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We investigate Bloch oscillations of interacting cold atoms in a mean-field framework. In general,

atom-atom interaction causes dephasing and destroys Bloch oscillations. Here we show that Bloch

oscillations are persistent if the interaction is modulated harmonically with suitable frequency and phase.

For other modulations, Bloch oscillations are rapidly damped. We explain this behavior in terms of

collective coordinates whose Hamiltonian dynamics permits one to predict a whole family of stable

solutions. In order to describe also the unstable cases, we carry out a stability analysis for Bogoliubov

excitations. Using Floquet theory, we are able to predict the unstable modes as well as their growth rate,

found to be in excellent agreement with numerical simulations.
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The dynamics of quantum particles in periodic poten-
tials subjected to uniform acceleration has a long history
and fascinating physics. Electrons in tilted periodic poten-
tials present dynamical localization and may undergo co-
herent oscillations, both in real and in momentum space,
known as Bloch oscillations (BOs) [1]. BOs were observed
for the first time as coherent oscillations of electronic wave
packets in semiconductor superlattices [2,3]. These oscil-
lations are due to interference of partially scattered wave
amplitudes and therefore can be observed for any phase-
coherent waves accelerated in periodic potentials. BOs
have been directly observed with ultracold atoms [4,5],
Bose-Einstein condensates [6], and noninteracting fermi-
ons [7] in tilted optical lattices.

After excitation, BOs persist until the quantum particles
lose their phase coherence. In Bose-Einstein condensates,
interatomic interactions lead to a rapid broadening of the
momentum distribution and a strong dephasing. Even in
the most favorable experimental conditions, only a few
cycles are usually observed. It is then believed that non-
linearities must generally lead to a breakdown of the BOs
[8–10].

In cold-atom experiments, one is able to change the
interaction strength by means of Feshbach resonances
[11,12]. Reducing the interaction to zero, Gustavsson
et al. [13] were able to increase the dephasing time of a
cloud of Cs atoms from a value slightly larger than a Bloch
period TB to more than 2� 104TB. A different way of
obtaining stable Bloch oscillations was proposed by
Salerno, Konotop, and Bludov [14]: Properly designing
the spatial dependence of the scattering length around the
zero crossing in a Feshbach resonance should result in a
long-living BO of bright solitons. In this Letter, we propose
instead to modulate the interaction harmonically in time by
an oscillating, but spatially homogeneous, magnetic field
close to a Feshbach resonance [15], which should be much
easier experimentally. Although, in general, atom-atom

interactions lead to a rapid dephasing of BOs, remarkably
with some harmonic modulations we find stable oscilla-
tions of the condensate [see Fig. 1(a)], while for others the
oscillations are rapidly dephased [see Fig. 1(b)].
Our starting point for this study is the mean-field Gross-

Pitaevskii equation for the discrete tight-binding model
[16]

i _�n ¼ ��nþ1 ��n�1 þ Fn�n þ gðtÞj�nj2�n; (1)

where�n denotes the wave function at each potential well
n of the optical lattice. The overdot indicates the time
derivative, the hopping parameter is set as the unit of
energy, and @ ¼ 1. We assume that initially the atomic
cloud has a Gaussian density profile centered at rest in

the lattice: �nð0Þ ¼ ð2��2
0Þ�1=4 exp½�n2=4�2

0�. In the

noninteracting case gðtÞ ¼ 0, the atomic cloud oscillates
with the Bloch frequency !B ¼ 2�=TB ¼ F.

a) b)

FIG. 1 (color online). Condensate density j�nðtÞj2 for two
interactions modulated harmonically at the Bloch frequency
!B ¼ F: (a) gðtÞ ¼ g0 cosðFtÞ and (b) gðtÞ ¼ g0 sinðFtÞ, with
F ¼ 0:2 and g0 ¼ 1. Data from numerical integration of the
Gross-Pitaevskii equation (1). The initial width of the wave
packet is �0 ¼ 10, equal to the amplitude xB ¼ 2=F of free
BOs. While the BOs in (a) are perfectly stable, they are rapidly
destroyed in (b).
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To investigate the interacting case, we first solve (1)
numerically by means of the fourth-order Runge-Kutta
method. Figure 1 shows the time evolution of the con-
densate density j�nðtÞj2 for two different harmonic inter-
actions modulated at the Bloch frequency. For gðtÞ ¼
g0 cosðFtÞ, we observe that the initial Gaussian shape is
preserved over time, and the condensate performs perfectly
stable BOs with frequency !B. On the contrary, for gðtÞ ¼
g0 sinðFtÞ, the initial shape is distorted already after a few
Bloch cycles. As a consequence, BOs are rapidly damped.

