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Abstract

We provide arguments indicating that an Anderson transition may exist in two-dimensional
disordered systems with long-range coupling. As a working example, a two-dimensional
dipolar Frenkel exciton Hamiltonian is used in order to confirm the existence of a
localization-delocalization transition. It is found that the states of one of the band tails,
but not of the band center, undergo the continuous Anderson transition.

1 Model and motivations

The Anderson transition in disordered solids!, despite its forty-year history, still excites
great interest among researchers. After the pioneering work by Abrahams et al. for two-
dimensional systems?, a number of papers raised the general belief that in those systems all
eigenstates were exponentially localized® and that the localization-delocalization transition no
longer exists in the thermodynamical limit. In this work we show that extended states may
appear in two-dimensional systems with a long-range intersite coupling even for moderately
large diagonal disorder. In three and one dimensions, this fact has been outlined in Refs®5.
To this end, we consider a Frenkel exciton Hamiltonian on a regular A’ = N x N lattice with

diagonal disorder:
H=3 eln)(n|+3_ Jom[n)(m]. 1)

Here, €, and |n) are the energy and the state vector of the n-th excited molecule, respectively;
n = (ng,ny,), —N/2 < ng,n, < N/2, with N even. The dipole-dipole inter-site interaction
is taken in an isotropic form Jy,, = J/|n — m|®, where J > 0, implying that the transition
dipole moments of all molecules are perpendicular to the latice plane and all of them have the
same magnitude. We assume that the on-site energies €, are uncorrelated random variables
distributed according to a Gaussian function of variance A2.

In the Bloch-wave representation, assuming periodic boundary conditions, Hamiltonian (1)
takes the form

H= ; Ex[K)(K| + I%{:/(‘SH)KK’IKMK’L (2)

where K = (27/N)(ky, k,) runs over the first Brillouin zone, (—N/2 < kg, ky, < N/2). Here Ex
is the unperturbed exciton eigenenergy

1 iK-n
EK—JE‘; ln|3e , | (3)
and (6H)kk is the inter-mode coupling matrix
1 ; U
(JH)KK' = F Z 6n€1(K_K )-n‘ (4)
n
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It can be shown that in close proximity of the extreme points of the band K = 0 (top) and

K = IT = (w,n) (bottom) the exciton energy spectrum behaves linearly and parabolically,
respectively®:

e o 9.03J — 27 J|K]|, K| <« 1, 5

K~ Z2.657 + 04K — T2, |K—II| < 1. ()

Depending on the degree of disorder A/J and the lattice size, the operator % may couple
the extended excitonic states |K) to each other (thus resulting in their localization) or not.
The magnitude of the exciton inter-mode coupling is given by

A
= 2y — =
o= (IH)xxl?) = (6)
which reflects the well-known exchange narrowing effect”.

At the top of the band, the energy spacing between the unperturbed states with K = 0
and K’ = (27r/N, 0) is §E = 47%J/N. When comparing §F and o the most remarkable fact is
that both quantities decrease on increasing N in the same manner as N~! = N ~1/2. Now take
A < 47%J. Under this condition, the strength of the reduced degree of disorder o = A/N,
governing the exciton state mixing and thereof localization, is of perturbative magnitude (o <
0F) and, what is most important, it will remain perturbative upon increasing the lattice size.
Hence, these states will not be mixed by disorder and will remain extended over the entire
lattice independent of its size. On the other hand, if A > 472J there will be mixing and thereof
localization of the eigenstates.

At the bottom of the band, the level spacing decreases as N ~! = N~2 upon increasing the
lattice size, i.e., faster than the reduced degree of disorder o (the same behavior takes place for
both edges of the band obtained within the NN approximation, namely taking Jom = 0 when
|n —m| > 1). Now, even if one starts with a perturbative magnitude of A at a fixed lattice size
(so that o < §F), it becomes non-perturbative for larger sizes, resulting finally in localization
of those eigenstates. This implies the existence of only one mobility edge separating delocalized
and localized states. Its position is expected to depend on the degree of disorder A/J and to
increase toward the top of the band as A/J raises.

