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Abstract. We show that the discretized forms of the Schrédinger and the Dirac equations
for an arbitrary potential in one dimension are equivalent to the Poincaré map of the
corresponding wave equation for an array of 5-function potentials, Therefore, the dynamics
of particles in general periodic potentials may be studied by means of an equivalent
generalized Kronig-Penney model, in which there exist several 3-function potentials in
each unit cell. Taking into account the technigues of dynamical systems, the transfer matrix
method is then used in 2 simpie form to compute the energy band edges and the dispersion
law inside the allowed bands.

1. Introductioen

One-dimenstonal physical models (Lieb and Mattis 1966, Bernasconi and Schneider
1981, Albeverio et al 1988, and references therein) play an important role in understand-
ing the quantum mechanics of electrons in perfect and non-perfect lattices. Some
important concepts in electron dynamics in periodic lattices, such as Bloch states and
the occurrence of energy bands and gaps, as well as in disordered lattices, such as
localization and the existence of mobility edges, are now well understood with the aid
of one-dimensional models. Of course, these models are far from giving a complete
account of the number of situations occurring in real crystals. Some limitations are
not directly related to the dimensionality of the problem but te the potential model
used in describing the electron interaction with the crystal. It is clear that an array of
square-well or 8-function potentials (Kronig and Penney 1931} is a crude picture of
the electron interaction with other electrons and atoms in a solid. One method to
overcome this difficulty is to use non-local separable potentials, which admit exact
solutions for an arbitrary potential shape {Dominguez-Adame et al 1991, Dominguez-
Adame and Gonzilez 1992). Moreover, numerical solutions of the wave equation
corresponding to a general periodic potential give accurate results when analytical
solutions are absent. At present there exist numerical methods for one-dimensional
band calculations based on the discretized Schrodinger (Vigneron and Lambin 1979)
and Dirac equations (Méndez and Dominguez-Adame 1991). These methods use a
continued fraction approach to compute the energy band edges and dispersion relations
inside the allowed bands.
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The aim of this paper is to present an alternative numerical method to study the
dynamics of non-relativistic and relativistic electrons in one-dimensional potentials.
We will show that the discretized forms of the Schridinger (section 2) and Dirac
equations (section 3) can be replaced by the Poincaré map associated with the corres-
ponding wave equation for an array of §-function potentials, within the same truncation
error as that of the original discretization scheme. In the case of general periodic
potentials, the problem is equivalent to the generalized Kronig-Penney or Dirac~
Kronig-Penney models with the same period as that of the original potential. This
replacement will allow us to use the transfer matrix technique for the computation of
the dispersion law. Some numerical results are presented in section 4; the convergence
of the method is discussed and non-refativistic and relativistic band structures are
compared. The main conclusions of the present work are drawn in section 5.

2. Non-relativistic electrons in periodic potentials
We start with the one-dimensional Schrédinger equation for steady states (h=2m =1)
dZ
[“a"s"' V(x)]¢(x)=5¢(ﬂ (0

V(x) being a general potential. Let us divide the interval {a, b] into N +1 equal parts
of length h=(b—a)/(N +1), which defines the grid x, =nh+a (n=0,1,..., N+1).
The discretized form of (1} at any point of the grid is

¢n+]+wn—l=(2_h25+hzvn)'>bn (2)

with a truncation error proportional to k% Here ¢, = ¢/(x,) and V,= V(x,). In the
case of periodic potentials satisfying the condition V(x)= V{(x+ L}, L being the period,
we take a=0 and b= L so that [0, L] denotes the unit cell of the crystal. Since the
Bloch theorem must be satisfied, the wavefunction is of the form ¢(x+L)=
exp(ikL)¢(x) and the boundary condition for the difference equation reads

%+N+1=exp(ikL)l,’fn- (3)

In order to solve (2) and (3) we consider a periodic array of equally spaced
8-function potentials, and let & be the distance between nearest-neighbour sites. The
interaction of an electron of mass m =3 with this potential obeys the following
Schrodinger equation

2
{*%Jr%Anﬁ(x—nh)}tb(x):ﬂﬁ(x) (4)

where A, is the potential strength of the nth site. We can now use the techniques of
dynamical systems proposed by Bellisard et a/ (1982) to construct the Poincaré map
associated with (4), obtaining

Yna1 + ooy =[2 cos(AVE}+ A, sin{ AVE }/VE 19, (5)
¢, = ¢{x,) is well defined since ¢(x) is a continuous function at the points where the
3-function potentials are located, although its derivative is discontinuous. We stress
the fact that nothing has been lost when passing from {(4) to (5), and (5) contains all

the band structure information. In the limit A -0, when &-function potentials are
closely spaced, (5) reduces to

d’n+1+¢n-l=(2—h25+h‘\n)¢'n (6)
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with a truncation error of the order of h°. This approximation becomes valid provided
that hv'E « 1. We note that (6) is equivalent to our original problem (2) if we take

An=hV,, (7)

Therefore, the strength of the nth 8-function potential depends on the value of the
periodic potential V(x)} at the nth site. Since V,.n-;=V,, the amray of 3-function
potentials in (4) becomes periodic of period A(N +1) = L and the boundary condition
(3) also applies to (6).

