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Abstract
We carry out a theoretical study of the collective spontaneous emission
(superradiance) from an ultrathin film comprised of three-level atoms with
V configuration of the operating transitions. As the thickness of the system
is small compared to the emission wavelength inside the film, the local-field
correction to the averaged Maxwell field is relevant. We show that the
interplay between the low-frequency quantum coherence within the
subspace of the upper doublet states and the local-field correction may
drastically affect the branching ratio of the operating transitions. This effect
may be used for controlling the emission process by varying the doublet
splitting and the amount of low-frequency coherence.
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1. Introduction

After the pioneering works by Kocharovskaya and Khanin
[1, 2], Harris [3] and Scully et al [4], the effects of the
light–matter interactions in the presence of low-frequency
quantum coherence between sublevels in the ground or
excited states have received much attention. There appeared
new phenomena such as amplification without inversion and
lasing without inversion (AWI and LWI), electromagnetically
induced transparency (EIT), etc (see [5, 6] for a review as
well as the topical issue of quantum optics [7]). Yet, optical
bistability in systems of V -type atoms has been considered
in [8, 9]. The interplay between coherence and interference
effects in dense V -type systems has been addressed in [10].

Recently, it was shown that, in a closed system of �-
type atoms, the low-frequency coherence may give rise to

3 On leave from: S I Vavilov State Optical Institute, Birzhevaya Linia 12,
199034 Saint Petersburg, Russia.

superradiance without inversion (SRWI) [11–16]. In [17], the
SRWI of an open (i.e. in the presence of a driven field) system of
V -type atoms was discussed. We might stress that the standard
superradiance (SR) effect, predicted by Dicke for a collection
of two-level atoms [18], requires an initial inversion of level
populations (see the review by Gross and Haroche [19] and the
book by Benedict et al [20] for further details).

The goal of the present paper is to analyse theoretically
the features of the SR of a closed system of V -type atoms.
This problem was already discussed in the 1980s by Crubellier
et al [21, 22], Molander and Stroud [23] and Keitel et al
[24] within the context of subradiance—inhibited spontaneous
emission. This effect has been observed experimentally
by Pavolini et al [25] in a low-density gas of gallium
atoms (the density of gallium atoms in the interaction region
was about 1012 atoms cm−3). Here, we consider a dense
system comprised of V -type radiators and take into account
the local-field correction (LFC) to the averaged Maxwell
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Figure 1. Scheme of the energy levels and transitions in a V -type
atom.

field. This correction was neglected in previous theoretical
studies [21–23] and this approach is then the novelty of this
paper. As is well known from the studies of high-density
two-level assemblies [26–39], the LFC significantly affects
the resonant optical response of such systems, especially the
response of ultrathin films [40–43]. In particular, the effects
of the LFC on the SR of a �-type dense system have been
discussed in [14–16, 44]. We show that, in the case of a
dense V -type system, the interplay between the LFC, doublet
splitting and low-frequency coherence dramatically influences
the branching ratio of the operating transitions. This effect can
be used for controlling the SR by varying the doublet splitting
and the degree of coherence between the doublet states.

The outline of the paper is as follows. In section 2 we
present the model we will be dealing with. We derive the
truncated equations for the density matrix elements and electric
field taking into account the LFC to the Maxwell field, within
the rotating wave approximation (RWA). Section 3 is devoted
to the particular case of degenerate doublets in the upper state,
allowing for an analytical solution of the problem. Results
of numerical simulations are described in section 4, where
we provide interpretations as well of the peculiarities found
numerically. We conclude the paper in section 5 with a brief
summary of the results and how these can be related to actual
measurements to infer the main characteristics of the LFC.

2. Model and truncated equations

We consider a system of three-level atoms with a doublet in
the upper state (the so-called V configuration, see figure 1),
forming an ultrathin film of thickness L smaller than the
emission wavelength inside the film. This constraint is often
met in experiments and simplifies the mathematical description
of the model by taking away the propagation effect along
the film normal. All the vectors, the SR electric field and
transition dipole moments of the operating transitions, d21 and
d31, are considered to be parallel to each other as well as to
the film plane (the transition between the levels of the doublet
is not included). Under these assumptions, the vector nature
of the above quantities is not important and the problem is
reduced to its scalar form. It is also assumed, without loss
of generality, that the transition dipole moments are real and
positive: d21 = d12 > 0 and d31 = d13 > 0.

