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Abstraet. — The Dirac equation for some linear potentials leading to Schrodinger-like oscillator
equations for the upper and lower components of the Dirac spinor have been solved. Energy
levels for the bound states appear in pairs, so that both particles and antiparticles may be bound
with the same energy. For weak coupling, the spacing between levels is propertional to the
coupling constant while in the strong limit those levels are depressed compared to the
nonrelativigtic ones.

Electromagnetic potentials are introduced in the Dirac equation according to the minimal
substitution p*— p* — gA®. If the components of the Lorentz potential A*=(V, A) are
independent of time and proportional to space coordinates (linearly rising potentials), one
can describe the motion of Dirae particles under the action of constant electrostatic
E = — VV and magnetic B =V x 4 fields. Some special configurations of external potentials
lead to solvable Dirac equations. In particular, solutions for electrons in homogeneous
magnetic fields [1], homogeneous electrostatic fields{2], constant parallel [3] as well as
crossed [4] electrostatic and magnetic fields have been found some years ago.

Since the advent of the quark model, linear potentials have renewed their interest
because the confinement of quarks in mesons and baryons could be at least approximately
explained, within the framework of phenomenological potential models. However, it is well
established that electrostatic linear potentials lead to the occurrence of the Klein paradox
and particles cannot be confined, no matter how large the electric field is. To obtain bound
states, one must introduce a scalar potential by replacing m by m + S in the Dirac equation,
where S is also proportional to spatial coordinates. Hence, the rest mass of the particle
increases indefinitely when the separation from the centre gets larger and larger, giving rise
to confinement. Analytical solutions for the Dirac equation with linear secalar potentials are
also found[5], even in addition to uniform electrostatic fields[6] or crossed, constant
electrostatic and magnetic fields {7].

In a recent paper, Moshinsky and Szczepaniak []] have introduced a new type of linear
interaction in an attempt to degeribe a relativistic Dirac oscillator by means of an equation
linear in both momenta and coordinates. The interaction is added to the wave equation by
the substitution p — p'— imaw,r; where w, is the coupling constant and 3 is a diagonal matrix
defined below.
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From the above considerations, the general form of the Dirac equation may be written in
the standard notation 4s

- {p—iBu+iv—qA)+fm+8)—(E—qgW]¢=0 (1)

a and 3 being 4 X 4 matrices given by

0 o I 0
(e 3 2=l 2

where o is the Pauli matrix vector and I stands for the 2 X 2 identity matrix. The interaction
potential @ (— iBu + iv - gqA) + S + ¢V depends linearly on the coordinates. The aim of this
letter is to solve some particular cases of eq. (1). We will be mainly focused on the conditions
for the existence of bound states, so relativistic particles could be permanently confined.
Henee the present work offers alternative forms of confining potentials which lead to exactly
solvable Dirac equations. The mass m of the particle and the strength of the interaction
terms appearing in (1) may be regarded as adjustable parameters to explain hadron spectra.

The first problem we consider is an interaction of the form @- (- i3mw.r — imw, r). The
Dirac equation (1) then reads

[a-p+Bm—E +im{Bu,+w)a rlg=0. )

This equation could be regarded as obtained from the free-particle equation by means of the
replacement E — E —iw,a-r and m — m + iw,@-r, in the same way as electrostatic and
scalar interactions are added to the free-particle equation. The origin of the term
proportional to & r may be easily understood as follows. Let us consider the Dirac equation
with electrostatic and scalar harmonic-oscillator potentials

[a-p+Blm+ 1/2) v, ) — (B — (1/2) v, 7*)] L= 0.
By squaring it in standard fashion, one obtains that the Dirac spinor satisfies
(PP + (m+ (1/2) y, 7D — (B~ 12) yu v +i(By. + vi)a - rl¢=0,

which is a Klein-Gordon equation for harmonic potentials plus a nondiagonal term. This
term, due to the interaction of the spin with electrostatic ¥, r and scalar y, r fields, is nothing
but the interaction potential appearing in eq. (2). We consider, however, the interaction
directly in the linear (Dirac) equation and not in the «squared-» (Klein-Gordon) equation.
Since the potential is invariant under spatial rotations, we seek for solutions of the form [9]

_1f ¥
v= ( 9 (- rffr)) Fims ®)

where ¢!, denotes the normalized two-component eigenfunction of J?, J., L? and 8% The
radial funetions f(r) and g{r) satisfy two coupled first-order differential equations

& —mf)={ g+ K+ mlon + 0ot (4a)

—jd _ & _
E+m)glr)= { ar + . + mlewe — wy) 'r} fir) (4b)
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with the notation
-+ 1)=—(j+1/2), j=1+1/2,
K= (5)
l=7+1/2, j=1-12{1#0).

