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Optimal geometries for low-resistance viscous electron flow
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This work explores the impact of geometry on viscous electron flow in graphene channels. We demonstrate
that structural modifications of the material edges distinctly influence its electrical resistance. As a general trend,
we observe that softening the edges reduces the resistance in both the hydrodynamic and the ballistic regimes.
Our simulations are based on a two-dimensional hydrodynamic model, which is compared with those obtained
by the Boltzmann transport equation in some representative cases. In both formalisms, the scattering length
due to electron-electron collisions and due to momentum-relaxing collisions of electrons with impurities and
phonons are taken into account. A minimization algorithm was employed to optimize the channel geometry of
the minimal resistance. Our findings emphasize the critical role of the channel geometry in graphene, presenting
significant implications for the design of advanced electronic devices based on two-dimensional materials.
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I. INTRODUCTION

The future of electronics relies on developing miniaturized
circuits with low energy costs. Conventional silicon-based
technology shall reach its physical limits, so the research
on new two-dimensional (2D) devices turns promising [1].
Two-dimensional materials also exhibit novel transport prop-
erties, such as hydrodynamic transport, where the electrons
behave like a fluid. While electron transport in metals is
often determined by collisions against defects and phonons,
recent research in two-dimensional materials highlights the
significance of electron-electron collisions as a source of hy-
drodynamic effects [2–6]. Experiments in graphene, galium
arsenide hetersotructures [7], Weyl semimetals [8–11], and
PdCoO2 have unveiled [12,13] fascinating phenomena that
challenge our common expectations about electron behav-
ior in solids. This encompasses the Poiseuille flow [14,15]
or the formation of whirlpools in symmetry-broken de-
vices [16–19], and it also features potential high-frequency
applications [20–24].

However, one of the most salient features of viscous elec-
tron flow, which brings us back to the problem of energy
dissipation [25,26], is the so-called superballistic conduction
[27–33]. Originally suggested by Gurzhi [34,35], an increase
in temperature favors collective electron flow, decreasing the
resistance below the ballistic limit, a very convenient prop-
erty to reduce device energy dissipation [36]. The application
of a high current also attains a similar decrease [37,38]. A
careful geometrical design of the device is proven to enhance
its collective transport properties [14]. This underscores the
key role of the geometry in hydrodynamic transport [39],
and showcases the potential to design graphene-based devices
with tailored electronic transport properties [28].

In this work, we explore the implications of the device
geometry on electron flow in graphene by examining

*These authors contributed equally to this work.
†Contact author: elenadg@fis.ucm.es

geometric modifications in constrictions and bent channels.
The optimized devices will present minimal values of
electrical resistance. We find that a strategic reduction or
extension of the graphene channel led to lower resistances,
depending on the transport regime [2,6]. This approach
promises to unlock properties of 2D materials like graphene
to achieve low-electrical-resistance devices.

II. MODEL

A. Boltzmann transport equation

In order to provide an accurate description of electronic
transport in engineered graphene devices, we will deal with
two different theoretical formalisms. Let us first consider
the steady-state Boltzmann transport equation to describe the
dynamics of semiclassical electrons in a 2D system [40,41].
In electron hydrodynamics the explored devices have many
transmission channels, so quantization effects are negligible,
and electrons can be monitored by a well-defined position
vector r = (x, y) and a wave vector k = (kx, ky), such that
their distribution function f (r, k) obeys [6,32,33,41–44]

v

k
k · ∇r f + e

h̄
∇V · ∇k f = �[ f ]. (1)

Electrons experience a force due to the electric potential V (r),
and �[ f ] is the collision operator, including the sources of
electron scattering. Under Callaway’s ansatz [38,45], the col-
lision term splits as