In order to understand how the interaction affects BOs of
a Gaussian wave packet, we start with a description in
terms of collective coordinates [9]. As free variables, we
chose the center-of-mass position xðtÞ ¼ hni ¼P

nnj�nðtÞj2 and width wðtÞ ¼ h½n� xðtÞ�2i and their con-
jugate momenta pðtÞ and bðtÞ, respectively. These are
defined by their generating rôle�i@p�n ¼ n�n and simi-

larly for b. The wave function is up to a global phase
parametrized as

�nðtÞ ¼ eipðtÞnAðn� xðtÞ; wðtÞ; bðtÞÞ; (2)

where the rapidly varying exponential exp½ipðtÞn� is fac-
torized from a smooth Gaussian envelope

Aðn; w; bÞ ¼ 1

ð2�wÞ1=4 exp

�
� n2

4w
þ ibn2

�
: (3)

The equation of motion (1) derives as i _�n ¼ @H=@��
n

from the nonlinear Hamiltonian

H¼X
n

�
�ð�nþ1�

�
nþc:c:ÞþFnj�nj2þgðtÞ

2
j�nj4

�
: (4)

Inserting the ansatz (2), Taylor-expanding the discrete
gradient to second order, and performing the Gaussian
integration, we find the effective Hamiltonian

Hcc ¼ Fx�
�
2� 1þ 16b2w2

4w

�
cospþ gðtÞ

4
ffiffiffiffi
�

p w�1=2: (5)

By construction, the collective coordinates obey the ca-
nonical equations of motion

_p ¼ �@Hcc

@x
¼ �F; (6a)

_x ¼ @Hcc

@p
¼

�
2� 1þ 16b2w2

4w

�
sinp; (6b)

_b ¼ �@Hcc

@w
¼ 1� 16w2b2

4w2
cospþ gðtÞ

8
ffiffiffiffi
�

p w�3=2; (6c)

_w ¼ @Hcc

@b
¼ 8wb cosp: (6d)

The initial conditions for the case under study are xð0Þ ¼ 0,
pð0Þ ¼ 0, wð0Þ ¼ �2

0, and bð0Þ ¼ 0. Equation (6) shows

that within this ansatz, the momentum of the centroid is
always given as pðtÞ ¼ �Ft, which then serves as the
driving term in the other equations. The autonomous equa-
tions (6c) and (6d) describing the width can be solved first,

their solution finally conditioning the centroid motion
obtained by integrating (6b).
Let us study the implications of these equations in some

simple cases. The complex width of the Gaussian envelope
z ¼ ½w�1 � 4ib��1 evolves according to

_z ¼ i cosFtþ igðtÞ
2

ffiffiffiffi
�

p z2

jzj3 ðRezÞ
3=2: (7)

In the linear case g ¼ 0, this equation has the exact solu-
tion Rez0 ¼ wð0Þ ¼ �2

0 and Imz0ðtÞ ¼ F�1 sinFt. It de-
scribes a Gaussian wave packet with a breathing width
w0ðtÞ ¼ �2

0½1þ ðsinFtÞ2=ðF�2
0Þ2�. This solution is valid

for small 1=ðF�2
0Þ, i.e., sufficiently broad wave packets.

Within the collective-variable approach, the amplitude of
BOs is actually determined by R :¼ ð8RezÞ�1 ¼
ð1þ 16b2w2Þ=ð8wÞ, appearing in (6b). In the linear case,
its constant value R0 ¼ ��2

0 =8 � 1 yields the usual BOs

x0ðtÞ ¼ xB cosFt with amplitude xB ¼ 2ð1� R0Þ=F.
A constant nonlinearity gðtÞ ¼ g0 leads to a damping of

the oscillation amplitude. With the highly nonlinear and
rapidly oscillating equations of motion (6c) and (6d), one
finds €R ¼ g0W ðtÞ cosFtþ g20=½16�wðtÞ2�. The first term

contains contributions from wðtÞ and bðtÞ that are very
effectively suppressed over a Bloch cycle by the oscillating
factor cosFt. The decay to lowest order in g0 therefore is
driven by the second term, and the amplitude decreases
initially like xBðtÞ ¼ ð2=FÞð1� R0 � 2g20R

2
0t

2=�Þ [9,10].
Let us now consider a time-dependent interaction of the

form gðtÞ ¼ g0 sinð!tþ �Þ. The equations of motion for
the collective coordinates allow one to identify a whole
family of values (!, �) that result in strictly periodic
motion. Formally, we can combine (6c) and (6d) to a single
equation _v ¼ Xðv; tÞ for v ¼ ðw; bÞ. This Hamiltonian
flow is driven by a vector field Xð�; tÞ that depends explic-
itly on cosFt and gðtÞ. Let now ! ¼ ð�1=�2Þ!B, with
�1; �2 2 N, be commensurate with the Bloch frequency
!B ¼ F. Then Xð�; tþ TÞ ¼ Xð�; tÞ is periodic with T ¼
�2TB. Since different trajectories vðtÞ cannot intersect, the
flow dynamics is strictly periodic if there exists a time �
such that vð�� T=2Þ ¼ vð�þ T=2Þ. This in turn is guar-
anteed by the equation of motion if Xð�; tÞ is odd around �:
Xð�; �� tÞ ¼ �Xð�; �þ tÞ. But since X contains cosFt,
this time can only be one of its zeros �j ¼ ð2jþ 1Þ�
�
2 F