We use the semiclassical description of the optical
dynamics of the system, treating the atom dynamics by means
of the density matrix ραβ (α, β = 1, 2, 3), i.e. quantum
mechanically, while the field evolution is assumed to obey

the classical Maxwell equation. Under the limitations adopted
above, the joint set of equations for the density matrix and
Maxwell field are

ρ̇31 = −iω31ρ31 − i
d31E ′

h̄
(ρ33 − ρ11) − i

d21E ′

h̄
ρ32 (1)

ρ̇21 = −iω21ρ21 − i
d21E ′

h̄
(ρ22 − ρ11) − i

d31E ′

h̄
ρ23 (2)

ρ̇32 = −iω32ρ32 − i
d21E ′

h̄
ρ31 + i

d31E ′

h̄
ρ12, (3)

ρ̇33 = i
d31E ′

h̄
(ρ13 − ρ31), (4)

ρ̇22 = i
d21E ′

h̄
(ρ12 − ρ21), (5)

ρ̇11 = −i
d21E ′

h̄
(ρ12 − ρ21) − i

d31E ′

h̄
(ρ13 − ρ31). (6)

Here, the dots denote the time derivative and E ′ stands for
the acting field:

E ′ = −2π L

c
Ṗ +

4π

3
P (7)

L and c being the film thickness and the speed of light,
respectively; P = N0(d31ρ31 + d21ρ21 + c.c.) is the electric
polarization of the unit volume, with N0 being the atom number
concentration. The first term in equation (7) represents the
Maxwellian emission field, while the second term is the LFC.

In order to further specify the model we are dealing with,
we first stress that it is applicable to the description of SR
of a thin dielectric crystalline film rather than a dense gas
system. In the latter case, the pressure broadening terms turn
out to be important. Having the same nature and order of
magnitude as the LFC [30], these terms have to be added to
the equations for the off-diagonal density matrix elements. In
solid crystalline media, the levels are usually broadened due to
crystal imperfections as well as coupling to phonons. Under
specific conditions, the width of the levels is smaller than the
LFC (in frequency units). The existence of Frenkel exciton
states in dielectric solids, which are due to the interatomic
dipolar coupling [45, 46] or, in other words, due to the LFC,
represents an unambiguous confirmation of this fact. Because
of that, we do not take into account either relaxation of
populations or dephasing of the electric polarization of a single
atom, assuming that the SR process is faster (the estimates of
the corresponding constants are presented in section 5).

We seek a solution of equations (1)–(6) in the form:
E ′ = E ′ exp(−iωct) + c.c., ρ31 = R31 exp(−iωct), ρ21 =
R21 exp(−iωct), where ωc = (ω31 + ω21)/2; E ′ and R31, R21

are the complex slowly varying (in the scale of 2π/ωc)
amplitudes of the field and of the off-diagonal density matrix
elements, respectively. Hereafter the latter will be referred to
as optical coherences. Within the RWA, the equations for the
amplitudes are

Ṙ31 = −i
ω32

2
R31 +

(
1

τR
− i�L

)
[µ31(ρ33 − ρ11)

+ µ21ρ32](µ21 R21 + µ31 R31), (8)

Ṙ21 = i
ω32

2
R21 +

(
1

τR
− i�L

)
[µ21(ρ22 − ρ11)
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+ µ31ρ23](µ21 R21 + µ31 R31), (9)

ρ̇32 = −iω32ρ32 −
[(

1

τR
+ i�L

)
µ21 R31(µ21 R∗

21 + µ31 R∗
31)

+

(
1

τR
− i�L

)
µ31 R∗

21(µ21 R21 + µ31 R31)

]
, (10)

ρ̇33 = µ31

[(
− 1

τR
+ i�L

)
(µ21 R21 + µ31 R31)R∗

31 + c.c.

]
,

(11)

ρ̇22 = µ21

[(
− 1

τR
+ i�L

)
(µ21 R21 + µ31 R31)R∗

21 + c.c.

]
,

(12)

ρ̇11 = 2

τR
|µ21 R21 + µ31 R31|2. (13)

Here we have defined µ31 = d31/d and µ21 = d21/d,

where d =
√

(d2
31 + d2

21)/2, �L = 4πd2 N0/3h̄, τ−1
R =

2πkc Ld2 N0/h̄, kc = ωc/c. When deriving equations (8)–
(13), we exploited the fact that the equation for the slowly
varying field amplitude E ′ can be cast in the form

dE ′

h̄
=

(
i

τR
+ �L

)
(µ21 R21 + µ31 R31), (14)

and we introduced this expression directly into the density
matrix equation. The quantities τ−1

R and �L represent the
magnitudes of the SR field and of the LFC (in frequency units),
respectively [42]. Recall that �L > τ−1

R since the relationship
kc L < 1 holds for an ultrathin film.

