies. This result is in
agreement with the findings of Ref. [14], and it can be traced
back to the absence of the main mechanism that breaks down

FIG. 2. Conductance expressed in units of e2/h as a function of
(E − U )/t for an aGNR of width W ∼ 11 nm and length L ∼ 15 nm
for several values of U expressed in units of t in the QSH regime.
Dashed lines represent the conductance of pristine GNR, and contin-
uous lines show the conductance for GNR with a vacancy located
at (x, y) ≈ (L/2, 1.5a), where a = 0.25 nm is a graphene lattice
constant.

transmission, namely the formation of magnetic moments in
regions where the local density of states is large enough. In the
case of insulating pristine aGNRs, there are no localized states
(or states at all) at low energy, and hence this mechanism is
unattainable. Secondly, conductance around the Fermi energy
is more affected by the presence of a vacancy for small values
of U in the range 0.1 � U/t � 0.6 rather than for greater
values 0.8 � U/t � 1.0. For defective GNRs, conductance
shows a resonant dip whose resonant energy varies with e-e
interaction strength, in accordance with [14]. For small values
of U , 0.1 � U/t � 0.6, the dip is located near E = U , while
for larger values it is shifted to higher energies (in abso-
lute value). Independently of the strength of e-e interactions,
the transmission coefficient never reaches values under unity,
namely τ (E ) > 1 over the whole range of energies since the
vacancy only affects the helical mode propagating at the edge
where it is placed, allowing the other one to propagate without
scattering.

To understand these results, we plot the in-plane com-
ponent of the magnetic moment at the resonant energy in
Fig. 3 for an aGNR with λ/t = 0.09 and U/t = 0.6. Figure 3
shows a clear in-plane magnetic moment localized around the
vacancy and two magnetic tails spreading along the transport
x-direction. The spin orientation of these tails is opposite
when approaching the vacancy from smaller or greater values
of the x coordinate. In other words, the spin orientation at the
left and right sides of the vacancy is positive and negative,
respectively. This indicates that the total magnetic moment at
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FIG. 3. In-plane dimensionless magnetic moment profile at and
around the vacancy obtained from Eq. (A7) for an aGNR in QSH
regime with λ/t = 0.09 and U/t = 0.6 and a vacancy located at
(x, y) = a(21, 1.5), which is indicated with a yellow × symbol.
Triangles represent each lattice site, and here we show a part of
the ribbon that includes the vacancy. mz is not plotted since it was
negligible (mz ∼ 10−6).

each site is tilted towards the impurity. Hence, the magnetic
texture winds around the vacancy, leading to spin-flip events
as reported in Ref. [14]. We can thus relate the breakdown of
conductance quantization to the appearance of a nontrivial in-
plane magnetic moment around the vacancy. The mechanism
behind the appearance of the resonant dips is related to the
electron behavior when a vacancy is placed near the edge
in the QSH regime. In this regime, vacancies located at the
edge act as a magnetic impurity with an in-plane magnetic
momentum and an on-site energy that varies with U . This
magnetic ordering breaks time-reversal symmetry [38,39] and
thus topological protection of the helical edge states, causing
a Breit-Wigner-like resonance. The previously mentioned hy-
bridization is also observed in Fig. 3, in which the magnetic
moment tails arising from backscattering decay not only along
the transport direction but also into the bulk, where magneti-
zation is not trivial either, supporting our hypothesis. To sum
up, e-e interactions favor the formation of in-plane magnetic
nontrivial momenta around vacancies that act as magnetic
impurities whose on-site energy depends on the strength of the
Coulomb interaction. This pseudomagnetic impurities break
down conductance quantization by inducing spin-flip events
and thus backscattering in the helical edge states around
the aforementioned on-site/resonant energy. The relation be-
tween the strength of e-e interactions and the magnitude of
destruction of the conductance quantization is not fully clear.
Nevertheless, we could relate it to the shifting in energy of the
pseudomagnetic impurity on-site energy, causing this energy
to lie far from the gap of bulk modes, which seem to be less
susceptible to these impurities, at least at those energies.

