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Abstract

We investigate inhomogeneous broadening of absorption line shapes of an ensemble of linear Frenkel chains with a
Gaussian distribution of molecular transition energies. Two models of Gaussian disorder are considered. In one case, the
molecular energies are uncorrelated variables whereas in the second model the molecular energies are pairwise correlated. A
perturbative treatment in the disorder is used to determine that the broadening is larger in the presence of correlations. In the
case of nonperturbative magnitudes of disorder, we find a good agreement of the theoretical treatment with numerical
simulations, when the number of molecules in the system is replaced by the number of coherently bound molecules. q 1999
Elsevier Science B.V. All rights reserved.

PACS: 71.35.qz; 36.20.Kd; 78.90.q t

1. Introduction

Despite the amount of work done during the last
decades, the current understanding of quasiparticle
dynamics in disordered systems is far from being
complete. During the last decade, it is being realized
by many researchers in the field that correlated
disorder has profound effects in quasiparticle dy-
namics and produces a variety of complex and new
phenomena. It is by now well known that a band of
delocalized states arises in one-dimensional tight-bi-
nding Hamiltonians with short-range correlated diag-
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w xonal andror off-diagonal elements 1–6 . In addi-
tion, is has been recently claimed that a one-dimen-
sional Anderson model with long-range correlated

w xdisorder exhibits delocalization 7 .
In the last few years, a great deal of work was

devoted to coherent and incoherent exciton dynamics
Ž .in one-dimensional 1D systems with correlated dis-

order, showing that correlations manifest themselves
w xin the optical properties 8–14 . The occurrence of

intersite energy correlations in molecular aggregates
and some polymers like polyaniline was previously

w x w xpointed out by Knapp 8 and by Dunlap et al. 2
respectively and then was demonstrated by Durrant

w xet al. 10 in molecular aggregates of pseudo-iso-
cyanine by means of two-color pump-probe tech-
niques. So we believe that the interest of those
theoretical works is beyond the formal study of

0301-0104r99r$ - see front matter q 1999 Elsevier Science B.V. All rights reserved.
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exciton dynamics. We have already considered opti-
cal absorption of Frenkel excitons in unpaired as
well as in paired disordered models, focusing our
attention on inhomogeneous broadening due to a
Gaussian distribution of on-site energies in a one-di-

w xmensional lattice 14 . By solving the microscopic
equation of motion proposed by Huber and Ching
w x15 , it was found that inhomogeneous broadening is
enhanced when structural correlations arise.

In this paper, a comparative study of two types of
disorder – on the one hand, uncorrelated on-site
energies and, on the other hand, pairwise correlated
on-site energies – is performed in order to study the
influence of the short-range intersite energy correla-
tions on the linear absorption spectra of Frenkel
excitons in finite linear chains. A detailed analytical
treatment, based on the perturbation theory, is used
to show that broadening is larger in the presence of
correlations. The same conclusion is deduced from
the numerical simulation in the nonperturbative limit.
In addition, it will be clearly demonstrated that the
introduction of the concept of coherently bound
molecules works fairly well in explaining quantita-
tively the numerical results for both types of disor-
der. The number of coherently bound molecules in
the presence of correlations appears to be smaller
than in their absence, meaning that correlations give
rise to larger exciton scattering due to disorder. The
problem whether the presence of intersite energy
correlations can be deduced from the study of the
linear optical response of excitons is also discussed.

2. Model

Ž .We consider N 4 1 even optically active
molecules forming a regular one-dimensional lattice
with spacing unity. For our present purposes, we

Žneglect all thermal degrees of freedom electron–
.phonon coupling and local lattice distortions . There-

fore, the effective Hamiltonian for the Frenkel-exci-
ton problem can be written in the tight-binding form
with nearest-neighbor interactions as follows

N Ny1

< : ² < < : ² <HHs e n n yJ n nq1ŽÝ Ýn
ns1 ns1

< : ² <q nq1 n , 1. Ž .