By decoupling (4a) and (4b) in standard fashion, we obtain for the upper radial function

———=+2me,r/—+

dr* dr (.

and a similar equation is satisfied by the lower component g(r). The regular solution at the
origin is expressed in terms of confluent hypergeometric functions as

[ d* d M + W — wd) Tz} fr) = [E? — m* — M, — mas (2k — 1)1 fr) (6}

fir) = Aexp[— Mo, — wy) 72/2] P+ F (% A +3/2— ), |+ 3/2; masg r2) , )

where u =[E? ~ m* — mo2x —1)}2mw, and A is a constant evaluated by means of the

normalization condition J dr (| f(r)[2 + |g(r)|?) = 1. Using the asymptotic behaviour of f(r) at

spatial infinity, it is an gasy matter to check that only scattering states appear for w, < ;.
On the contrary, f(r) is square-integrable for w,>w, thus representing bound states. The
entire spectrum becomes discrete in this case. The corresponding energy levels are given by
the quantization condition (L2)({ +3/2—p)=0,—-1, -2, .... Therefore one obtains

E¥i=m*+ mw 2N —2j + 1) (8a)
for =1+ 1/2 and
E%i=m?+ mw2N +2j+ 3) (8b)

for j = [ — 1/2 (I # 0), N being a nonnegative integer. We might observe that bound levels are
independent of w, and these levels coincide with those found by Moshinsky and
Szezepaniak [8] in dealing with the Dirac oscillator. The radial eigenfunctions are found by
using (4b) and (7). We get

() = Ar* 12 exp [— mlow, — w) 21 F (= n,, j + 1; me,r?), (9a)

2w, n, A

glr) = — GiDE+m i exp [— mlw, — ) TH21F(—n,+ 1, 4 2; mew, ™) (96)

for j=1+1/2 and

f(r) = Ari*92 exp [— mlw, — w) P2 F(—n, + 1, j + 2; maor?), (10a)
J+8R\ . .
g(ry= Tt Ari12 exp [~ mim, — w) P21 F(—n, + 1, 7+ 1; M%) (106)

for j=1-1/2, n, being a positive Integer.
The second situation we discuss is the Dirac oscillator with a constant crossed magnetic
field, being represented by an interaction of the form — a@- (g4 + i8u) in eq. (1). We consider
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the particle to be an electron (¢ = —¢): Hence eq. (1) leads to

(E-—m)f=6-(p+eAd+ium)i, (11a)
E+myh=0-(p+ed—iw),, (11b)

¢y and ¢, being the upper and lower components of the wave functions, respectively. The
interaction term iZe u describes a Dirac oscillator in the y-direction (say) and A is the
vector potential of a constant crossed magnetic field B = V X A. Therefore, we set the gauge

eA = mwly, 0,0), {12)
where w, = eB/m is the cyclotron frequency of the electron, and we also take
u = maw,(0, y, 0). (13)

Since both ¢A and u are independent of x and #, the conjugate moments p, and p, are
constants of motion. If the motion proceeds in the (X, Y)-plane, we can take p, = 0. Using the
ansatz

= exp [ip, 21f(1) ¢, (14a)
¢ = exp [ip,«1g(y) $_,, (14b)

where 3, is the two-component eigenvector of «, with eigenvalue 2 =+ 1, we obtain

d? fa y fn
{- Ey_2 + [mfw, + 2 y £ Apx]z} (g(y)) = [E% — m? £ 3w, + rewg)] (g(y)) ) (15)

Here the upper and lower signs refer to f'and g, respectively, We note that eq. (15) reduces
to the free-particle wave equation in the z =0 plane for w,=w, and A= —1. For these
particular values of the coupling constants there exist no bound states. In general cases,
however, eq. (15) describes a one-dimensional nonrelativistic oscillator with coupling
constant w, + Aw,. Energy levels are readily found to be

EL —mP=2n+ Do+ dag — Mo+ 2oy, {16)

1 being an integer (zero or positive) whose lower value is chosen so that the right-hand side
of (16) becomes positive-valued. Taking the limit o, — 0, the well-known Landau levels [10]
for Dirac particles in homogeneous magnetic fields are recovered. The components of the
corresponding eigenfunctions are Hermite polynomials times the usual exponential
oscillator factor; we shall omit to write them down explicitly.