�[ f ] = −vF[( f − f mr )/lmr + ( f − f ee)/lee], (2)

where lmr is the mean free path due to momentum-relaxing
collisions with impurities and phonons toward the equilib-
rium distribution f mr , and lee accounts for electron-electron
collisions with other electrons toward the local distribution
f ee shifted by the electron drift velocity. The fluid vis-
cosity, which will appear explicitly in the hydrodynamic
model, derives from these collisions [see Eq. (6) below].
We use the hydrodynamic electron dynamics instead of the
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tomographic correction [46–48], which would be less no-
ticeable at moderate temperatures and would otherwise add
additional parameters to the model. Here, vF and kF are the
Fermi velocity and the Fermi wave number, respectively. We
assume that a gate voltage sets a uniform electron density
in the device under study. Therefore, f mr turns out to be
independent of r. After integrating Eq. (1) over k, we get

n̂(θ ) · ∇r

(
g − eV

h̄kF

)
+ g

lmr
+ g − gee

lee
= 0, (3)

with n̂(θ ) = (cos θ, sin θ ). For brevity, we have defined

gee(r, θ ) = vF

kF

∫ ∞

0
( f ee − f e) dk � ux cos θ + uy sin θ,

g(r, θ ) = vF

kF

∫ ∞

0
( f − f mr ) dk, (4)

where ux and uy are the components of the drift veloc-
ity u(r) = (1/π )

∫ 2π

0 g(r, θ ) n̂(θ ) dθ . The Boltzmann model
is valid for hydrodynamic, diffusive, and ballistic electron
transport [6].

B. Navier-Stokes equation

The second formalism can be derived as a hydrodynamic
model [16,18,49,50] for the drift velocity u, recasting Eq. (3)
as [6]

∇ · u = 0, (5a)

−ν∇2u + vF

lmr
u = e

m
∇V, (5b)

which resemble the continuity equation and the Navier-Stokes
equation for classical fluids [2,3,14,16]. The viscosity ν is
defined as follows:

ν ≡ vF lmrlee

4(lmr + lee)
. (6)

Hence, favoring electron-electron collisions diminishes the
viscosity and its associated dissipation. Notice that Eq. (5b)
has a dissipative term in u arising from non-conserving-
momentum collisions (lmr < ∞), as expected in condensed
matter systems.

In both models, we consider two types of boundary scat-
tering mechanisms [51]. First, unless stated otherwise, we
consider a perfectly specular edge with no roughness, where
incident electrons undergo specular reflection. This type of
edge is consistent with previous experiments in graphene
[28]. For completeness, we analyze the opposite case, a
rough diffusive boundary where incident electrons are scat-
tered in all directions regardless of their angle of incidence.
We describe the equivalence between the boundary condi-
tions for both formalisms in Appendix A [6]. Simulations
are performed using the finite elements method described
in Appendix B to determine the velocity field u and the
resistance R.

Our approach follows the technological perspective, where
devices are supposed to operate at a given temperature,
with a particular lmr and lee. For clarity, we instead perform
our analysis in terms of the normalized electron-electron
and momentum-relaxing scattering rates, γee = W/lee and

γmr = W/lmr , where W is the scale length of the device. Thus,
we explore the effects of the device geometry on the electrical
performance, with the ultimate goal of identifying the config-
uration of minimal resistance for a given temperature R0 [14].
We will compare R0 with a reference device of sharp corners
of resistance R⊥ by way of

�R = R⊥ − R0

R⊥
. (7)

In this investigation, we want to explore the effects of
optimized edge engineering on graphene devices’ electrical
performance. Therefore, we propose two different typical ge-
ometries to exemplify our findings: (1) a 2D graphene elbow
channel and (2) a graphene constriction.