The equation (4) corresponds to a Kronig-Penney model for a polyatomic crystal,
the so-called generalized Kronig-Penney model (Roy and Bhattacharya 1969, Eldib
et al 1987). Each ‘atom’ of the unit cell [0, L], represented by a -function potential,
is separated an equal distance A apart from its nearest neighbours. Instead of (4), we
use equation (6) since it gives the same results with an error of the order of #*, which
is the same error of passing from (1) to (2). One can find the dispersion relation of
the generalized Kronig-Penney model by means of the transfer matrix technique, in
analogy to the usual tight-binding model. In (6} the hopping energy between pearest
neighbours is constant, so we are dealing with a diagonal tight-binding model. In that
case, the transfer matrix takes a simple form

(ibn—l) =(2+’\nh_h2E _1)( ‘pn )EP< wn ) 8
( 'an 1 0 '!’n-H " ¢n+1 ( )

with det(P,) = 1. Iterating (8) and using the boundary condition (3) we find
%) (wm) . ( %)
=P P:... Py, = Tapy €xp(ikL 9
(!ﬁ’l 142 NI¢N+2 N1 CAP )¢'| (%)

where Ty, is the transfer matrix for the unit cell. Requiring the determinant to vanish
for non-trivial solutions we get

cos(kL) =4 Tre( T i) = Fyai(E). (10}

The required symmetry of the dispersion relation E{k)= E(—k) is conserved. Real
values of k give the dispersion relation inside the allowed bands, whereas the energy
band edges are computed through the condition | Fa.:{E)| = 1. The trace of the transfer
matrix may be calculated recursively. Starting from the fact that Ty, = TPy, we
find the following recurrence relations for the diagonal terms of the transfer matrices

(TN-H)H=(2+’\-N+1h_th)(TN)ll—(TN—l)H (11a)
(TN+1)22=(2+AN’h—th)(TN)Z:.’"(TN—I)zz (llb)

with the initial conditions (T);; =(Tp)22=1, (T, =2+ A, h—h*E and (T});,=0. If
we restrict ourselves to the case of smooth potentials and small h, the following
approximated recurrence relation for Fy.{E) is valid

FN-H(E)=(2+/\-N+1h—th)FN(E)_FN—I(E) (12)
where now the initial conditions are F(E)=1 and F,(E)=1+Ah/2—-h*E/2.

3. Relativistic electrons in periodic potentials

In this section we aim to show that the above treatment may be generalized for Dirac
electrons. Let us consider the one-dimensional Dirac equation for an electron of mass
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m =} in a periodic potential V(x) of period L. In units # = c=1 we write
. d
[-ia i+ V) v = Bt (13

where t{x) is the two-component wavefunction, « and $ are 2 x 2 traceless, Hermitian
matrices with square unity, and Ey is the relativistic energy of the electron. To solve
the Dirac equation we set the representation o =0, and 8 =g,, os being the Pauli
matrices. Defining E = E, —3and denoting by ¢ and y the upper and lower components
of the wavefunction, respectively, we obtain

x(x)=2l:i%—E+V{x)+%]q‘>(x) (14)
[ d22+ Vx)+E(E+1)—-(2E+ I)V(x)—im]d)(x) =0. (15)
dx dx

We restrict ourselves to a smooth potential hereafter, so we neglect the term d V/dx
in (15). The discretrized version of (15) reads as follows

Farrt G =[2=h(Vi+ E(E+1)=(2E+1)V,)]¢.. (16)
Since V,.n+; = V, the Bloch theorem holds and leads to
¢n+N+1 = exp(lkL)qbn (17)

and (14) ensures that y is also a Bloch function.
Following the same procedure as before, we consider the Dirac equation for a
periodic array of §-function potentials

[—imc—f?%aﬁz A,,S(x—nh)]tb(x)=(E+%)¢'(x)- (18)

Taking into account that the appropriate boundary condition for a (electrostatic-like)
S-function potential located at x, reads (McKellar and Stephenson 1987, Dominguez-
Adame and Macii 1989) as

lff(x:):(cos ’\n'_io-z Sin/\n)ﬂb(x;) (19)

we have obtained the Poincaré map associated with (18) in the representation we have
chosen

qbn+1 + exp(i’\n - iAn-—l)d"’n-—l
=[2cos A, cos(vVE(E+1)h)
+{2E+1)sin A, sin(vE(E+ D) h)Y/VE{E +1)]¢, (20)

where ¢, = ¢(n"h) (note that ¢(x) is not continuous at x = nh, according to (19)). It
is worthwhile mentioning that (20) gives the same band structure as (18). In particular,
in the case with A, = A, the whole band structure of the Dirac-Kronig-Penney model
{(Méndez and Dominguez-Adame 1992) is recovered. In the limit # - 0 and for smooth
potentials (A,/A,-; < 1) we have

Gy Bper =[2= (A7 + E(E+ 1)h* = (2E+ 1)Ah) 190, (21)

Hence (21) becomes equivalent to (16} by the substitution A, = kV,. As occurs in the
non-relativistic case, the periodic boundary condition (17) also applies to (21). Note
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that (21) reduces to (6) in the non-relativistic and weak coupling limits, as E « 3 and
V, « 3. Equation (18) corresponds to the so-called generalized Dirac-Kronig-Penney
model (Dominguez-Adame 1989), in which there are several ‘atoms’ in the unit cell
[0, L]. This model is also exactly solvable and we can again use the transfer matrix
techmique.