The results shown in Fig. 4 correspond to zGNRs of
width W ∼ 12 nm (N = 35) and length L ∼ 15 nm. In the

FIG. 4. Conductance expressed in terms of e2/h as a function of
(E − U )/t for a zGNR of width W ∼ 12 nm and length L ∼ 15 nm
for several values of U expressed in terms of t in the QSH regime.
Dashed lines represent the conductance of pristine ribbons, and con-
tinuous lines show the conductance for ribbons with a vacancy at
(x, y) ≈ (L/2,W − 1.5a).

tight-binding (TB) regime, i.e., U = λ = 0, zGNRs are all
metallic and show localized (nondispersive) edge states,
which are responsible for electronic transport at low energies
through bulk [36]. These edge-localized states are different
in nature from the dispersive ones arising from Kane-Mele
term in two respects: the former are entirely localized within
one sublattice (namely, the one forming the edge) and are
nondispersive, while the latter are dispersive and nonvanishing
on both sublattices. With this in mind, we thus study here
the interplay between these geometry-related localized edge
states and the helical ones. The most remarkable feature of
the results shown in Fig. 4 in comparison with those of Fig. 2
is that conductance quantization is spoiled at low energies
even for pristine zGNRs. The deterioration of conductance
quantization, both in pristine and defective zGNRs, is aggra-
vated by the increase of the e-e interaction strength, even
completely disappearing when U ∼ t . The main difference
between the results for the conductance of defective zGNRs
in comparison with those of pristine ones is the appearance
of one or three asymmetric resonant dips that depend on
U . For small values of U , U/t ∼ 0.1, a resonant dip ap-
pears near the Fermi energy, where for the pristine zGNR
the transmission is τ = 2. This resonant dip is similar to
the one arising for U/t = 0.1 in defective aGNRs in the
sense that, in both of them, the transmission never reaches
values under 1, suggesting that the responsible modes for
electronic transport at low energies are the same in both
types of GNR. Despite that, the zGNR resonant dip is more
asymmetric, which suggests an interplay between dispersive
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FIG. 5. Dimensionless x-component of the magnetic moment at
and around the vacancy for a zGNR in the QSH regime with λ/t =
0.09. (a) Pristine zGNR with U/t = 1.0, (b) pristine zGNR with
U/t = 0.6, (c) defective zGNR with U/t = 0.1 and a vacancy lo-
cated in (x, y) = a(18, 15), and (d) defective zGNR with U/t = 0.6
and a vacancy located in (x, y) = a(18, 15), indicated with a yellow
× symbol. Triangles in the figure represent each lattice site, and here
we show the region of the ribbon that includes the vacancy. mz and
my are not plotted since mz was negligible (mz ∼ 10−6 and my ∼ mx).

and nondispersive edge modes that we will explore by
studying the spatial profile of the magnetization at E ∼ U in
Fig. 5. This low-energy resonant dip also appears for greater
values of U , where its strength is amplified, as evidenced by

the increase in width of the resonant dip [12]. For defective
zGNRs with greater U , other resonant dips appear at larger
energies, around E ≈ U + 0.15t . These dips are highly asym-
metric and enhanced by the e-e interaction strength. These
modes arise when the transmission coefficient reaches τ = 3,
to wit, in a region where the first bulk mode is starting to
propagate and hybridize with the edge modes. At the resonant
energy of these resonant dips, the transmission coefficient
goes from τ = 3 to 2, showing the destructive impact of the
vacancy on one of the propagating modes in the scattering
region.