III. 2D ELBOW CHANNEL

First, we will focus on the study of the 2D elbow channel.
The geometry depicted in Fig. 1(a) represents a 2D elbow
graphene channel of width W . Bending the profile is particu-
larly significant because it might reduce undesirable scattering
events at the boundaries when properly designed. Therefore,
in our study, we take as a reference case a graphene elbow
of a perfect 90◦ angle, where the electrical resistance R⊥ is
expected to be high. Let us first study the configuration of
minimal resistance by analyzing the Boltzmann equation re-
sults in comparison with those obtained by the Navier-Stokes
model. Notice that the computational cost of the Boltzmann
model forces us to design the geometries using only three
points �G = {H1, G1, G2}, see Fig. 1(a). The color map of
Fig. 1(b) represents the resistance as a function of �G, which
shows that it is minimal at the white dot. For a given potential
drop, a minimum in the resistance corresponds to a maximum
in the current flow, which is the magnitude typically studied
in conventional fluids. The formalism based on the Navier-
Stokes equation allows a much more detailed design of the
elbow corner. In our simulations, we tested that by varying
at least a vector of points �G = {H1, . . . , H5, G1, . . . , G5}, the
optimal geometry is already stable. Figures 1(c) and 1(d)
illustrate the voltage drop across the optimized channel with
minimal resistance R0, for γee = 1 and γmr = 1/3, similar to
the ratios obtained for a graphene device of W ∼ 300 nm at
carrier density n ∼ 1012 cm−2 and room temperature [16,18].
We assume perfect specular boundaries for both models. For
comparison, the black dashed line represents the reference 90◦
corner with resistance R⊥. Both optimized geometries feature
a smoother bent, reducing boundary scattering, allowing for
a more uniform collective flow and reducing the resistance.
In such a case, we evaluate that the geometry optimization
process leads to a relative change of the resistance �R of
31% with the Boltzmann model and 39% with the smoother
edge simulated with the Navier model. Such a reduction of
the electrical resistance is consistent with the fact that sharp
edges cause additional boundary scattering: smoother geome-
tries are necessary to improve flow efficiency in constrained
geometries.

Now, we extend our analysis to different values of γee

and γmr to account for different transport regimes. For every
considered case, we performed the geometry optimization
and evaluated the minimal resistance compared to the
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FIG. 1. (a) The schematic represents a graphene channel of width W with an elbow. The quadrant of size 2W × 2W where the bend occurs
is the varying region for the optimization process. The dashed black line represents the initial geometry from which variations are considered
by defining the sampling points as �G = {H1, G1, G2}. (b) Resistance obtained by Boltzmann equation with specular boundaries when γee = 1
and γmr = 1/3 in every geometry defined by �G. A stable minimum resistance is found for the parameters indicated by the white dot. (c) and
(d) Voltage distribution across the optimal graphene elbow with the minimum resistance obtained by the Boltzmann and Navier equations,
respectively. The color represents the voltages, and the black dashed line corresponds to the reference 90◦ corner.

reference case. In Fig. 2(a), we show the optimized elbow
obtained within the Boltzmann (colored region) and the
Navier models (black solid line) formalism. We demonstrate
that smooth boundaries reduce the system’s resistance in all
cases. However, depending on the particular scattering rates,
the optimized geometry might also widen the bend region,
mainly when γmr � 1 and the transport is mainly diffusive.
By considering the Navier equation, the minimal electrical
resistance R0 and the resistance reduction �R are presented
in Figs. 2(b) and 2(c) as a function of the parameters γmr

and γee for specular boundaries. Notice that the bottom
shaded region with γmr � 0.5 and γee � 1.0 has not been
considered since for such parameters, ballistic effects are
relevant, and therefore, the Navier model is not expected to be
accurate [6]. As shown, by increasing γee, the reduction of the

FIG. 2. (a) Optimized geometries with minimal resistance calcu-
lated by Boltzmann (colored region) and Navier (solid black line)
formalisms for different rates γmr and γee. (b) Minimal resistance
obtained with Navier equation and specular boundaries as a function
of the parameters γmr and γee. The red-shaded region represents the
parameter space where the Navier model does not provide reliable
results. (c) Relative change in resistance �R between the one of
the 90◦ corner R⊥ (non-optimized-geometry) and the one of the
optimized geometry R0 shown in (b).

resistance by the optimal geometry is weaker, mostly if γmr

is also significant. This is consistent with the fact that as γmr

increases, scattering due to impurities or phonons is dominant,
and the influence of boundary scattering diminishes.
Therefore, the effect of the particular geometry is not
that significant. Still, if γee is high enough (γee > 1) and γmr

is reduced, as it happens when we miniaturize the electronic
devices, electron transport is primarily dictated by electron-
electron interactions, and we demonstrate that the geometry
optimization may lead to a reduction of the resistance
near 40%.