�1, j 2 N. This then requires also the interaction to

be odd at that point, which fixes �j ¼ �!�j. Therefore,

the family of time-dependent interactions with periodic
solutions contains all linear combinations of

gðtÞ ¼ g0 sin

�
�1

�2

�
Ft� �

2
ð2jþ 1Þ

��
; �1; �2; j 2 N;

(8)

for example, cos½ð2nþ 1ÞFt�, sinð2nFtÞ, cosðFt=3Þ, or
sinð2Ft=3Þ. In all such cases, the periodicity of wðtÞ and
bðtÞ predicts, via (6b), perfect BOs in spite of the under-
lying nonlinearity.
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This stabilization mechanism does not rely on suppress-
ing the nonlinearity at the band edges, which can, in
general, be helpful to avoid Landau-Zener tunneling [16]
but is irrelevant in our single-band description. Instead, the
simplest stable interaction of type gðtÞ ¼ � cosðFtÞ ¼
� cos½pðtÞ� has its maximum amplitude with a positive
(negative) sign at the band center pðtÞ ¼ 0 and a negative
(positive) sign at the band edge pðtÞ ¼ �. Clearly, it does
not vanish at the band edge but rather at the band midpoint,
where the mass changes sign and dynamical instabilities
would start to appear [8,17].

We have tested the collective-variable predictions by
comparing the centroid xðtÞ as obtained from Eq. (6)
with the results from the numerical integration of (1).
Collective coordinates provide an excellent description of
long-living BOs [Fig. 2(a)]. In the damped case gðtÞ ¼
g0 sinðFtÞ, this approach also predicts a breakdown of BOs,
but not quite correctly [Fig. 2(b)]. This ansatz allows only
the Gaussian width to respond to the nonlinear perturba-
tion, but it cannot capture the actual dephasing mechanism,
which involves the excitation of fluctuations as apparent
from Fig. 1(b).

To proceed beyond collective coordinates we start with
an infinitely wide wave packet, namely, an atomic cloud
with uniform density j�0

nj2 ¼ �0. In this case, Eq. (1) is
exactly solved by �0

nðtÞ ¼ ffiffiffiffiffiffi
�0

p
exp½�i�ðtÞ�, with

�ðtÞ ¼ Fnt� 2

F
sinðFtÞ þ

Z t

0
dt0�ðt0Þ (9)

in terms of the chemical potential �ðtÞ ¼ �0gðtÞ. This

solution predicts that an infinitely narrow momentum dis-
tribution will perfectly Bloch oscillate in momentum
space; i.e., the condensate current will oscillate homoge-
neously without signatures in position space, and this for
arbitrary interaction.
In the following, we study the broadening of the

momentum distribution due to the growth of small pertur-
bations. If the wave function deviates slightly from
the homogenous solution �nðtÞ ¼ ½ ffiffiffiffiffiffi

�0
p þ�ðn; tÞ��

exp½�i’ðtÞ�, linearizing (1) gives the equation of motion
for the fluctuation �ðn; tÞ:

i _� ¼ � cosðFtÞ�00 þ 2i sinðFtÞ�0 þ 2�ðtÞRe�: (10)

�ðn; tÞ is assumed to be a smooth function with spatial
derivative �0 ¼ @n�. The interaction term acts on Re�,
i.e., the density fluctuation. Separating real and imaginary
parts �ðn; tÞ ¼ sðm; tÞ þ idðm; tÞ while transforming to
the reference frame m ¼ n� x0ðtÞ of the unperturbed
BO with x0ðtÞ ¼ 2F�1 cosFt and going to the momentum
representation brings (10) to

_dk ¼ �½k2 cosðFtÞ þ 2�ðtÞ�sk; (11a)

_sk ¼ k2 cosðFtÞdk: (11b)

These are the Bogoliubov-de Gennes equations for
excitations of a homogeneous condensate with chemical
potential �ðtÞ and a time-dependent mass, such that
	0kðtÞ ¼ k2 cosðFtÞ. The width of the momentum-

space distribution ð�kÞ2 ¼ ðN�0Þ�1
P

kðk� pÞ2j�kj2 ¼
ðN�0Þ�1

P
kk

2ðjdkj2 þ jskj2Þ is given by these amplitudes.
Thus, their stability is the key to understand the stability of
BOs.
In Eqs. (11), we have again the structure of a first-order