To understand these results and compare them with the
ones obtained for zGNRs, in Fig. 5 we plot the spatial pro-
file for the magnetic moment at and around the vacancy at
different energies. As in aGNRs, the magnetic moment lies
mainly in-plane as expected in the QSH regime. Near the
Fermi energy, for pristine samples and low U , there is a
nontrivial density of states at the edges of the aGNR whose
magnetic momentum is not uniform along the edge, as shown
in Fig. 5(b). As expected for aGNRs in the TB regime, those
states are localized at the edge and decay exponentially into
the bulk. For greater U (U/t = 0.8, 1.0), these localized edge
states are distorted, and spontaneous magnetization arises for
U/t = 1.0, as shown in Fig. 5(a). We have to be cautious about
the results for spontaneous magnetization in U/t = 1.0 since
it could be a spurious result of the mean-field approximation
due to the fact that for larger U , a phase transition from
the QSH regime to a spin-density wave is expected [39,40].
Our mean-field approach fails to describe this situation, and
thus we cannot formulate an additional hypothesis about the
results for U � 1. For defective samples, there is a peak in
the local density of states (LDOS) around the vacancy at the
Fermi energy which displays magnetic polarization, as shown
in Fig. 5(c). Despite this magnetization, there are no evident
spin-flip events. For larger energies, i.e., E ≈ U + 0.15t , the
results are more similar to the ones obtained for aGNRs, and
there are evident signals of spin-flip events around the va-
cancy and a nontrivial magnetic moment. The main difference
with aGNRs it that in the case of zGNRs, spin-flip events
occur slightly inside the bulk, exhibiting the importance of
hybridization in the case of zGNRs, as shown in Fig. 5(d). We
believe these events are the mechanism behind the appearance
of resonances at these energies. Nevertheless, although the
underlying mechanism is the same, there are some important
differences between the two types of GNRs. In zGNRs, the
modes suffering backscattering are fully hybridized and thus
the line shape of the resonant dip is asymmetric. We identify
these as Fano resonances: the backscattering event undergone
by the dispersive edge modes is a resonant process that takes
place at the same energy as the bulk mode transmission. The
vacancy is acting as a magnetic impurity just as in aGNRs but
its on-site and thus resonant energy is displaced to higher val-
ues due to the nondispersive edge modes. This displacement is
similar to the one happening in the TB regime, where the res-
onant energy for vacancies located near the edge is displaced
from the ones located in the bulk [41] due to the increase in the
energy of the quasibound state localized at the vacancy. Once
the resonant dips arising for defective GNRs are addressed,
we link the deterioration of conductance quantization in pris-
tine samples with the appearance of spontaneous nontrivial
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FIG. 6. Conductance expressed in terms of e2/h as a function of
(E − U )/t for an aGNR of width W ∼ 12 nm and length L ∼ 15 nm
for several values of U expressed in terms of t . Dashed lines represent
the conductance of pristine ribbons, and continuous lines show the
conductance for ribbons with a vacancy at (x, y) ≈ (L/2,W − 1.5a).

magnetic moments induced by the effect of Coulomb inter-
actions in nondispersive edge states. Further analysis of this
effect will be carried out in the following subsection.

B. TBH regime

To understand the impact of e-e interactions on the elec-
tronic transport in trivial GNRs, in Figs. 6 and 7 we show
the conductance, in terms of e2/h, as a function of energy
for aGNRs and zGNRs in the TBH regime for several values
of U .

The results shown in Fig. 6 correspond to insulating aG-
NRs of width W ∼ 11 nm and length L ∼ 15 nm. In this
regime, the transmission coefficient near the Fermi energy is
τ = 0 as expected for an insulating aGNR. Dashed curves,
corresponding to pristine aGNRs, show that Coulomb interac-
tions do not affect the transport properties of pristine aGNRs,
which is consistent with the results for the QSH regime. In
the case of defective aGNRs, the effect of the vacancy is the
same as expected for a typical TB model for small values of
U (U/t ∼ 0.1, 0.6), namely, a small deviation from perfect
conductance due to the formation of a quasibound state local-
ized at the vacancy arising from an enhancement of the LDOS
around it. For larger values of U , the conductance shows
resonant dips at the threshold of the second and subsequent
modes, similar to the ones arising in zGNRs with vacancies
near the edge when e-e interactions are not considered [41]. In
Fig. 8(a) we plot the x-component of the magnetic moment for
a defective aGNR with U/t = 0.8 at the dip resonant energy.
From this profile, we can thus associate these resonant dips

FIG. 7. Conductance expressed in terms of e2/h as a function of
(E − U )/t for a zGNR of width W ∼ 12 nm and length L ∼ 15 nm
for several values of U expressed in terms of t . Dashed lines represent
the conductance of pristine ribbons, and continuous lines show the
conductance for GNRs with a vacancy located at (x, y) ≈ (L/2,W −
1.5a).