Following the same procedure as before, we find that the dispersion law is also
given by (10), but now the diagonal elements of the transfer matrices obey the following
recurrence relationship

(TN+1)11 = [2+ (ZE + I)AN+1h - E(E + l)hz_A2N+1](TN)11 - (TN-1)11 (22(1)
(Tn+)a=[2+(Q2E+ I)ANh —E(E+ l)hz _A?N](TN)ZZH(TN—I)ZZ (22b)

with the initial conditions (To)y; = (T)sz =1, (T, =2+ Q2E+ DA h— E(E+1)R* - A}
and (T,);, =0. Forlarge N values we find that Fy ,,( E} may be approximately evaluated
from the relation

Frna(E)=[2+(2E+1)Ans,h— E(E +1)h* - A%3y4,]FN(E) — Fno(E) (23)
with Fo(E)=1and F,(E)=1+(E+})Ah— E(E+1)}A%/2-A3/2.

4, Numerical results

As an example of this method, we have studied numerically the Mathieu potential
Vi{x}= V,cos(2mx/L)

for both non-relativistic and relativistic particles of mass m=0.5. We take L==w
hereafter. The Schrodinger equation for the Mathieu potential is exactly solvable, so
we can use the analytic solutions to check the numerical solutions. Unfortunately there
are no analytical results in the case of the Dirac equation. We have found in our
studies that good accuracy is obtained even if a small number of grid points is used
(N =50 or 100). Comparison of non-relativistic band limits produced by applying (10)
and (11} with exact results is presented in table 1 when V,=2. Notice that results are
improved by means of the Richardson extrapolation formula, where the corresponding
energy value is given as (4E(2N)— E(N))/3, E(N} being the value obtained with N
subdivisions in the interval (in our case we have taken N =300). In the case of the
Dirac equation accurate results are also vsually found taking about 50-100 grid points.
However, the number of these points has to be greater to calculate the dispersion
relation for higher bands. Figure 1 shows the dispersion relation for both non-relativistic

Table 1. Band limits for 2 non-relativistic particle of mass m = 0.5 in the potential V{x}=
Vi cos 2x, with V,=2. N indicates the number of grid points. Energy values obtained by
the Richardson rule are also shown. Exact values are based on the analytic properties of
the Mathieu solutions.

N =50 N =300 N =600 Richardson Exact

Upper band 3.911446 3.916 865 3.916 986 3517026 3.917 017
1.858 290 1.859 084 1.859 102 1.859 108 1.859 107

Lower band -—0.110374 =0.110 266 ~0.110 253 —-0.110 249 -0.110249
=0.455 660 -0.455 153 -0.455142 —-0.455138 ~0.455 139
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Fipure 1. Non-relativistic (dashed line) and relativistic {solid line) band structures for a
particle of mass m=0.3 in the potential V(x}= V,cos 2x, with V=02, The number of
points in the subdivision is N =200,

and relativistic particles in the case ¥;=0.2 and N = 200. As expected, marked differen-
ces appear because the potential is rather strong (Vo,=2m/5 being of order of the
rest-mass energy of the particle). We observe that relativity causes the shrinkage of
the spectrum {for more details see Méndez and Dominguez-Adame 1991 and references
therein). In contrast to the continued fraction approach to relaiivistic band structures
of Méndez and Dominguez-Adame (1991), our transfer matrix method does not require
the potential to be symmetric around atomic positions. Therefore, this method is
applicable to more general periodic potentials, often used in semiconductor super-
lattices calculations (sawtooth potentials, etc).

5. Conclusions

In this paper we have demonstrated that the dynamics of both non-relativistic and
relativistic particles in general one-dimensional potentials is equivalent to the dynamics
of particies in an array of &-function potentials. In our opinion this is an interesting
result because this equivalence explains why the Kronig-Penney model (periodic,
quasiperiodic or random) works so well in explaining the electron behaviour in real
lattices. In the case of a general periodic potential we have found that the dispersion
relation is the same as that of a generalized Kronig-Penney model. The transfer matrix
technique allows us to obtain a very simple recursive method to compute E(k). The
computation time and storage are much reduced so that this method may be imple-
mented by most programmable pocket calculators. In addition, it possesses the advan-
tage that other numerical methods widely used in tight-binding calculations (recall
that (6) and (21) are essentially identical to a tight-binding Hamiltonian) may be
extended straightforwardly to be applied in our calculations. In particular, the negative-
eigenvalue theory of Dean (1972) provides a simple scheme for the determination of
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the density of states without the knowledge of the dispersion relation inside allowed
bands.
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