2 Numerical results

To examine the character of the exciton eigenfunction (localized or extended) we have
calculated the inverse participation ratio (IPR) of the exciton eigenstates, according to the
standard definition IPR, = ¥, |¥,,|*, where the sum runs over lattice sites and it is assumed
that the eigenfunction ¥,, of the vth eigenstate is normalized to unity. For a completely
delocalized state IPR, = 1/N = N~2 whereas for a state concentrated in one site IPR, = 1,
so the smaller the value of the IPR, the more delocalized the state is. In fact, the participation
ratio IPR;? is of the order of the number of sites over which the eigenfunction is spread.

We have used Lanczos and Householder algorithms to calculate the IPR of the uppermost
eigenstate and of the complete set of eigenstates respectively. The IPR of the uppermost exciton
state as a function of the lateral size N is shown in Fig. 1. The plots comprise the result of 20
averages over disorder realizations and A/J = 1 in all cases. The IPR calculated within the
NN approximation shows no scaling which is in perfect agreement with the well-known result
stating that those exciton states are localized. On the contrary, the slope of the straight line
obtained within the exact model is equal to —1.97 that almost matches the theoretical value
—2. This scaling undoubtedly confirms the extended nature of the uppermost exciton state.

Figure 2 presents the IPR of the uppermost state as a function of A/J for different system
sizes. At first glance, it seems that this state undergoes an abrupt Anderson transition at the
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Figure 2: IPR of the uppermost exciton
eigenfunction as a function of A/J.

Figure 1: Lateral size scaling of the IPR of
the uppermost exciton eigenfunction.

Figure 4: Absorption line shape in arbitrary
units for 50 x 50 systems and different val-

Figure 3: IPR as a function of energy for
N = 50 x 50 and different values of A/J.

Note the different scale of the E/J axis indi-
cating the widening of the bandwidth with
increasing A/J.

ues of the degree of disorder A/J. Results
comprise 20 realizations of disorder for each

value of A/J.

critical value of A/J approximately equal to 2 independently of the system size. Nevertheless,
this is not really true. The uppermost states whose IPR are shown in Figure 2 arise from large
fluctuations in the on-site energies €,. Indeed, it is straightforward to verify that at N ~ 100
and A/J > 2, the probability of a large site-energy fluctuation giving an energy €, outside of
the band of the ordered system is of the order of unity. In Fig. 3, after the ”transition” has
occurred (A/J > 2), it can be seen the dramatic increase in the IPR of the uppermost state
whereas the increase in the IPR of the states actually coming from the top of the band of the
ordered system is no so abrupt.

The width of the absorption spectrum o4 can be proposed to indirectly measure the exten-
sion of the optically active exciton eigenstates (top band states in our case): o4 ~ IP 1£AA8
We calculated the absorption spectra of the system at different degrees of disorder A/J. The
results are shown in Fig. 4. The absorption line width o4 presents a clear tendency to smoothly
widen on increasing A/J, in correspondence with the fact that the IPR of the top band states
smoothly go up. The uppermost eigenstate, being the only one coupled to the light in an
ordered system, is now mixed with the other eigenstates, spreading its oscillator strength over
them. As a result, the absorption spectrum widens.
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3 Conclusions

In summary, we have found that a continuous Anderson transition may exist in two-
dimensional systems with dipole-dipole intersite coupling in the vicinity of the band top. In
our opinion, the failure of the one-parameter scaling theory for the conditions considered in
the present paper originates from that this approach deals only with the size scaling of the
energy spacing but pays no attention to the subsequent renormalization of the disorder (6). As
it follows from our treatment, the latter effect may play a major role in localization phenom-
ena, violating the one-parameter scaling and thus leading to the impossibility to match our
numerical results by this theory.
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