IV. GRAPHENE CONSTRICTION

In the following, we will deal with another relevant
geometry considered in transport experiments: a graphene
constriction. The latter is defined by fixing the width and
length of the constriction to W , which are the width and
total length of the channel 3W and 6W , respectively. By
setting the origin of the coordinate system at the center of
the constriction, let us confine the geometry optimization in
the first Cartesian quadrant and reproduce the process sym-
metrically across the remaining ones. We then dynamically
varied the geometry by strategically positioning a sample of
points between [W/2,W/2] and [2W, 3W/2]. As considered
in the previous section, the Boltzmann formalism is used un-
der a simplified process where only two points �G = {G1, G2}
are considered in the varying region [see Fig. 3(a)]. At the
same time, for the Navier equation we take a higher num-
ber of sampling points to soften the obtained profile �G =
{G1, . . . , G4}. For clarity, Fig. 3(b) represents a color map
of the resistance obtained with the Boltzmann equation for
a set of sampling points where a stable minimum value arises.
In order to evaluate the resistance reduction due to the ge-
ometry optimization, we now consider as a reference case
a square constriction with resistance R⊥, see dashed pro-
files in Figs. 3(c) and 3(d). They illustrate the voltage drop
across the optimized constriction with minimal resistance R0,
when γee = 2 and γmr = 1/3 for the Boltzmann (�R = 9%)
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FIG. 3. (a) Schematic representation of a graphene channel of width 3W with a constriction of width W . The geometry variation is per-
formed by dynamically positioning a sample of points between [W/2,W/2] and [2W, 3W/2], with respect to the center of the constriction. The
dashed black line represents the initial geometry from which variations are considered by defining different sampling points as �G = {G1, G2}
in the Boltzmann formalism. For the Navier model, a larger number of points is considered (not shown in the plot). (b) Resistance obtained by
the Boltzmann model with specular boundaries when γee = 2 and γmr = 1/3 in every geometry defined by �G. A stable minimum resistance is
found for the parameters indicated by the white dot. (c) and (d) Voltage distribution across the optimal graphene constriction with the minimum
resistance obtained by the Boltzmann equation for �G marked in (b) and for the Navier model, respectively. The color gradient represents values
from lower voltages (blue) to higher ones (red), and the black dashed line is the reference square constriction.

and Navier models (�R = 10%) with specular boundaries,
respectively. Both optimized geometries feature a smoother
curved profile that is consistent with the results of the pre-
vious section. Such a reduction, although lower than the one
found in the elbow channel, is still relevant for applications,
and it can be enhanced with a proper choice of parameters
γee and γmr .

Now, let us analyze the reduction of constriction resistance
after optimizing different transport parameters. Our results are

summarized in Fig. 4. Moreover, in this section, we want
to discuss the effect of the considered boundary, namely,
rough or specular. In Fig. 4(a) we show the optimal geometry
of minimal resistance obtained with the Boltzmann (colored
region) and Navier models (solid line) for a particular set
of values γee and γmr . In addition, on each panel, the right
(left) half corresponds to the solution with rough (specu-
lar) edges as indicated. Given the results shown in Fig. 4,
it is clear that the main conclusion of the previous section

FIG. 4. (a) Optimized geometries with minimal resistance calculated by Boltzmann (colored region) and Navier models (solid black line)
formalisms for different rates γmr and γee. In every panel, the right (left) half corresponds to the solution with rough (specular) edges as
indicated. (b) Minimal resistance obtained with Navier equation and specular boundaries as a function of the parameters γmr and γee. The
red-shaded region represents the parameter space where the Navier model does not provide reliable results. (c) Relative change in resistance
�R between the one of the square constriction R⊥ (non-optimized-geometry) and the one of the optimized geometry R0 shown in (b). (d) and
(e) Same as in (b) and (c) but considering rough boundaries.
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remains: the optimal geometry of minimal resistance arises
after smoothing the edge curvature. Particularly for the case
of the constrictions, we observe more disparities between the
Boltzmann and Navier solutions, especially when γee < 1 and
γmr < 1. Still, this is consistent with the fact that for such
rates, ballistic effects are relevant, and the validity of the
Navier model is compromised. Regarding the choice of the
type of edge scattering, we observe that the profile smoothing
is still revealed as the way to minimize resistance in both
cases, rough or specular boundaries. However, the particular
sign of the curvature of the constricted region might depend
on the scattering at the boundaries (see, for example, the case
γee = 2 and γmr = 0.1). Figures 4(b)–4(e) also represent the
minimal resistance and its reduction compared to a square
constriction calculated with the Navier model for specular
or rough edges. The dependency of the minimal resistance
of the constriction with the scattering rates is the same as
found in the elbow channel; see Fig. 2(b). Although there is
an overall decrease in the resistance reduction obtained for
the constriction geometry, especially for rough edges, if γee