< :where n is the state vector of the nth molecule
with transition energy e . Here J)0 is the nearest-n

neighbor coupling, which is assumed to be constant
in the whole lattice. On-site energies are subject to
diagonal disorder representing inhomogeneous
broadening, for which a Gaussian distribution is the
proper theoretical approximation.

In what follows we consider two different models,
namely uncorrelated and correlated disordered sys-
tems. This allows us to separate the effects merely
due to optical absorption in one-dimension from
those which manifest the peculiarities of the correla-
tion between random parameters. The first model
supposes N Gaussian, statistically independent, on-

² : ² 2: 2site energies e with e s0 and e ss forn n n

all n. Therefore, the joint probability distribution is
w x8,9

N
ŽN . Ž1.P e , . . . , e s P e , 2aŽ . Ž . Ž .Ł1 N n

ns1

where
1r2 21 enŽ1.P e s exp y . 2bŽ . Ž .n 2 2ž / ž /2ps 2s

The covariance matrix is diagonal
u ² : 2A s e e ss d , 2cŽ .m n m n m n

where the superscript u refers to uncorrelated Gauss-
ian disorder.

On the other side, to build up our correlated
disordered model, we chose Nr2 independent vari-

Ž .ables e ns1, . . . , Nr2 according to the same2 ny1

Gaussian distributions as before and then take e s2 n

e . This step is repeated at every odd site of the2 ny1

lattice, hence leading to a set of paired correlated
Ž .on-site energies dimers with the following joint

probability distribution

P ŽN . e , . . . , eŽ .1 N

Nr2
Ž1.s P e d e ye . 3aŽ . Ž . Ž .Ł 2 ny1 2 n 2 ny1

ns1

In this case the covariance matrix is symmetric and
its elements Ac with nGm are given bym n

Ac ss 2 , ms1,2, . . . , N ,m m

Ac ss 2 , ms1,3, . . . , Ny1,m ,mq1

Ac s0, otherwise, 3bŽ .m n
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where the superscript c refers to correlated Gaussian
disorder. Thus, the energy correlation length in our
case is N s2.c

3. Perturbative treatment

Having presented our model, we now describe the
method we have used to calculate the linear absorp-
tion spectra in the frame of the perturbative limit for

w xsmall values of the degree of disorder srJ 9 . To
Ž .this end, we rewrite the Hamiltonian 1 as HHsHHd

Ž .qHH , where HH HH stands for the diagonalod d od
Ž .off-diagonal part in the site representation of the

Ž .Hamiltonian 1 , respectively. The diagonal contribu-
tion HH is considered as a perturbation term. Thed

eigenstates and eigenenergies of HH are given byod

N2
0< : < :k s sin Kn n , 4aŽ . Ž .( Ý

Nq1 ns1

E0 sy2 Jcos K , 4bŽ .k

Ž .where K'p kr Nq1 and ks1, . . . , N. In this
Ž . Xexcitonic representation, the matrix HH is off-di-d k k

agonal and has the form
N2

X
XHH s e sin Kn sin K n . 5Ž . Ž . Ž . Ž .Ýd nk k ž /Nq1 ns1

Ž . XThe matrix elements HH are expressed throughd k k

linear combinations of Gaussian variables e withn

zero mean and, consequently, also have a joint
²Ž . :XGaussian distribution. Since H s0 for all kd k k

and kX, the joint Gaussian distribution is character-
ized by its covariance super-matrix BB X X 'k k ,k k1 1 2 2