FIG. 8. Dimensionless x-component of the magnetic moment in
the TBH regime obtained from Eq. (A7) in (a) a defective aGNR with
U/t = 0.8 and a vacancy at (x, y) = a(21, 1.5), which is indicated
with a yellow × at the resonant energy of the dip shown in Fig. 6,
and (b) a pristine zGNR with U/t = 0.6 at an energy where τ = 0,
e.g., E ∼ 0.68t . mz is negligible and my is similar to panel (a) but
with the opposite sign.
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TABLE I. Maximum value of ZT and the value of μ at which it arises for the aGNRs and zGNRs studied in this work.

Pristine aGNR Pristine zGNR

QSH TBH QSH TBH

U/t ZTmax μ/t ZTmax μ/t ZTmax μ/t ZTmax μ/t

0.10 9.52 × 10−3 0.17 2.71 × 10−2 0.15 7.67 × 10−3 0.09 3.67 × 10−1 0.10
0.60 9.52 × 10−3 0.67 2.71 × 10−2 0.65 3.94 × 10−3 0.61 3.33 × 10−1 0.59
0.80 9.52 × 10−3 0.87 2.71 × 10−2 0.85 7.27 × 10−3 0.93 4.77 × 10−1 0.81
1.00 9.52 × 10−3 0.93 2.71 × 10−2 1.05 2.86 × 10−4 1.12 4.30 × 10−1 0.97

Defective aGNR Defective zGNR

QSH TBH QSH TBH

U/t ZTmax μ/t ZTmax μ/t ZTmax μ/t ZTmax μ/t

0.10 7.72 × 10−3 0.13 1.12 × 10−2 0.10 3.35 × 10−3 0.23 2.53 × 10−1 0.11
0.60 8.05 × 10−3 0.63 1.13 × 10−2 0.60 3.48 × 10−3 0.73 2.01 0.60
0.80 8.30 × 10−3 0.77 3.60 × 10−1 0.80 1.97 × 10−3 0.86 7.12 × 10−1 0.80
1.00 8.51 × 10−3 0.93 8.49 × 10−3 0.95 4.39 × 10−3 1.11 5.67 × 10−1 0.99

with the formation of a quasibound state localized around the
vacancy whose resonant energy is proportional to U . The main
difference between the TBH and TB regimes is that in the
case of TBH these localized states induce a nontrivial in-plane
magnetization through an enhancement of the LDOS, whereas
when compared to the QSH regime, the main difference is that
the localized bound state does not trigger spin-flip events due
to the absence of helical edge states.

The results shown in Fig. 7 correspond to zGNRs of
width W ∼ 12 nm and length L ∼ 15 nm. In this regime, the
nondispersive edge modes are responsible for transport at low
energies. The mechanism behind electric conduction relies in
the exponential decay of these localized modes into the bulk,
which allows the transmission of a mode whose current den-
sity peaks at the center of the GNR [42]. Hence, by studying
transport in the TBH regime, we can ascertain the effects of
e-e interactions in these nondispersive modes and gain insight
into transport in the QSH regime. The most remarkable result
of Fig. 7 is that e-e interactions spoil conductance quantization
in both pristine and defective samples just as in the QSH
regime. Furthermore, in this case the breakdown of quan-
tization is even greater, leading to complete suppression of
transmission at some energies. Both in pristine and defective
samples, the transmission coefficient oscillates between τ = 0
and 1 in an energy interval (which we shall call the resonant
interval from now on), whose width is proportional to U , even
covering our interval of study completely for U/t = 1.0. This
can also be observed in Fig. 4, where it is more subtle. The
effect of vacancies in electronic transport is not important:
the presence of a vacancy near the edge just changes slightly
the pattern of the aforementioned oscillations and induces a
resonant dip for E = U ± 0.2t for low values of U , 0.1 �
U/t � 0.6. To understand the mechanism behind these oscil-
lations, we plot the spatial profile of the x-component of the
magnetic moment in Fig. 8(b). For every pristine and defective
GNR, at energies lying in the resonant interval, the spatial
profile for the magnetic moment (or for the LDOS) is similar:
it displays a peak in the LDOS, which has a definite nontrivial
in-plane magnetic moment, and it is located at the edge, while
the rest of the GNRs present low to zero LDOS and thus no