is high enough (γee > 1) and γmr is reduced, �R can reach
significant values near 25% for specular boundaries.

V. CONCLUSIONS

This work highlights geometry engineering as a crucial
tool to exploit hydrodynamic signatures in 2D devices. Our
findings are pivotal for designing less resistive electronic
devices and underscore the importance of geometric opti-
mization and computational methods in device design. We
have demonstrated that a careful modification of a graphene
channel geometry, mostly by smoothing its curvature, reduces
the dissipative boundary scattering. Two different formalisms
have confirmed our results: (1) a general Boltzmann trans-
port equation and (2) a fully hydrodynamic model based
on the Navier-Stokes equation. We also considered different
scattering rates for the electron-electron interactions and the
momentum-relaxing processes. Therefore, we were able to
establish that our conclusions are expected to be valid when
the electron flow is mostly collective, i.e., if γee is high enough
(γee > 1) and γmr is reduced (γmr < 1/3). We demonstrate
an average reduction in the electrical resistance of 40% in
a 2D graphene elbow and of 25% in a graphene constric-
tion when properly smoothing its curvature in comparison
with their analog defined with right angles. In addition, we
observe that the uncontrolled roughness of the edges is a
detrimental factor in reducing the electrical resistance with
geometry optimization. Therefore, specular edges [51,52] are
desirable. For a default geometry, electron-electron collisions
have been shown to reduce the electrical resistance for a
given geometry [36]. However, the resistance could be fur-
ther reduced by choosing the optimal geometry, following
the optimization process in our paper. Moreover, even when
a circuit has to operate at a given temperature, the geometry
is still a feasible route to optimize its electrical performance.
Our results allow for improved functionality and efficiency of
graphene-based electronic devices, enabling the development
of high-performance materials with significantly optimized
electronic properties.
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APPENDIX A: BOUNDARY CONDITIONS

The two common boundaries considered in the literature
[51] are the rough edges that assume

g(θ ) = 0 (A1)

for all reflected electrons but not for the incident ones and the
partially specular edges that read

g(θ ) = g(−θ ) + d sin θ

×
[

g(−θ ) − 2

π
sin θ

∫ π

0
sin2 θ ′g(−θ ′) dθ ′

]
, (A2)

where 0 < θ < π are the reflected electrons and −π < θ < 0
are the incident ones. For the sake of simplicity, we wrote the
boundary condition for an edge parallel to θ = 0. Here, d ≡√

πh2h′k3
F � 1 is the dispersion coefficient, with h the edge’s

bumps mean height and h′ its correlation length. In particular,
the perfectly specular boundary conditions reads

g(θ ) = g(−θ ). (A3)

When defining boundaries in the Navier equation, we use the
additional condition ∂xuy = −uy/ξ , where ξ = 3πν/4vF is
known as the slip length [6]. The exact expressions for the
Navier-Stokes equation conditions in terms of the so-called
slip length ξ [51,53] are reported in Ref. [6] and result in the
following definitions:

ξ =
{

3π
4

ν
vF

, rough edge,

8
(

1
d − 2

3π

)
ν

vF
, specular edge.

(A4)

Mainly, when d = 0, the edge has no roughness but is per-
fectly specular and ξ → ∞, which is the case considered in
our study (see Ref. [6] for further details of the theoretical
model).