It is to be noted that equations (8)–(13) have the following
integrals of motion:

ρ11 + ρ22 + ρ33 = 1, (15)

ρ2
11 + ρ2

22 + ρ2
33 + 2(|ρ32|2 + |R31|2 + |R21|2) = constant, (16)

where the first equation establishes the normalization condition
for the total level population, while the second one represents
the conservation of the trace of the atomic density matrix
squared. Physically, it express the conservation of the
symmetry under atom permutations [21, 24].

To complete the mathematical formalism we should
specify the initial conditions for equations (8)–(13). We
assume that the doublet states are initially populated, i.e. there
exist nonzero ρ33(0) and ρ22(0). We also allow an initial low-
frequency coherence ρ32(0). In order to trigger the emission
process, we set a fixed (not-fluctuating) value for the initial
electric polarization in the operating channels, R31(0) =
R21(0) = R0. This corresponds to triggering the SR by
an ultrashort external pulse of a small area, with a duration
Tp < min{2π/ω32, τ

−1
R } [20, 48, 49].

Equations (8)–(13) are written within the original basis of
states |1〉, |2〉 and |3〉. From physical reasons, especially in the
case of a degenerated doublet (see below), another set of states
turns out to be very useful: |1〉, |+〉 = (1/

√
2)(µ21|2〉+µ31|3〉)

and |−〉 = (1/
√

2)(µ21|3〉 − µ31|2〉). The convenience of
this set is clear from the fact that only the superposition |+〉 is
coupled to the ground state |1〉 (it will be referred to as the bright
state hereafter), while the remainder one is decoupled (the dark
state). The dipole moments of the transitions |1〉 → |+〉 and
|1〉 → |−〉 are 〈1|d̂|+〉 = √

2d and 〈1|d̂|−〉 = 0. In this
regards, the dark channel does not contribute to the SR.

Within the new basis, |1〉, |+〉, |−〉, the density matrix
elements can be expressed as follows:

R+1 = 1√
2
(µ21 R21 + µ31 R31), (17)

ρ++ = 1
2 (µ2

21ρ22 + µ2
31ρ33 + 2µ21µ31�ρ32), (18)

R−1 = 1√
2
(µ21 R31 − µ31 R21), (19)

ρ−− = 1
2 (µ2

21ρ33 + µ2
31ρ22 − 2µ21µ31�ρ32), (20)

ρ+− = 1
2 [µ21µ31(ρ33 − ρ22) + µ2

21ρ23 − µ2
31ρ32], (21)

where now ρ++ and ρ−− stand for populations of the bright
and dark states, respectively, ρ+− represents the low-frequency
coherence, while R+1 and R−1 describe the coherence of the
bright and dark channels, respectively. We stress that R+1

determines the field, as seen from equation (7). The equations
for these matrix elements are

Ṙ+1 = −i
ω32

4
[(µ2

31 − µ2
21)R+1 + 2µ21µ31 R−1]

+ 2
(

1

τR
− i�L

)
(ρ++ − ρ11)R+1, (22)

ρ̇++ = i
ω32

2
µ21µ31(ρ+− − ρ−+) − 4

τR
|R+1|2, (23)

ρ̇11 = 4

τR
|R+1|2, (24)

Ṙ−1 = −i
ω32

4
[(µ2

21 − µ2
31)R−1 + 2µ21µ31 R+1]

+ 2
(

1

τR
− i�L

)
R+1ρ−+, (25)

ρ̇+− = i
ω32

2
[(µ2

21 − µ2
31)ρ+− + µ21µ31(ρ++ − ρ−−)]

+ 2

(
− 1

τR
+ i�L

)
R+1 R∗

−1, (26)

ρ̇−− = i
ω32

2
µ21µ31(ρ−+ − ρ+−). (27)

As can be seen from equations (22)–(27), the bright channel
(|+〉 → |1〉) is coupled to the dark one (|−〉 → |1〉) through
ω32 terms, and thus, at ω32 = 0, the former turns out to be
independent of the latter (see section 3 for more details). At
the same time, the behaviour of the dark channel is driven
by the bright one even in the presence of degeneracy of the
doublet states: the field terms proportional to τ−1

R and �L play
this role.