²Ž . Ž . :X XHH HH , where the angular brackets indi-d k k d k k1 1 2 2

cate an average over the joint probability distribution
Ž . Ž .given in 2a or 3a . Since in what follows we will

deal only with one exciton transitions, the matrix
²Ž .2 :X X X Xelements B ' BB s HH will conse-k k k k ,k k d k k

quently be the subject of our analysis. These ele-
ments are given by

2 N2
X

XB s A sin Km sin K mŽ . Ž .Ýk k m nž /Nq1 m ,ns1

=sin Kn sin K X n 6Ž . Ž . Ž .
The diagonal elements of B X represent the vari-k k

ances of the distributions of the perturbed exciton

0 Ž .energies E sE q HH while the off-diagonalk k d k k

elements are those for the intermode coupling matrix
Ž . XHH . Note that in the perturbative limit, inhomo-d k k

geneous broadening of exciton levels described by
B appears to be the major effect in the lineark k

response from the exciton system. The transition
oscillator strengths are not subjected to noticeable
changes.

Ž . Ž .Taking now into account 2 and 3 we obtain

s 2
Xu

XB s S k ,k 7aŽ . Ž .k k 12Nq1Ž .
for uncorrelated disorder whereas for correlated dis-
order the result is

s 2
X Xc

XB s S k ,k qS k ,k . 7bŽ . Ž . Ž .k k 1 22Nq1Ž .
For brevity we have defined

N
X X2 2S k ,k s4 sin Km sin K mŽ . Ž . Ž .Ý1

ms1

1
X Xs Nq1 1q d qd ,Ž . Ž .k k kqk , Nq12

7cŽ .
w xwhere the summation can be found in Ref. 9 , and

Nr2
XS k ,k s8 sin 2 KmyK sin 2 KmŽ . Ž . Ž .Ý2

ms1

=sin 2 K X myK X sin 2 K X mŽ . Ž .
N

X Xs cos KqK qcos KyKŽ . Ž .
2

1qcos KqK X cos KyK XŽ . Ž .
q2 X Xcos KqK qcos KyKŽ . Ž .
y 1yd X yd XŽ .k k kqk , Nq1

=
cos KqK X qcos KyK XŽ . Ž .

X X2cos KqK cos KyKŽ . Ž .
N 1

X Xq d yd y .Ž .k k kqk , Nq1 ž /2 2cos K
7dŽ .

The latter summation is performed in Appendix A.
Therefore, the covariance matrix elements defined by
Ž .6 can be readily determined.
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w xAccording to Ref. 9 , in the perturbative limit the
optical absorption spectrum is given by a series of N
Gaussian peaks centered around the unperturbed
eigenenergies. Since the state ks1 carries almost
the entire oscillator strength of the system, the opti-
cal absorption spectrum is dominated by a Gaussian
peak centered at E0 with standard deviation s1 1

' B . Therefore, in the case of uncorrelated disor-( 11
Ž w x.der we obtain see also Ref. 16
2s

3us s . 8aŽ .(1 2 Nq1

In the correlated case, assuming the limit N41, we
get

2s
cs s 3 . 8bŽ .(1 Nq1

Ž .As it can be seen from Eqs. 8 , both magnitudes
scale as Ny1r2, showing the so-called motion nar-

w xrowing effect 8 . In addition, the standard deviation
is larger for correlated inhomogeneous broadening
and the difference increases on increasing s . Similar

w x w xconclusions were drawn by Knapp 8 , Knoester 9
w xand Fidder et al. 17 for chains with long-range

w xcorrelated disorder as well as in Ref. 14 by solving
the microscopic equation of motion for the present
problem. The two times increase of the numerical
prefactor of s 2, from 3r2 to 3 upon introducing1

intersite correlations, has a rather clear explanation.
Indeed, for an uncorrelated distribution of on-site

Ž .energies, the summation in Eq. 5 runs over all sites
of the chain while in the presence of pairwise inter-
site energy correlations, Nr2 serves in fact as an
effective number of sites in the sum appearing in Eq.
Ž . Ž .5 : since e se ns1,2, . . . , Nr2 , we can2 ny1 2 n

w Ž .x N w Ž .x Nr2replace 2r Nq1 Ý ™ 2r Nr2q1r2 Ýns1 ns1
Ž .in Eq. 5 . This clearly reflects the fact that for