Hamiltonian equation of motion (now with a linear evolu-
tion operator) depending on cosðFtÞ and �ðtÞ ¼ �0gðtÞ.
Thus the same argumentation as for the collective coordi-
nates holds: Solutions are periodic, and hence perturba-
tions do not grow if gðtÞ is of the type (8).
But now we are also able to make quantitative predic-

tions about both stable and unstable cases. Thanks to the
linearity of (11), Floquet theory [18] applies if the inter-
action is modulated at a commensurate frequency ! ¼
ð�1=�2Þ!B. The stability of this system can be assessed
by integrating the differential equations (11) over one
period T ¼ �2TB with two different initial conditions:
fd1kð0Þ ¼ 1; s1kð0Þ ¼ 0g and fd2kð0Þ ¼ 0; s2kð0Þ ¼ 1g. A per-

turbation with wave vector k is stable when j�kj � 1,
where �k ¼ ð1=2Þ½d1kðTÞ þ s2kðTÞ�. In the periodic

cases, �k ¼ 1. An unstable fluctuation with wave vector
k grows exponentially with the Lyapunov exponent 
k ¼
T�1 log½�k þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2

k � 1
q

�.
Figure 3 indicates by black squares those parameters

(!=!B, k) in the case gðtÞ ¼ g0 sinð!tÞ, for which j�kj �
1 assures stability. Full lines correspond to the stable cases
at !=!B ¼ 2n=5, n 2 N, predicted by (8); other stable
lines are not resolved due to the finite frequency resolution
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FIG. 2 (color online). Centroid xðtÞ for (a) gðtÞ ¼ g0 cosð!tÞ
and (b) gðtÞ ¼ g0 sinð!tÞ, with ! ¼ F ¼ 0:2 and g0 ¼ 1:0. The
solid line is obtained by numerical integration of (1); circles
connected by dashed lines are the solution of the collective-
coordinate Eqs. (6a)–(6c). In the stable case (a) both curves
agree, whereas in (b) the collective coordinates predict a later
onset of damping.
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0.1 used for the plot. For most frequencies, there are many
k vectors belonging to unstable excitations, so the BO will
decay [Fig. 1(b)].

For a quantitative test of Floquet-theory predictions, we
choose a larger width �0 ¼ 100 and a weak interaction
parameter �0 ¼ 0:01. As obvious from Fig. 3, unstable
modes are typically encountered at intermediate values of
k. Floquet analysis predicts as the most unstable mode k 	
0:44 with a Lyapunov exponent of 
max 	 0:1815T�1

B . The
numerically calculated centroid motion (similarly to
Fig. 2) starts to get damped around 200TB. The k-space
picture (Fig. 4) is much more revealing and shows that the
most unstable mode starts to grow much earlier. The
numerically observed dominant mode and also its growth

rate are in perfect agreement with our Floquet-theory
predictions.
In conclusion, we have shown that stable BOs of cold

atoms are possible when the atom-atom interaction is
modulated in time with suitable frequency and phase.
Collective coordinates are found to accurately describe
undamped BOs. For commensurate frequencies ! and
!B, we have identified a class of time-dependent interac-
tions, for which the BOs remain perfectly periodic. But
collective coordinates cannot capture the dynamics of
unstable cases where the main wave packet decays by
radiating excitations. In order to explain the dephasing of
the oscillations in unstable cases, we applied a stability
analysis based on Floquet theory that is in excellent agree-
ment with the numerical results. Using harmonically
modulated interaction thus opens the possibility of study-
ing the precise influence of other dephasing mechanisms
on Bloch oscillations, such as deliberately introduced dis-
order [19].
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FIG. 3. Stability map for gðtÞ ¼ g0 sinð!tÞ, with !B ¼ F ¼
0:2 and g0 ¼ 1:0. Black squares indicate the wave vectors k of
stable excitations at each frequency !. The stable cases at
!=!B ¼ 2n=5 predicted by (8) appear as full lines; the other
stable lines are not resolved due to the finite frequency step 0.1
used here. For the case of cosð!tÞ, the diagram is similar, with
stable lines at !=!B ¼ ð2nþ 1Þ=5.

FIG. 4 (color online). Momentum density j�kj2 for selected k
modes in the unstable case gðtÞ ¼ g0 sinðFtÞ. The original wave
function is centered around k ¼ 0. The solid line marks the
growth rate of the most unstable mode as predicted by Floquet
theory. The growth of this mode precedes the damping of the
centroid motion that sets in at t 	 200TB. Numerical parameters:
�0 ¼ 100, �0 ¼ 0:01, and F ¼ 0:2.
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