3. Degenerated doublet (ω32 = 0)

We first analyse the degenerated case. Then equations (22)–
(27), describing the bright channel and which we are interesting
in, reduce to

d

dt
|R+1| = 4

τR
Z |R+1|, (28)

Ż = − 4

τR
|R+1|2, (29)

φ̇ = −4�L Z , (30)

where the new variables are Z ≡ (ρ++ − ρ11)/2 and φ is
the phase of R+1. We stress that equations (28)–(30) are
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similar to the SR equations of an ultrathin film of two-level
atoms [20, 50–52], but replacing τR by τR/2 and �L by
2�L , which is reasonable due to the presence of two emission
channels.

Several qualitative conclusions about the system be-
haviour can be drawn from the direct analysis of equa-
tions (28)–(30). First of all, the derivative d|R+1|/dt is positive
and thus |R+1| will give rise to the SR if Z(0) > 0 or, in other
words, if there is an initial population inversion between the
bright and ground states:

ρ++(0) = 1
2 [µ2

21ρ22(0) + µ2
31ρ33(0) + 2µ21µ31�ρ32(0)]

> ρ11(0). (31)

From here it can be shown that, in order to meet this
inequality, the total initial population of the doublet, ρ22(0) +
ρ33(0), must be larger than the population in the ground state,
ρ11(0). In other words, in contrast to the case of a close �

system, where the SRWI can be observed [11], the SR in a
close V -type system requires the population inversion between
operating levels. For the sake of simplicity, let us set ρ22(0) =
ρ33(0) = ρ32(0) ≡ A = (1/2)[1 − ρ11(0)]. It corresponds to
the excitation of the bright state |+〉 = (1/

√
2)(µ21|2〉+µ31|3〉)

with amplitude A. Then, the inequality (31) takes the form
A(1 + µ21µ31) > ρ11(0). Bearing in mind that µ21µ31 < 1,
we get 2A > ρ11(0), i.e. the total population of the doublet
must indeed be larger than that in the ground state.

With the substitutions Z = B cos 
, and |R+1| =
B sin 
, where B ≈ Z(0), equations (28)–(30) can be solved
analytically and the solution is

Z = −Z(0) tanh

(
t − tD

τ ′
R

)
, (32)

|R+1| = Z(0)sech

(
t − tD

τ ′
R

)
, (33)

φ = −4�L

∫ t

0
Z(τ) dτ = 4Z(0)�L τ ′

R

×
[

ln cosh
(

t − tD

τ ′
R

)
− ln cosh

(
tD

τ ′
R

)]
, (34)

tD = τ ′
R ln

[
2Z(0)

|R+1(0)|
]
. (35)

As is seen, the SR pulse is characterized by a delay time tD and a
duration τ ′

R = τR/4Z(0). The unique effect of the LFC on the
SR from a degenerated V system is the SR phase modulation
which changes the SR frequency:

�(t) = φ̇ = 4Z(0) �L tanh

(
t − tD

τ ′
R

)
, (36)

from −4Z(0)�L to 4Z(0)�L . For this reason, it is similar
to what is well known for two-level dense systems [20, 50–
52], namely within the mean-field approximation we are in
fact dealing with, the LFC does not affect the SR kinetics but
determines the width of the SR spectrum.

4. Nondegenerated doublet

We show below that the scenario of the SR from a
nondegenerated V system changes dramatically in the presence
of the LFC. It is to be noticed that, concerning the SR from a �

system, this fact has already been mentioned in [13–16, 44]. In
order to investigate systematically the peculiarities of the SR
in the case of a V system, we perform the numerical solution of
equations (8)–(13). In all our calculations, the dipole moments
of the operating transitions |3〉 → |1〉 and |2〉 → |1〉 are equal
to each other, thus implying that µ21 = µ31 = 1. The initial
values of amplitudes of the high-frequency coherences are set
to R31(0) = R32(0) = 10−8. Time is expressed in units of τR .
The other initial magnitudes, such that the level populations
ρ11(0), ρ22(0) andρ33(0), the low-frequency coherence ρ32 (0),
the doublet splitting ω32 and the LFC �L , will be regarded as
variable parameters.