Žpairwise correlated disorder, a dimer two sites with
.equal energies should be considered as a single

unity. In other words, the effective number of sites
involved in the motion narrowing effect is now
determined by the chain length N counted in units of

Žthe energy correlation length N being two in ourc
.case , and thus appears two times smaller compared

to the former. The generalization of this result to an
arbitrary value of N is straightforward and simplyc

Ž .consists of replacing the factor 3r2 by 3r2 Nc
Ž . Ž .when passing from Eq. 8a to Eq. 8b .

As it was noted above, for perturbative magni-
tudes of disorder, inhomogeneous broadening of the
exciton levels is the main effect of randomness.
Having calculated the covariance matrix B X , wek k

can now formulate a condition for treating the disor-
der as perturbation and thus for the validity of the

Ž .results given in 8 . The off-diagonal elements
Ž . XHH mixes the exciton states, resulting in theird k k

localization on chain segments of a typical size
w xsmaller than the chain length 8,16,17 and leading to

Ž .failure of the results 8 . Regarding the exciton
optical response we are dealing with, mixing of the

Ž .lowest state ks1 with the others is of major
importance. Hence, one should compare the energy

0 0 2 Ž .2difference E yE ,3p Jr Nq1 with the typi-2 1
Ž .cal fluctuation of HH represented by B . The(d 21 21

0perturbative approach is valid provided B -E y( 21 2

E0 and fails otherwise. Thus, the equality1

23p J
B s 9Ž .( 21 2Nq1Ž .

Ždetermines a value of s for a fixed chain length
.N , which separates the ranges of perturbative and

nonperturbative magnitudes of disorder. The matrix
Ž .elements B are given either by Eq. 7a or by Eq.21

Ž .7b and in the limit N41 read

s 2
uB s , 10aŽ .21 Nq1

2s 2
cB s . 10bŽ .21 Nq1

Note that Bc is also two times larger than Bu
21 21

similar to that found for the corresponding diagonal
Ž .matrix elements of B see above , i.e., the magnitude

of intermode mixing in the presence of pairwise
correlations is larger than in their absence. As in the
previous case, the generalization of this result to an
arbitrary N is straightforward, and consists of re-c

Ž .placing the factor 2 by N in Eq. 10b .c

4. Coherently bound molecules

w xAccording to Knapp 8 , at nonperturbative mag-
nitudes of disorder, not all molecules of the chain
contribute to the optical spectra of the whole ensem-



( )F. Domınguez-Adame et al.rChemical Physics 244 1999 351–359´ 355

ble, but only a portion of them that depends on the
degree of disorder srJ. As it was mentioned above,
the reason is the localization of the excitonic states
arising from disorder. Therefore, the so-called num-

) Žber of coherently bound molecules N covered in
.average by optically active localized exciton states

should replace the number of molecules in the sys-
w x )tem, N. In Ref. 16 , a simple rule for estimating N

was formulated whenever the disorder is uncorre-
.lated. It exploits the findings that i the lowest

localized exciton states can be classified in several
Ž .groups of states two or sometimes three , each one

localized on a certain chain segment of a typical size
) .N , ii each segment does not overlap with the

w x Ž w x.others 16 for more details, see also Refs. 18,19
and, what is most important, the states of each group
have the energy structure similar to that for an
homogeneous chain of size N ) , i.e., given by Eq.
Ž . )4b with N replaced by N .

w x )The rule proposed in Ref. 16 for estimating N
consists simply of applying the perturbative criterion
Ž .9 to a typical localization segment, i.e., substituting

) Ž . w xN by N in Eq. 9 . It was found in Refs. 16,18
that this approach works surprisingly well in fitting
the numerical data concerning the optical response of
one dimensional Frenkel excitons. In doing so, the
number of coherently bound molecules is estimated

w xas follows 16

1r2
23p J

)N q1s , 11Ž .
)ž /B( 21

where for uncorrelated disordered systems, one
) Ž .should take B according to Eq. 10a , also replac-21

ing N by N ) since the motion narrowing effect is
now related to a certain localization segment of
typical length N ). For N ) one then obtainsu

2r323p J
)N q1s . 12aŽ .u ž /s

Ž .Admitting the correctness of formula 8a for the
standard deviation of the exciton absorption spec-
trum, and again replacing N by N ) , one finally
arrives at

4r3s
3us s . 12b( Ž .1 2 1r323p JŽ .