magnetization. As in the QSH regime, spontaneous magne-
tization leads to the breakdown of conductance quantization,
but in the TBH regime this magnetization is more destructive
because dispersive helical states are not present. In the TBH
regime, spin-flip events do not arise, but spontaneous local-
ization of states leads to a partial disappearance of edge states
and thus hinders the exponential decay into the bulk [see the
left panels of Fig. 8(b)], spoiling conductance quantization.

C. Thermoelectric efficiency

After discussing the transmission coefficients for aGNRs
and zGNRs in both regimes and for several values of U , we
apply the formalism presented in Sec. II in order to obtain
the figure of merit ZT for each case. To that end, we com-
puted ZT with Eq. (4) for several values of μ in the range
[U/t − 0.2,U/t + 0.2] so as to determine the maximum val-
ues ZTmax and μmax. These results are presented in Table I for
each case studied in the previous section. Table I shows that
the most thermoelectrically efficient systems are the zGNRs
in the TBH regime, displaying values up to ZTmax = 2.01 for
the defective ribbon with U/t = 0.6. The second most ther-
moelectrically efficient systems are the aGNRs in the TBH
regime, displaying values of ZTmax ∼ 10−2.

Meanwhile, in the QSH regime, both aGNRs and zGNRs
show values of ZTmax ∼ 10−3. We can thus study the interplay
between vacancies λ and U in thermoelectric efficiency. ZTmax

in the QSH regime is lower than ZTmax in the TBH regime.
Topological protection of the helical edge modes seems to
prevent the marked fluctuations in the transmission coefficient
from happening in zGNRs in TBH, where the effect of U
is most destructive. Surprisingly, the presence of vacancies
does not seem to have a huge impact on ZTmax, albeit in
general, defective samples display slightly greater values of
ZTmax. The value of ZTmax is rather independent of U , but,
as shown in the previous section, e-e interactions are crucial
for the mechanisms behind the appearance of resonant dips,
especially in zGNRs.

A description of how interference enhances ZT is shown
in Fig. 9, where asymmetric line shapes of the transmission
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FIG. 9. (a) Conductance in terms of e2/h as a function of energy
for a pristine and a defective zGNR in the TBH regime with U/t =
0.6. (b) ZT as a function of the chemical potential for a pristine and
defective zGNR in the TBH regime with U/t = 0.6.

coefficient around a certain resonance energy ER give rise to
peaks in ZT at μ = ER. We can approach this phenomenon
in two ways. First, from Sec. II we know that ZT ∝ S ∝
K1. In K1, the product ∂E f × (E − μ) is an odd function
with respect to E − μ, and therefore an asymmetric line
shape of τ around μ will boost K1 and thus ZT [43]. Sec-
ond, we remind the reader that resonant dips in transmission
arise from interference phenomena. This interference takes
place between the two possible paths an electron can take
while traveling through the scattering region, namely, one in
which it takes part in some scattering process and one in
which it travels without being scattered. In our work, these
scattering processes arise due to nontrivial magnetic moments
around vacancies induced by peaks in the LDOS. We argue
that the thermoelectric efficiency boosts due to interference
work in this way: at the resonant energy ER, the transmission
is heavily hindered due to these aforementioned scattering
processes. A small increase in the electron energy amounts to
an enhancement of its transmission. Hence, a heat flux through
the sample with μ = ER would lead to a sizable variation
in the electronic transmission, resulting in an increase of the
electric current and enhancing the thermoelectric effect. This
would explain why asymmetric line shapes, related with more
destructive scattering processes, lead to greater ZT values
rather than symmetric line shapes, which are related to elas-
tic scattering phenomena. Thus, electron-electron interactions
can give rise to interference phenomena, which can notably
increase the thermoelectric response of a nanostructure.

