Numerical study of electron tunneling through heterostructures
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A numerical scheme based on the discretized form of the one-dimensional Schridinger equation
is presented. Using a transfer matrix method we recursively compute the transmission coefficient
for electrons in arbitrary potentials. The computation time and storage are much reduced so that
the code may be implemented by most programmable pocket calculators. The numerical method
is used to study electron tunneling through single and double heterostructures, and the accuracy

of the method is discussed.

L INTRODUCTION

Tunneling through heterostructures plays a major role
in the physics of many electronic devices.! In particular,
resonant tunneling of electrons through quantum well
structures has recently attracted considerable attention be-
cause of its possible application to ultrahigh speed devices.?
Quantum dynamics of electrons in such systems has been
widely studied within the framework of the effective mass
approximation. From a theoretical point of view, one must
solve the scattering problem at the semiconductor hetero-
Jjunction, starting from a Schrédinger-like equation as an
effective mass equation for electrons. The electronic mo-
tion parallel to the layers is that of free particles with an
effective mass different from the actual electron mass. Per-
pendicular to the layers, neglecting band bending and
space charges, the potential across a single junction is
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taken as a step potential, the height of the step being the
offset of conduction bands in both semiconductors. There-
fore, calculations actually reduce to a simple one-
dimensional scattering problem.

The methods of solving the quantum mechanics of elec-
tron tunneling through heterostructures generally break
down into two different approaches: the Wentzel-
Kramers—Brillouin (WKB) approximation® and the trans-
fer matrix approach.* The WKB solutions become valid
whenever the potential barrier varies slowly compared with
the electron wavelength, that is, the wavelength must be
small compared with the distance over which the potential
changes appreciably. This assumption is incorrect in de-
vices of technical interest, namely, those with narrow lay-
ers, especially at low energy. On the other hand, the trans-
fer matrix method requires the solution of the Schrédinger
equation in each layer of the device, assuming that the
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effective mass is constant. Two linearly independent solu-
tions in each region and their derivatives are arranged into
a 22 matrix. By matching the wavefunction and its de-
rivative at each interface one can obtain the transmission
coefficient simply by successive multiplication of these ma-
trices. Although students of introductory courses in quan-
tum mechanics can easily understand this method, mathe-
matical difficulties may arise in dealing with realistic
electronic devices. This occurs, for example, in the case of
resonant tunneling through parabolic quantum wells,
where solutions involve confluent hypergeometric func-
tions.> Even if one considers the simple case of a single
heterostructure and assumes that the potential is constant
in each semiconductor layer (square well or barrier poten-
tial}, analytic solutions are complicated when a bias volt-
age is applied because Airy functions appear. Hence, it
would be desirable to find an alternative method to obtain
accurate results without many mathematical tools.

The introduction of computers into elementarv physics
courses could provide invaluable help in understanding
many different phenomena. Of particular interest are those
schemes that teach students to use computers to solve the
problems in the same way as do working physicists. The
aim of this paper is to present a simple numerical method
to study electron tunneling through arbitrary barriers, with
application to semiconductor devices. The method is based
on previous work of the authors,® in which a discretization
scheme of the Schridinger equation for general periodic
potentials was presented to determine one-dimensional
band structures. With minor modifications, this numerical
methed can be extended to study the electron scattering in
general one-dimensional potentials. We feel that the nu-
merical technique we present may be included in courses in
solid-state physics as well as in courses in elementary quan-
tum mechanics or nuclear physics (for instance, to study
transmission through fission barriers): the mathematics is
not too involved whereas the underlying ideas are easily
understood with only some basic notions in quantum phys-
1C8.