It should be noticed that, regarding the exciton ab-
sorption line width, the scaling law s 4r3 was found
in the corresponding numerical simulations in Refs.
w x17,20–22 as well as by means of the coherent

w xpotential approximation in Ref. 23 .
The above approach can be generalized to the

case of correlated disorder in a straightforward fash-
ion. The number of coherently bound molecules is
then estimated as

2r323p J
) y1r3N q1s2 . 13aŽ .c ž /s

We further stress that N ) )N ) , resulting from theu c

fact that Bu -Bc . From this result we are led to the21 21

conclusion that correlated disorder affects the exci-
ton dynamics more than the uncorrelated one, at least
for the case of short-range intersite energy correla-

Žtions. Numerical simulations prove this finding see
.Section 5 .

The standard deviation of the optical absorption
spectrum in the case of correlated disorder shows a
similar scaling law

s 4r3
1r6cs s 54 , 13bŽ . Ž .1 1r323p JŽ .

but with different numerical prefactor. Here, one has
s u -s c, as occurs in the perturbative limit.1 1

5. Numerical results and discussions

The quantities subjected to calculations will be
the absorption line shape and the factor of enhance-
ment of the exciton radiative rate relative to the
monomer spontaneous emission rate, carrying infor-
mation about the number of coherently bound
molecules N ). The absorption line shape is calcu-

w xlated as 17

N1 R
2< <I E s u y EyE m , 14Ž . Ž .Ý j j¦ ;ž /NR 2js1

where R is the resolution and u is the Heaviside step
function. In our calculations we take Rs0.001. The
angular brackets indicate an average over an ensem-
ble of randomly generated systems. The sum over j
runs over all eigenstates and E denotes theirj
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eigenenergies. The oscillator strength of the jth
eigenstate with components aŽn. is given byj

2N
Ž .2 nm ' a , 15Ž .Ýj jž /

ns1

where the dipole moment of the isolated monomer is
taken to be unity.

The factor of radiative rate enhancement is de-
fined through the average oscillator strength per state

w xat energy E 17

I EŽ .
2m E s , 16Ž . Ž .av

r EŽ .

where

N1 R
< <r E s u y EyE , 17Ž . Ž .Ý j¦ ;ž /NR 2js1

is the normalized density of states. We take
� 2 Ž .4max m E as a measure for the enhancement ofav

w xthe exciton radiative rate 17 or, in other words, for
the number of coherently bound molecules N ).

Energy will be measured in units of J, so that we
will fix the value Js1 and focus our attention on
the standard deviation s , ranging from 0.05 up to

Ž .0.50. We have diagonalized the Hamiltonian 1 for
chains of Ns250 with free-end boundary condi-
tions. The number of randomly generated systems is
1000 for each value of s .

As a typical example of the results of our simula-
tions, we show in Fig. 1 the optical absorption

Žspectra for uncorrelated and correlated upper and
.lower curves of each panel, respectively for two

different values of the degree of disorder. The main
absorption band shows the characteristic asymmetry
discussed in detail for uncorrelated disorder in Refs.
w x17,20,24 . The low-energy side is Gaussian-shaped
while the high-energy side is Lorentzian-shaped.
From Fig. 1 several conclusions can be drawn. First,
the shift to lower energies increases on increasing s

in both models. Second, and more important from
the experimental viewpoint, there are substantial dif-
ferences regarding the width of the optical spectra. In
all cases we have studied we found that the standard
deviation s is larger for correlated inhomogeneous1

broadening, and that the difference goes up as s

Fig. 1. Absorption spectra for one-dimensional random lattices
Žwith Gaussian distribution of uncorrelated upper curves on each

. Ž .panel and correlated lower curves on each panel on-site ener-
gies of with s s0.05 and s s0.50.

rises. These findings are in agreement with our
theoretical estimates.