IV. CONCLUSIONS AND EXPERIMENTAL PROPOSAL

In summary, in this work we studied the transport prop-
erties of aGNRs and zGNRs in the QSH and TBH regimes
in order to determine the effect of e-e interactions in their
thermoelectric efficiency. We found that e-e interactions are
crucial for the appearance of the interference phenomena that
give rise to the enhanced of the thermoelectric efficiency in the
GNRs considered in this work. Even so, ZTmax is, in general,
unaltered by the value of U and mainly depends on the regime
and edge termination of the GNR. For pristine aGNRs in the
TBH regime and defective aGNRs in the QSH regime, ZTmax

is virtually independent of U . Meanwhile, in defective aGNRs
in the TBH regime, it is most important since resonant dips
only appear for large values of U . For pristine and defective
zGNRs, even though the value of ZTmax is not influenced
by U , large values of U lead to larger intervals of energy
where the transmission coefficient oscillates abruptly and thus
enhances ZT in a wider range of chemical potentials μ.

The experimental implementation of this work is feasi-
ble. We propose the fabrication of encapsulated graphene
nanoconstrictions in a Hall bar configuration with well-
defined edges (aGNR and zGNR) through the cryoetch
method introduced in Ref. [21]. To obtain the QSH regime,
an in-plane magnetic field is suggested according to Ref. [22].
Meanwhile, modulation of e-e interactions is proposed fol-
lowing Ref. [23]. We propose nonlocal measurements in order
to test the effect of e-e interactions in the helical edge states
and the possible application of an electric field as in Ref. [43]
to enhance the figure of merit ZT . Low temperatures are
intended (T ∼ 4 K), but higher-temperature experiments are
recommended in future works in order to understand the lat-
tice contribution to ZT , as studied in Ref. [29].
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APPENDIX: MEAN-FIELD APPROXIMATION

Due to the many-body nature of the Hamiltonian (1), its
exact solution is rather unmanageable. To obtain an effective
one-particle Hamiltonian, we apply an unrestricted Hartree-
Fock mean-field approximation to deal with the Hubbard term
[44,45]. Within this approximation, we consider fluctuations
in the creation-annihilation pairs as

ni,αn j,β = c†
i,αci,αc†

j,βc j,β ≈ c†
i,αci,α〈c†

j,βc j,β〉
+ 〈c†

i,αci,α〉c†
j,βc j,β − 〈c†

i,αci,αc†
j,βc j,β〉. (A1)

We choose this approximation in the interest of studying in-
plane spin-flip events that do not appear when considering a
Hartree approximation, which decouples the number operator
ni,α rather than creation-annihilation pairs. Due to Wick’s
theorem, considering all pairs of operators, from Eq. (A1) we
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determine that

ni,↑ni,↓ ≈ 〈c†
i,↑ci,↑〉c†

i,↓ci,↓ + c†
i,↑ci,↑〈c†

i,↓ci,↓〉
− 〈c†

i,↑ci,↑〉〈c†
i,↓ci,↓〉 − 〈c†

i,↑ci,↓〉c†
i,↓ci,↑

− c†
i,↑ci,↓〈c†

i,↓ci,↑〉 + 〈c†
i,↑ci,↑〉〈c†

i,↓ci,↑〉. (A2)

After rearranging the terms of Eq. (A2), and defining S+
i =

c†
i,↑ci,↓ and S−

i = c†
i,↓ci,↑, we can express the Hamiltonian (1)

approximately as

HMF ≈ H0 + U
∑

i

(〈ni↓〉ni↑ + 〈ni↑〉ni↓ − 〈ni↑〉〈ni↓〉)

− U
∑

i

(〈S+
i 〉c†

i↓ci↑ + 〈S−
i 〉c†

i↑ci↓ − 〈S+
i 〉〈S−

i 〉),

(A3)

where H0 stands for the noninteracting part of the Hamilto-
nian (1).