4.1. Effects of the low-frequency coherence neglecting the
LFC

We first analyse the SR of a nondegenerated V system setting,
as a first step, the LFC to zero (see also the discussions
in [21, 22, 25]). In spite of the fact that this assumption might
be unphysical for an ultrathin film (recall that �L > τR),
the analysis of this ideal case will help us in understanding
more complicated situations with �L 
= 0. Nondegeneracy
means that the magnitude of the splitting ω32 is larger than
the spectrum width of the SR in the presence of degeneracy.
The latter can be estimated on the basis of equations (32)–
(35) as τ ′

R
−1 = 4Z(0)τ−1

R for �L = 0. Values of ω32 about
several units of τ−1

R suffice to model the outlined condition as
4Z(0) � 2.

Figure 2 shows the kinetics of the SR pulse and the level
populations calculated for ω32 = 5τ−1

R with the following
initial conditions: all the population is in the doublet states,
ρ22(0) = ρ33(0) = 0.5 and, additionally, there exists a low-
frequency coherence, ρ32(0) = 0.5. Within the subspace
of states |+〉 and |−〉, this corresponds to the excitation of
only the pure bright state |+〉(ρ++(0) = 1), while all other
populations and coherences are equal to zero, ρ−−(0) =
ρ11(0) = ρ+−(0) = 0 (see equations (17)–(21)). As is seen
from figure 2, the SR pulse deactivates completely the state |+〉.
All the population is finally transferred to the ground state |1〉,
as it takes place in the case of two-level SR under the condition
of total inversion (see, for instance, [19, 20]). The modulation
of the kinetics with frequency ω32 is explained by the fact that,
at nonzero splitting, the bright state |+〉 is not a stationary state:
it periodically (with frequency ω32, i.e. rapidly in the scale of
the SR) exchanges population with the dark state |−〉. Indeed,
keeping in equations (23), (26) and (27) only the terms with
the density matrix elements within the subspace of states |+〉
and |−〉 and introducing the notations z = ρ++ − ρ−− and
y = i(ρ+− − ρ−+), we obtain

ẏ = −ω32 z, (37)

ż = ω32 y. (38)

These equations describe harmonic oscillations, with
frequency ω32, of a vector (y, z) in the Y Z plane. Values
z = 1,−1 correspond to the total population of bright and
dark states, respectively. The magnitude y = 2�ρ+− reflects
the low-frequency coherence. Note that z2 + y2 = constant.
For the initial conditions we are dealing with (z(0) = 1 and
y(0) = 0), for approximately one-half of the period of these
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Figure 2. (a) The SR field |ε| = d|E |τR/h̄, (b) the level populations
ρ11, ρ22 and ρ33 and (c) the low-frequency coherence ρ32 calculated
for zero LFC (�L = 0) at fixed magnitude of the doublet splitting
ω32 = 5τ−1

R . The initial conditions are: ρ22(0) = ρ33(0) = ρ32(0) =
0.5 and R21(0) = R31(0) = 10−8.

oscillations the system remains in the bright state while for the
other half it does not. This also explains why the delay time
of the SR in the present case (tD ≈ 18τR) is twice as large
compared to that time at ω32 = 0. Indeed, using the above
initial conditions in equation (35), one obtains tD ≈ 9τR for a
degenerated doublet.

From the above discussion it is clear that changing the sign
of the initial low-frequency coherence, i.e. setting ρ32(0) =
−0.5 or, in other words, ρ−−(0) = 1, will not affect the SR
kinetics. After a half period of oscillations with frequency ω32,
the previous initial condition is restored.

In figure 3 we depicted the SR kinetics calculated for
the same initial conditions as above, except for the low-
frequency coherence ρ32(0), which was set to zero. Within
the subspace of states |+〉 and |−〉, they now correspond to
the excitation of an incoherent mixture of the bright and
dark states: ρ++(0) = ρ−−(0) = 0.5 and ρ+−(0) = 0 (see
equations (18), (20) and (21)). One can notice significant
changes in the main features of the SR pulse as compared to
the previous case: both the delay time and the pulse duration
increased by approximately a factor of two and, in addition,
the doublet states remained equally populated after the SR
pulse has been emitted: ρ22(∞) = ρ33(∞) = 0.25. More
specifically, the population of the bright state, i.e. only one-
half of the total population accumulated in the upper states, is
transferred to the ground state during the SR, while the other
half remains trapped in the dark state. The increase of the
delay time and the duration of the SR pulse by a factor of two
is simply explained by the fact that, in the present case, the

Figure 3. Same as in figure 2, except for ρ32(0) = 0.

initial value Z(0) = ρ++(0) − ρ11(0) = 0.5 is twice as small
as compared to the previous situation. Recall that both tD and
τR are inversely proportional to Z(0).