To accurately determine the standard deviation s1

we fitted the low-energy side of the spectra using
Gaussians. We found that fits were fairly good. Fig.
2 shows that s scales as s 4r3 for both uncorre-1

lated and correlated disorder, as predicted by our
Ž . Ž .estimates 12b and 13b . The standard deviation

of the spectra can be parameterized as s s1
4r3 Ž 2 .1r3Cs r 3p J , where the constant is C s1.42u

and C s2.17 for uncorrelated and correlated disor-c

der, respectively. These values are slightly larger
Ž .than those obtained from the estimates 12b and

Ž .13b , namely C s1.22 and C s1.94; neverthe-u c

less, the coincidence should be admitted as being
highly surprising. Note that the value C s1.42 is inu

agreement with that obtained by other authors
w x17,20–23 .

Fig. 3 presents the data of numerical simula-
tions of the factor of radiative rate enhancement

� 2 Ž .4max m E versus the disorder degree s , also forav
Žboth types of disorder upper and lower straight lines

for uncorrelated and correlated disorder, respec-
. y2r3tively . We observe here the scaling s in both

Ž � 2 Ž .4.cases and also the result max m E )av u
Ž � 2 Ž .4.max m E or, in terms of the number of coher-av c

ently bound molecules, N ) )N ) , thus confirmingu c

our theoretical prediction formulated in Section 4.
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Let us now discuss the problem whether or not
the information relative to intersite energy correla-
tions can be revealed from the linear exciton optical
response, having in mind the application to linear

Ž .aggregates of dye molecules namely, J-aggregates .
Ž w xAs it is well known see, for instance, Ref. 8 and

.references therein , optical excitations in these sys-
tems are Frenkel excitons. The width of the absorp-
tion spectrum s will be the observable, providing1

the data of interest. The numerical factor C in the
Ž .dependence s s , equal to C s2.17 in our partic-1 c

ular case of pairwise intersite correlations, differs
from that for the case of absence of correlations
Ž .C s1.42 . Therefore, this coefficient carries theu

necessary information. To determine C one should
measure three parameters: J,s and s . The magni-1

tude of intersite coupling J can be measured with
appropriate precision from the dimer absorption
spectrum of dilute dye solutions, when the aggrega-
tion does not take place. The absorption band of
J-aggregates usually appears as an isolated peak, so
that its width s is also rather easily measured.1

With regard to s , one should assume that its magni-
tude can be determined from the monomer absorp-
tion spectrum. Then, we get all the parameters to be
fixed in order to calculate the necessary constant C.
Exceeding C over 1.42 means that correlations are
present in the system.

Fig. 2. Standard deviation s as a function of s 4r3 for corre-1

lated and uncorrelated disordered systems. Solid lines represent
the least square fits.

� 2 Ž .4Fig. 3. Factor of the radiative rate enhancement, max m E , asav

a function of sy2 r3 for correlated and uncorrelated disordered
systems. Solid lines represent the least square fits.

Often, the spectra of monomers are structured
even at low temperature. In such cases, the determi-
nation of their width s seems highly questionable.
In turn, the analysis of two-exciton transitions, pre-
sent in the nonlinear optical response from the
system, can serve as an appropriate method to probe

w xthe presence of intersite energy correlations 9,10 .