I1. NUMERICAL METHOD

Let us consider an electron of energy E and effective
mass m¥, moving in the x direction, incident on a hetero-
structure of width L. Regarding the application of results
to electronic devices, we refer energies and potentials to the
conduction-band edge of the bulk semiconductor. We sup-
pose that the potential is constant outside the heterostruc-
ture with value zero at the left and — ¥ at the right when
a bias voltage is applied. Also we assume that the effective
mass m* is constant throughout. The magnitude of the
effective mass reflects the strength of the crystal potential
and varies distinctly from material to material. In the case
we shall deal with, however, the band structures of both
semiconductors are very similar near the band edges and
we ignore the difference in the effective mass. Hence the
corresponding Schridinger equation is written as

# dP(x)
o VR =B, (1)

where the exact form of the potential F(x) is immaterial
for the moment and will be specified later.

In order to numerically solve this equation, let us take an
integration step s=L/N, N being a positive integer, and
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define the grid points x,=ns, with # an arbitrary integer.
The Taylor expansion of the electron wave function at
points x,,, ; yields

v,b(x,,ﬂ):w:c,.)isdﬁf"’é dzﬁif") 3 da'j:ix )
+0(s*). (2)
On adding ¥(x, ;) and ¥(x,_,) we obtain
dp(x,) 1
o =2 W)+ ) ~24(x,) 1+ O(s).
(3)

Neglecting the last term in Eq. (3), provided that s is small
enough, we obtain from Eq. (1) the discretized form of the
Schrodinger equation at any point of the grid

Ylxn )+ (x, 1) =a,4(x,), (4)

where for simplicity we have defined

2m*

For an electron incident from the left, the wave function
outside the heterostructure is of the form

"L e ng0
Y(x,) = 17" nSN s (6a)
where, for small s,
2m* E; ,_ Rm¥E+V)

As usual in oOne-dimensional scattering problems,” the
wave function at the left is the superposition of the incident
wave, whose amplitude is set to unity without loss of gen-
erality, and a reflected wave, whereas at the right there is
only a transmitted wave. Here r and r denote the reflection
and transmission amplitudes, respectively, so that the re-
ﬂectlon and transmission coefficients are p=|r|? and
7=t|*sin ¢'/sin g, respectively.

Notice that Eq. (4) is similar to a tight-binding Hamil-
tonian. By this we mean a discrete Hamiltonian that relates
the electronic wave function at three consecutive lattice
sites, so the corresponding Hamiltonian matrix is tridiag-
onal (with identical off-diagonal elements in our case).
Hence one can find 7 by means of the transfer matrix tech-
nique, in analogy to usual tight-binding calculations. At
this point we should stress the transfer matrix formalism
we use is similar, a]though not identical, to that followed
by Tsu and Esaki.* These authors solve Eq. (1) analyti-
cally for an unbiased heterostructure so the (continuous)
wave function are combination of plane waves in every
semiconductor layer. The transfer matrix then relates the
complex amplitudes of those plane waves at both ends of
the heterostructure (# and ¢ in our notation), and it is
obtained as the product of several complex matrices. In
contrast, the transfer matrix we use relates the value of the
wave function at different grid points, as we shall see be-
low. It presents the great advantage that its elements are all
real instead of complex, thus requiring no advanced com-
puting techniques (in fact, we have obtained our resuits
with a BASIC code).
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Table I. Comparison between the transmission coefficient calculated nu-
merically for different numbers of grid points with exact and WKB results
in a single GaAs—Ga, ,Al,As heterostructure. The potential barrier is
0.25 eV height, 50 A width and the energy of the incident electron is 50
meV. All values 310 3.