APPENDIX B: NUMERICAL METHODS

We use a conformal Galerkin finite element method to
solve both transport models [6,54]. We approximate the
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solution to the Boltzmann equation as

g(r, θ ) =
N∑

n=1

M∑
m=1

gnmφn(r)ϕm(θ ). (B1)

The spatial elements {φn}N
n=1 are the set of tent functions and

their bubbles defined on a triangular mesh. The points that
define a geometry act as vertices of a Delaunay triangulation
process, ensuring that the mesh is sensitive to the features
of the graphene channel. The Delaunay criterion results in
well-conditioned, near-equilateral triangles. The mesh is re-
fined iteratively [55,56], which avoids slender elements and
improves computational performance [57]. This process mit-
igates the impact of the numerical errors in the optimization
process, especially when comparing similar geometries. We
achieve convergence by setting the maximum size of the tri-
angles h < 0.2W for the elbow geometry and h < 0.4W for
the constriction, which yields N ∼ 103 spatial nodes. We also
write the solution using angular elements {ϕm}M

m=1, which are
the tent functions defined on the periodic [0, 2π ) interval, and
we take M = 16 to achieve convergence.

We write the weak formulation of Eq. (3), substitute
Eq. (B1), and solve the resulting linear system using an it-
erative least-square method in MATLAB. At the edges, we
impose the boundary condition in Eqs. (A1) or (A2) for re-
flected electrons. We set a constant density of carriers, and we
impose periodic boundary conditions along the longitudinal
direction to determine the g distribution at the limits of the
simulated cell. We find similar results for a larger periodic
cell, indicating that the periodic boundary conditions do not
significantly affect the results. Once we determine g(r, θ )
and the potential V (r), we calculate the velocity field u(r).
We integrate the electron trajectories using a Runge-Kutta
fourth-order method to represent the fluid streamlines, en-
suring that the separation between streamlines is inversely
proportional to the magnitude of the drift velocity. Last, we
find the current density and numerically integrate its pro-
file to compute the total current and the electrical resistance
R. We give the resistance in units of the international sys-
tem using W = 1 µm and W = 500 nm for the elbow and
the constriction geometries, and for graphene, with Fermi
velocity vF = 106 ms−1, at carrier density n = 1012 cm−2.

However, we can adapt it to other densities with a conversion
factor.

We solve the Navier-Stokes equation using another finite
element method and

u(r) =
N∑

n=1

(
ux,n

uy,n

)
φn(r), V (r) =

N∑
n=1

Vnφn(r). (B2)

Compared to the Boltzmann equation, the absence of an
angular dependency in the Navier-Stokes model reduces its
complexity. Therefore, we can accelerate calculations and
better sample the geometry with smaller triangular elements.
We now use h < 0.1W for the elbow geometry and h < 0.2W
for the constriction, yielding N ∼ 2500. We write the weak
formulation for Eq. (5) and transform the continuous equa-
tions that govern the electronic flow into a solvable set of
algebraic equations. We implement a partial slip boundary
condition with the slip length given by Eq. (A4) at the device’s
edges. The velocity at the limits of the simulated cell is set by
using the analytic solution of the velocity profile for a uniform
channel [6].

For a set of physical parameters, γee and γmr , we find the
optimal elbow geometry by iteratively solving the Boltzmann
equation for a set of points �G = {H1, G1, G2}. We explore the
set of values 0 < G1, G2 < 1.6W and H1 in steps of size 0.2W
and we identify the one with the lowest resistance R. For the
optimal constriction, we explore the set of parameters �G =
{G1, G2}, where 0 < G1 < G2 < W and we take steps of size
0.1W . For the Navier-Stokes model, the triangular mesh is
thinner, which enables us to explore the geometries in further
detail, introducing more nodes to define the shape of the de-
vice. Particularly, we use �G = {H1, . . . , H5, G1, . . . , G5} and
�G = {G1, . . . , G4} to characterize the elbow and the constric-
tion, respectively. This number of points is enough to obtain
a soft profile, and convergence is also achieved, since further
increasing it does not significantly change the results. How-
ever, iteratively computing the resistance in such a parametric
space is not feasible, so we use the MATLAB optimization al-
gorithm, starting with a geometry in which �G = �0 and moving
in the direction of the steepest descent in R to converge to the
optimal geometry [58].
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