6. Conclusions

In summary, we have studied the effects of inho-
mogeneous broadening on the absorption spectrum
corresponding to the one-dimensional Frenkel-exci-
ton Hamiltonian for random systems. Two different
models have been considered; in both cases broaden-
ing arises from a Gaussian distribution of on-site
energies. In uncorrelated disordered systems, on-site
energies are chosen according to a Gaussian distribu-
tion at every site, whereas in correlated disordered
systems this selection is made only at odd sites and
even sites take the value of the preceding one. By
comparing the obtained spectra in both models, larger
both the red shift of the absorption band and inho-
mogeneous broadening were found whenever inter-
site energy correlations are present in the lattice. The
theoretical estimates based on the concept of motion
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narrowing along with the aid of the number of
coherently bound molecules work fairly well in ex-
plaining the numerical data. The number of coher-
ently bound molecules decreases upon introduction
of correlations, meaning larger exciton scattering due
to disorder in the presence of short-range intersite
energy correlations.
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( X )Appendix A. Evaluation of S k,k2

In this Appendix we present the main steps we
Ž X. Ž .followed to evaluate S k,k defined in 7d . We2

rewrite

Nr2
XS k ,k s2 cos K ycos 4KmyKŽ . Ž . Ž .Ý2

ms1

=
X X Xcos K ycos 4K myKŽ . Ž .

A.1Ž .

and decompose this sum in the following way

S k ,kX sNcos K cos K XŽ . Ž . Ž .2

Xy2 cos K cos K C 4KŽ . Ž . Ž .
X X XqC 4K qcos K sin K S 4KŽ . Ž . Ž . Ž .
Xqcos K sin K S 4KŽ . Ž . Ž .

X Xqcos KqK C 4 KqKŽ . Ž .
X Xqsin KqK S 4 KqKŽ . Ž .
X Xqcos KyK C 4 KyKŽ . Ž .

X Xqsin KyK S 4 KyK , A.2Ž . Ž . Ž .
where

Nr2
1C 4K ' cos 4mK sy ,Ž . Ž .Ý 2

ms1

Nr2
1S 4K ' sin 4mK sy tan K , A.3Ž . Ž . Ž . Ž .Ý 2

ms1

so that
X Xcos K cos K C 4K qC 4KŽ . Ž . Ž . Ž .

qcos K sin K X S 4K XŽ . Ž . Ž .
qcos K X sin K S 4KŽ . Ž . Ž .

1qcos KqK X cos KyK XŽ . Ž .
sy . A.4Ž .X Xcos KqK qcos KyKŽ . Ž .

Furthermore, taking into account that

Nr2
X XC 4 KqK ' cos 4 KqK mŽ . Ž .Ý

ms1

1
Xsy 1ydŽ .kqk , Nq12

N
Xq d ,kqk , Nq12

Nr2
X XS 4 KqK ' sin 4 KqK mŽ . Ž .Ý

ms1

1 X
Xsy 1yd tan KqK ,Ž . Ž .kqk , Nq12

Nr2
X XC 4 KyK ' cos 4 KyK mŽ . Ž .Ý

ms1

N
1

X Xsy 1yd q d ,Ž .k k k k2 2
Nr2

X XS 4 KyK ' sin 4 KyK mŽ . Ž .Ý
ms1

1 X
Xsy 1yd tan KyK ,Ž . Ž .k k2

A.5Ž .

we get
X Xcos KqK C 4 KqKŽ . Ž .

X Xqsin KqK S 4 KqKŽ . Ž .
X Xqcos KyK C 4 KyKŽ . Ž .

X Xqsin KyK S 4 KyKŽ . Ž .
cos KqK X qcos KyK XŽ . Ž .

sy X X2cos KqK cos KyKŽ . Ž .
= 1yd X yd XŽ .k k kqk , Nq1

N 1
X Xq y d yd . A.6Ž . Ž .k k kqk , Nq1ž /2 2cos K
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Ž .Summing now all the terms in A.2 , we arrive at
Ž .Eq. 7d of the main text.
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