N=10 N=100 N=>500 Exact WKB

7.0278 6.7780 6.7756 6,7755 2.6506

Let us return to the discrete Schrédinger equation.
Equation (4) may be cast in a matrix form

(¢(xn+1))_(an _1)( th(x,} )=P ('b(xn) )
V"(xn) - 1 0 1)l’(xnfl) T 'p(xn—l) ’

(
and iterating this equation

5l (%)

I3

T(N) is the transfer matrix of the whole system, and re-
lates the wave function at both edges of the heterostruc-
ture. Two important properties will be used befow, namely,
T(N) is real and det[T(N)]=1. Using Egs. (6) and (8)
one gets after a little algebra

| Tz ™9+ Ty — Tyye? —Tpev 9|2

[T e ™8+ Ty— Type? —Tye'd —9 |2 ’
(9)

where we have dropped the explicit dependence on N of
the transfer matrix elements. The denominator of Eq. {9)
is obtained from the numerator replacing 7«7, and
T'3y+>T ;. Consequently we must only evaluate the numer-
ator (say). Once p is explicitly evaluated (recall that T is
real), taking into account the unitarity condition r=1— p
and the fact that det(T) =1 we finally arrive at the follow-
ing expression for the transmission coefficient

p=p(E)=

4 sin g sin g’
T7=1(E) =D&
where D(E) is the denominator of (9)

D(E) =T+ T+ Th+TH+2(TyTyy

(10)

+ T21T22)C05 q—Z( T“Tp_] + TuTzz)COS q‘

GaAs | GaAlAs | GaAs [GaAlAs | GaAs

Fig. 1. Schematic representation of a double barrier GaAs—GaAlAs het-
erostructure.
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Fig. 2. Potential energy diagram in the double barrier heterostructure:
{a) unbiased and (b) under bias conditions.

—2(T“T22+ TIZTZ])CUS g cos q’
+2 sin ¢ sin g'. (11)

Hence 7 is recursively computed from the matrix elements
of T'(N). Taking into account the fact that 7(N)
=PyT(N—1) and T(0) =P, we find the following recur-
rence relations involving only real parameters:

T“(N)=GNT“(N—1)—T“(N'—z),
Tu(Ny=ayT(N—1)—T2(N-2),

(12)
TyN)=Tp(N-1),
Tp(N)=T(N-1), N=1.2,...
with the initial conditions T;:(—1)=8&;, T;(0)=a,,

Tp(0)=-—~1, T3,(0)=1 and T,,(0)=0. It is worth men-
tioning that the recurrence relations {12) involve at most
three consecutive values of the transfer matrix elements, so
no storage of former values is required. Therefore, the code
may be implemented with small storage capabilities.

II1. RESULTS AND DISCUSSIONS

In erder to facilitate & direct comparison of our numer-
ical procedure with analytical results, we first consider an
unbiased (¥'=0) single GaAs—Ga;_,Al As heterostruc-
ture of L=>50 A width. In such a case m*/m=0.067 (see
Ref. 1, p. 42) so that 2m*/#=0.0176 ¢V~ ' A2 The
conduction-band offser {the difference between the
conduction-band edges in Ga, _,Al,As and GaAs) is about
AE=0.25 eV (positive) for 30% Al content. Therefore,
the potential is simply a square barrier of the form

AE, 0<x< L

Vixy= 0, otherwise -

(13)
In this simple structure the transmission coefficient may be

calculated analytically. For an incident electron with en-
ergy below the barrier height we get
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Fig. 3. Transmission coefficient obtained numerically as a function of the
applied voltage in a double barrier heterostructure, The potential barrier
is 0.25 €V height, L=3d=150 A and the energy of the incident electron
is 50 meY.

(AE)?sinh?[ L 2m*(AE—E)/#]\
Tana=| 1 4E(AE—E) '
(14)
In addition, the WKB method gives the expression
rwxp=exp[ —2L \2m*(AE—E)/#]. {15)

We have found in our numerical studies that good ac-
curacy is obtained even for a small number of grid points
(¥ ~100). Comparison of the transmission coefficient ob-
tained numerically, Tyyy, for different values of N with
Tana and Twgp is presented in Table I, when the energy of
the incident electron is 50 meV above the GaAs
conduction-band edge. Note that for & as low as 100 (s of
order of the Bohr radius) one obtains three exact figures,
whereas the WKB prediction is rather poor.