4.2. Effects of the LFC (�L 
= 0)

We turn now to studying the LFC effects on the SR kinetics.
Therefore, in what follows the magnitude of LFC, �L , is
regarded as a variable parameter while the doublet splitting,
ω32, is set to a fixed value. More specifically, we present the
results of numerical calculations for ω32 = 5τ−1

R , meaning that
the splitting is larger than the full width of the SR spectrum
which is ≈2τ−1

R . For small magnitudes of ω32 compared to
τ−1

R , the SR kinetics is well described by equations (32)–
(35). We also assume that the total initial population of the
system, ρ22(0) = ρ33(0) = 0.5 and ρ11(0) = 0, with equal
populations of the doublet states, ρ22(0) = ρ33(0) = 0.5.
As we will show below, the output depends on the initial
value of the low-frequency coherence, ρ32(0), as well. We
restrict ourselves to two limiting cases: ρ32(0) = 0 and
ρ32(0) = √

ρ22(0)ρ33(0) = 0.5. The former corresponds
to the initial excitation of incoherent mixture of the doublet
states |2〉 and |3〉, while the latter implies the initial excitation
of the pure state |+〉. The initial values of the high-frequency
coherences are set to R21(0) = R31(0) = 10−8 as before.

4.2.1. SR from an incoherent mixture (ρ32(0) = 0). Figure 4
shows the SR kinetics calculated for ρ22(0) = ρ33(0) = 0.5
(the total initial inversion) in the absence of the initial low-
frequency coherence, ρ32(0) = 0, varying the LFC magnitude,
�L . As is seen from this figure, increasing �L affects dras-
tically the SR kinetics. While �L is smaller than some ‘crit-
ical’ value, the scenario of the SR is similar to that described
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Figure 4. Effects of the LFC on (a) the SR field |ε| = d|E |τR/h̄, the
level populations (b) ρ33, (c) ρ22, (d) ρ11 and the low-frequency
coherence ρ32 (panels (e) and (f)) calculated at a fixed doublet
splitting ω32 = 5τ−1

R . The values of the LFC (in units of τ−1
R ) are

given in (a). The initial conditions are ρ22(0) = ρ33(0) = 0.5 (total
initial inversion), ρ32(0) = 0 (no initial low-frequency coherence)
and R21(0) = R31(0) = 10−8.

in the previous subsection, i.e. the transitions |2〉 → |1〉 and
|3〉 → |1〉 evolve synchronously and the doublet states re-
main equally populated after the SR pulse has been emitted:
ρ22(∞) = ρ33(∞) = 0.25. For larger �L , the transition
|2〉 → |1〉 in fact does not evolve, conserving almost all the
initial population in the state |2〉, while the population of the
state |3〉 is entirely transferred to the ground state |1〉. This ex-
plains the changes which occur in the SR kinetics on increasing
�L : disappearance of the oscillatory structure and shortening
both the SR pulse duration and delay time by approximately a
factor of two. Indeed, as |3〉 → |1〉 is the only transition con-
tributing to the emission, the problem is reduced to the two-
level scheme with parameters τ ′

R = 4Z(0)τR = τR and tD =
−τ ′

R ln R31(0) ≈ 17τR , which are characteristic for the two-
level SR. It is worth mentioning that the suppression of the tran-
sition |2〉 → |1〉 occurs at d21 = d31, i.e. under the condition
of equivalent coupling of the individual transitions to the field.

The physics of such a behaviour is as follows. A V atom
represents two transitions coupled to each other by the common
field which includes the emission term (∼τ−1

R ) and the LFC
(∼�L) (see equation (14)). In the presence of population
inversion, the amplitudes of optical oscillations, R21 and R31,
grow in time. Their increments are equal to each other in the
absence of the LFC and under the condition µ13 = µ12 and
ρ33(0) = ρ22(0) = 0.5. However, they become different after
appearing in the LFC (see below). This makes the transition
|3〉 → |1〉 to evolve faster than |2〉 → |1〉. The final state of
the system depends on the relationship between R31 and R21

at those times when the SR pulse is already well developed,
i.e. at t ≈ tD . If |R21(tD)| ≈ |R31(tD)| then both transitions
still evolve synchronously, while at |R21(tD)| � |R31(tD)| the
initial population of level |3〉 (0.5 in our case) is transferred
to the level |1〉 before the oscillations |2〉 → |1〉 begin to
build up. It makes the population inversion between levels
|2〉 and |1〉 equal to zero and thus prevents the superradiant
evolution of this channel which explains the disappearance of
the oscillations of the SR pulse.