The last case we discuss in this letter is the one-dimensional Dirac oscillator in addition to
eleetrostatic and sealar linear potentials. Dirac particles moving in one dimension may be
described just by two-component spinors, rather than by the usual four-component spinors,
since there is no spin-orbit coupling in one dimension [11], provided that the potential is
spin-independent. The Dirac equation is simply written as

folp—ito,u) +o(m+8S)+qgV-E]d=0 amn
in the standard representation. The potential depends linearly on the variable x

u=mox, S=kx, qV=Fkux, (18)
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We now choose the ansatz
¢ =[op— iz, u) +ofm+8) —qV+Ely, 19)
where the two-component spinor y satisfies the following equation:
(p? + (mE el + k2 — kD) a® + 2(mk, + Ek) x + ka0, + ik, 0, — s 5.} x = (B — mP) x. (20)

At large distance only the term proportional to # becomes important, and hence eq. (20)
reduces to a Schrodinger-like equation. Therefore, we easily conclude that bound states may
only oceur in the case mew?+k2>k2, for which the coefficients of x® become positive.
Moreover, the eigenvalues of the constant matrix k.o, + ik, o, — Mw, o, are then real. These
eigenvalues are i, = £ (m?lki — k%12, Setting

x=f®) ¢, (21)
where ¢. is the eigenvector corresponding to the eigenvalue A., we obtain
{ps+ (M0l + k% ~ k%) x® + 2(mk, + Ek )z} flx) = (B* — m? = ) f(x), (22)

which clearly reduces to a nonrelativistic oscillator equation by carrying out a suitable
translation of the origin of coordinates. Bound levels are given by

E2 —m?=2(n+ DmEes? + k2 — kD2 — (mk, + Bk, (m* o + K2 — k3, (23)

where # is a nonnegative integer. The explicit expression of the energy levels is easily found
to be

mief + kE— k2 m*wt v mkyk
Eo=+ (T2 5D o+ D (mPol + kE— k2t — | | — —
[( Mo + K )((” e k)-+m2wf+k§):| i

Taking the limit w,— 0 in eq. (24) (i.e. neglecting the interaction term i, s, in the Dirac
Hamiltonian), we find the energy levels of a Dirac particle in a uniform electric field plus a
linear scalar confining potential, in agreement with the results of Keng and Yuhong {6].
Eigenfunctions corresponding to the energy levels given by (24) are simply combinations of
Hermite polynomials times an exponential oscillator factor, as obtained from (19), (21) and
(22).

Some conclusions may be drawn from the above results. We have considered some linear
interactions in the Dirac equation leading to exact solutions. When the coupling terms are
carefully chosen, one obtains nonrelativistic harmonic-oscillator equations for the upper and
lower components of the Dirac spinor, in spite of the linear dependence of the interaction
potentials. This result provides a qualitative explanation why the nonrelativistic harmonie-
oscillator quark model works so well for mesons and baryons[12]. When bound states
appear, the energy levels are given by expressions of the form Ef=m*+ kg, k being a
combination of quantum numbers and g depending on the coupling constants. Hence, energy
levels always appear in pairs, which means that particles as well as antiparticles may be
bound with the same energy. The lowest-lying energy levels can be approximately given by
E, — m=kg in the weak-coupling limit, so the spacing between levels is proportional to the
coupling constant, as occurs in the nonrelativistic harmonic oscillator. On the contrary, if g is
much larger than the rest mass, E, rises as the square root of the coupling constant, and
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levels are then depressed from the nonrelativistic prediction. This results agrees with more
elaborated treatments based on the Bethe-Salpeter equation [13]. Regarding the spherically
symmetric potentials appearing in (2), we have demonstrated that E? == for large values of
the angular momentum, as seen from (8) and (9). Hence the Regge trajectories are
asymptotically like those of the nonrelativistic harmonic oscillator. The same result is also
valid for the Dirac equation with vector and scalar potentials ¢V(r) = k. r and S(r) =k, r, as
pointed out by Fishbane et al. [14]. Nevertheless, the Dirac equation for such potentials
cannot be exactly solved, and one must invoke BKW or variational methods. Finally, let us
comment that the effects of Coulomb-like potentials [15], which may appear between quarks
caused by exchange of massless gluons, can be qualitatively described replacing the actual
r~! potential by a more simplified short-ranged potential. This is thought to be a good
approximation since at distance from the centre only the linear potential term becomes
important. Successful short-ranged potentials are the one-dimensional and the spherically
symmetric delta-function potentials, for which the Dirac equation is also exactly
solvable [16, 17]. In fact, this realization has been recently considered in harmonic quark
models with mixed vector plus scalar harmonic-oscillator potentials [18]. We shall report on
the exact solutions of the Dirac equation with solvable linear interactions plus delta-funetion
potentials in more detail elsewhere.
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