Having tested the reliability of the numerical method, let
us study a second example. We consider a double barrier
GaAs—Ga,_,Al As heterostructure, as depicted in Fig. 1.
Resonant tunneling through the double barrier occurs
when the energy of the incident electron coincides with
that of an unoccupied discrete state in the well (GaAs)
between two confining barriers (Ga,_, Al As). Calling L
the total width of the device and 4 the width of the well, we
assume the potential to be of the form [see Fig. 2(a)]

AE, 0<x<(L—d}/20r (L+d)/2<x<L

Volx)= 0, otherwise

3

(16)

in the unbiased device. The energy of the incident electron
is nearly the Fermi energy, which is constant in the device.
Therefore, to obtain a resonant tunneling current one must
modify the energy of the discrete states in the well. A
simple way to do that is to apply a bias voltage. This volt-
age causes the occurrence of an electric field in the device.
Assuming that this field is constant throughout, the poten-
tial is now given by [see Fig. 2(b}]
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0, x<0
Volx)—(x/L)V, 0<x<L,
-V, x>L

where Fy(x) is the potential in the unbiased device and
V>0 is the applied bias.

We have numerically studied a double barrier hetero-
structure with L=3d=150 A, AE=0.25 eV and m*/m
=0.067. Using the numerical method, we have determined
T(E) for different values of the applied voltage ¥ and
E=350 meV. The obtained results are shown in Fig. 3 for
N=1000. We observe the occurrence of a very narrow
resonance at ¥=65.1 mV. As mentioned above, the exter-
nal electric field modifies the quasilevels in the well, and
their encrgies are lowered as the applied voltage is in-
creased. The strong peak in the transmission coefficient
then indicates that the Fermi level matches one of these
quasilevels. The tunneling current will be high enough only
if this matching cccurs. For instance, increasing the volt-
age from 50 to 65.1 meV the transmission coefficient in-
creases about three orders of magnitude. The full width at
half maximum of the peak is only ['=1.5 mV. This means
that the resonant tunneling current is very sensitive to mi-
nor changes of the applied voltage. The value of I' allows
us to determine the lifetime of the quasilevel in the well.
Assuming that this lifetime is not strongly dependent on
the position of the level (so that it remains almost un-
changed under minor variations of the applied voltage), it
is clear that the width of the resonance peak in the trans-
mission coefficient is approximately equal to the width of
the level. Hence the lifetime is found to be ~#/C=10""*
s. Therefore if initially there are no electrons in the well
and electrons are made to tunnel by the applied voltage,
only after a time of order of a few #/T the high transmis-
sion at resonance is achieved by multiple reflection. Thus
this time sets an upper limit to achievable frequencies in
the ac regime. This theoretical limit is very high and shows
the capabilities of resonant heterostructures as ultrahigh
speed devices. It is clear, however, that in a real device
impurity scattering, space charge and many other phenom-
ena reduce this upper limit. In fact, better estimates indi-
cate that such cutoff frequency is about 60 GHz.? Fortu-
nately this frequency is still high for technical applications!

Vix)= (17

IV. CONCLUSIONS

In this paper we have presented a numerical scheme to
evaluate scattering parameters (transmission coefficient)
of an electron in arbitrary one-dimensional potentials. The
method is based on the analogy between the discretized
form of the Schrédinger equation and tight-binding Hamil-
tonians. According to this analogy, a transfer matrix tech-
nique is used to compute the transmission coefficient for
each energy in a recursive way. The method has been ap-
plied to several semiconductor heterostructures, and it has
been found that good numerical accuracy is obtained even
for not very small integration steps. The advantage of this
method 1s that one can include more sophisticated and
more realistic potentials, for which analytical selutions are
difficult or impossible to obtain. In this sense, the effects of
band bending at interfaces, inhomogeneous electric fields
and different effective masses in both semiconductors can
be very easily included in cur numerical approach.
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