An analysis of the linear stage of the emission, i.e. keeping
all the quantities equal to their initial values, except for R21

and R31, provides a solid support for the above arguments.
Equations (8)–(13), linearized with respect to R21 and R31 and
adapted to the conditions used in the numerical simulations
(µ31 = µ21 = 1, ρ33(0) = ρ22(0), ρ11(0) = ρ32(0) = 0),
have the form

Ṙ31 =
[
−i

ω32

2
+

(
1

τR
− i�L

)
W

]
R31

+

(
1

τR
− i�L

)
W R21, (39)

Ṙ21 =
[

i
ω32

2
+

(
1

τR
− i�L

)
W

]
R21

+

(
1

τR
− i�L

)
W R31, (40)

where W ≡ ρ33(0)−ρ11(0) = ρ22(0)−ρ11(0). Solving these
coupled equations is straightforward. Below, we write down
the solution in the limit τ−1

R ,�L � ω32:

R21 � R0eλ1t , R31 � R0eλ2t , (41)

where

λ1,2 = i

(
±ω32

2
− �L W

)
+

W

τR

(
1 ∓ 2W

�L

ω32

)
. (42)

As seen from equation (42), the increment of R31 is indeed
larger than that for R21, i.e. R31 grows faster than R21. Thus,
during the linear stage of the SR

|R31|
|R21| = exp

(
4W 2 �L

ω32

t

τR

)
. (43)

Recall that the linear solutions for R31 and R21 are valid almost
up to the SR pulse maximum (see, for instance, [44]). Then,
applying this formula for t = tD and equating the exponent to
unity, one obtains an estimate for �c

L :

�c
L = ω32

4W 2

τR

tD
, (44)

which separate two regimes of the SR. At �L < �c
L , both

transitions evolve synchronously, while for the opposite sign
of the inequality, the transition |2〉 → |1〉 is blocked for the
reasons discussed above.

Concerning numerical data (ω32 = 5τ−1
R , W = 0.5 and

tD ≈ 35τR ), equation (44) yields �c
L = ω32/35 = (1/7)τ−1

R .
This estimate is in good agreement with the numerical data (see
figure 4). We stress that the estimated value of �c

L is smaller
than the half-width of the SR spectrum given by τ−1

R . In other
words, even if the LFC (the dynamical resonance frequency
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Figure 5. Same as in figure 4, except for ρ32(0) = 0.5.

shift) are spectroscopically hidden due to the natural pulse
broadening, it drastically affects the SR kinetics.

It is to be noticed that the above behaviour of the SR
of a V system resembles the peculiarity of the SR for the
� arrangement of nondegenerated levels [14–16, 44], namely
in the presence of the LFC, all the population from the upper
level of the � system is transferred to the lower level of the
doublet, while the higher doublet level remains unpopulated
after the SR pulse has gone.

4.2.2. SR from the pure state (ρ32(0) = 0.5). Figure 5
shows the effects of the LFC on the SR kinetics obtained
for ρ22(0) = ρ33(0) = ρ32(0) = 0.5 or, in other words,
when initially the pure bright state |+〉 is fully populated,
ρ++(0) = 1, while ρ11(0) = ρ−−(0) = ρ+−(0) = 0. As is
seen from figure 5(a), the present case differs noticeably from
the one where initially no low-frequency coherence is created
(ρ32(0) = 0, see the previous section). First of all, the LFC
does not affect the SR delay time at all. Therefore, the linear
stage of the SR is not useful here in predicting the changes in
the SR kinetics, as they occur when the nonlinearity is already
well developed.