The 〈S±
i 〉 and 〈ni,α〉 terms need to be obtained self-

consistently. To do so, we will work in the basis where the
lattice sites are ordered like

{1A
↑, 1A

↓, 1B
↑, 1B

↓, 2A
↑, . . . , (N/2)B

↓},
where N is the number of sites of the lattice, and A and B are
the two sublattices of the honeycomb lattice. We employ the
following algorithm [46]:

(i) Generate a random set of four vectors of length N ,

V0 = {〈S+
i 〉, 〈S−

i 〉, 〈ni,↑〉, 〈ni,↓〉}N
i=1. (A4)

A random first choice may slow down convergence but helps
to avoid magnetic frustration of the system.

(ii) From the set (A4) we build the 2N × 2N matrix repre-
sentation of the Hamiltonian (A3) and diagonalize it,

ĤMF(k)ψα (k) = εα (k)ψα (k), (A5)

where ψα (k) = (ψ1A
α , ψ1B

α , . . . , ψNB
α )T . In this step, we

obtain 2N eigenvalues {εv}2N
v=1 and 2N two-component eigen-

vectors φv of the form

φv =
[
φv,↑
φv,↓

]
, (A6)

where v is the band index and φv is defined to be ψα (k) =
{φv,α}N

v=1.
(iii) From the eigenvectors and eigenvalues of step (ii), we

can obtain a new set V1 analogous to the one of Eq. (A4) by
computing

〈mi〉(1) =
Ne∑

v=1

[
φ

(0)
v,i

]†
σ

[
φ

(0)
v,i

]
, (A7)

〈ni,↑〉(1) =
Ne∑

v=1

[
φ

(0)
v,i

]†
(

1 0
0 0

)[
φ

(0)
v,i

]
, (A8)

〈ni,↓〉(1) =
Ne∑

v=1

[
φ

(0)
v,i

]†
(

0 0
0 1

)[
φ

(0)
v,i

]
, (A9)

where σ is a three-component vector formed by the Pauli
matrices, and 〈mi〉 is the magnetic moment of the ith site.
In the above expressions, we considered a fixed number of
electrons Ne in the system, fixing right away the chemical
potential μ like εNe = μ. In this work, we consider half-filling,

FIG. 10. Schematic diagram of the scattering region and the
leads used in the transport calculations.

setting Ne = N . From Eq. (A7) we determine 〈S±
i 〉 as

〈S±
i 〉 = 〈mx〉 ± i〈my〉

2
. (A10)

(iv) With the new set V1, repeat steps (ii) and (iii) iteratively
until convergence. Convergence for the kth iteration is defined
as {

V (n)
k (i)

}4

n=1 − {
V (n)

k−1(i)
}4

n=1 � T , ∀i, (A11)

where T is the tolerance, i is the lattice site, and n is the
component of Vk . In this work, we used a variable weight
method, using information from iteration k − 1 and k − 2 for
iteration k as follows:

{
V (n)

k (i)
}4

n=1 =
(

1 − k

k1.5 + 1

){
V (n)

k−2(i)
}4

n=1

+ k

k1.5 + 1

{
V (n)

k−1(i)
}4

n=1, (A12)

where we impose that k/(k1.5 + 1) � T . This weight
method helps to avoid stagnation and hence accelerates
convergence.

Transport properties at low temperature were calculated
within the Landauer-Büttiker formalism [47,48] as im-
plemented in the Kwant toolkit [49]. In this formalism,
conductance at energy E is defined as

G(E ) = e2

h
τ (E ), (A13)

where e is the electron charge, h is Planck’s constant, and
τ (E ) is the transmission coefficient at that energy. Electronic
transport is thus understood to be a scattering phenomenon
with a statistical interpretation, where two pristine leads, con-
nected to two reservoirs, are connected to a scattering region
as shown in Fig. 10. Conductance at energy E is directly
proportional to the modes that can travel along the scattering
region.

To study the scattering phenomenon, we applied the
self-consistent algorithm to a GNR with periodic boundary
conditions along the transport direction, and we obtained
the set VPBC. Afterwards, we defined a scattering region of
the same size with Hamiltonian HMF(VPBC) and attached
the two leads to the system with Hamiltonian HMF(VL), where
VL = {0, 0, 0.5, 0.5} for every lattice site i. Once the device is
prepared, we compute the conductance using the scattering
matrix formalism [47].
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