The changes concern the second half and final stage of the
pulse. The pulse shows an oscillatory structure which now
cannot be associated with ω32 oscillations. The frequency
of the oscillations grows upon increasing �L and, in fact,
reflects the magnitude of the latter. The populations of the
doublet states also undergo antiphased (with respect to each
other) oscillations at the same frequency as the pulse does.
This indicates that the doublet states start to exchange the
population when the SR pulse is developed. A qualitative
interpretation of this effect is as follows. Recall that the LFC

shifts the frequency of the transitions |2〉 → |1〉 and |3〉 → |1〉
by �L (ρ22 − ρ11) and �L(ρ33 − ρ11), respectively. Initially,
these shifts are equal to each other. Figure 5(b) shows that
the transition |3〉 → |1〉 starts to develop first. This reduces
the initial detuning, ω32, between the transitions. As a result,
the radiation, which is emitted via the transition |3〉 → |1〉,
is absorbed by the transition |2〉 → |1〉. It further reduces
the detuning, stronger for larger �L . After that, the transition
|2〉 → |1〉 starts to emit while |3〉 → |1〉 starts to absorb,
i.e. the transitions exchange their role.

The initial population is mostly transferred to the ground
state, as it takes place for the same initial conditions at �L = 0.
However, a small part of the population remains trapped in the
dark state |−〉, unlike the case of �L = 0. This is the reason
why the SR pulse has a long tail.

5. Summary and concluding remarks

We studied theoretically the SR from an ultrathin film of
V -type atoms, taking into account the LFC to the average
Maxwell field. We show that the interplay between the doublet
splitting, low-frequency coherence (within the subspace of the
doublet states) and LFC may significantly affect the scenario
of SR. Several conclusion can be drawn from our results:

(i) Under the condition of degeneracy, the three-level
problem is equivalent to that for a two-level system with a
renormalized SR time. The role of the LFC is also similar
to that for the two-level problem and manifests itself as a
phase modulation of the SR pulse.

(ii) For a nondegenerated V system, the LFC correction
affects drastically the SR scenario, allowing development
of one of the transitions and blocking the other one under
specific conditions. This effect may occur even if the LFC
is small compared to the SR spectrum, i.e. when the LFC
is spectroscopically hidden.

(iii) The SR scenario is sensitive to the amount of low-
frequency coherence (within the subspace of the doublet
states) as well as to the magnitude of the total inversion,
thus providing a way to control the SR regimes.

To conclude, we discuss the conditions required to prove
experimentally the predicted regimes of the V -type SR. First
of all, one should look for a dense ensemble of radiators where
the LFC is large compared to the linewidth. In [31], O−

2 ions
in KCl : O−

2 crystals and bound I2 excitons at donor sites in
CdS single crystals were considered suitable for observing the
LFC effects. In relation to our model, one should bear in
mind that, in disordered ensembles of dipole radiators, like the
case of O−

2 centres and bound I2 excitons, the LFC fluctuates.
The average LFC drives the level shifts, while the fluctuating
part contributes to the dipole–dipole line broadening. It turns
out that both shift and linewidth are of the same order of
magnitude [53], as it takes place in dense gas systems [30].
Because of this fact, these systems can hardly present the
effects we are discussing.

Thin films of some organic compounds, such as
naphthalene and anthracene, as well as materials containing
unoccupied d or f orbitals, such as Cr2O3 or MnO2,
might be promising materials for this task. As they are
crystalline, the intermolecular dipole–dipole interaction (and,
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subsequently, the LFC) does not fluctuate. Furthermore, at
low temperatures, the optical excitations in these materials
are Frenkel excitons [45–47]. This fact implies that the
intermolecular dipole–dipole interaction (the LFC, in other
words) dominates over dephasing. As the density of the
optically active units in crystals is generally high (N0 ∼ 1021−
1022 cm−3), the SR time constant τR may be small compared
to the dephasing time. Indeed, τR = h̄λc/(2π)2d2 N0 L =
(8π/3)(N0λ

3
c)

−1(λc/L)τ0, where λc = 2π/kc and τ0 =
3h̄/4d2k3

c is the spontaneous emission time of a single emitter.
Let us take λc = 5 × 10−5 cm and assume that the transitions
are dipole allowed (τ0 ∼ 10−8 s), which is typically the case
for organic crystals. Then, for a film thickness L = 0.1λc

we estimate τR as being of the order of 10 fs. The exciton
absorption linewidth is typically about a few hundreds of
cm−1. This gives 1 ps as an estimate for the dephasing
time, that is, 100 times longer than τR . On the other hand,
vibronic structure of aromatic crystals seems suitable for
forming a V -configured system. The SR of high density
Frenkel excitons was observed in single organic crystals of
R-phycoerythrin molecules at room temperature [54]. The
SR pulse was found to be phase-modulated, thus indicating
the relevance of the LFC. Therefore, R-phycoerythrin single
crystals are promising candidates to prove the effects predicted
in this work.
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