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Abstract. In the present work, a generalisation of the Dirac-Kronig-Penney maodel for
polyatomic crystals has been developed. The crystal potcntial is taken as a periodic array of
d-function potentials, with several d-functions of different strength in each unit cell. The
dispersion law of Dirac electrons in such a potential is found in a closed form.

In a recent paper (Eldib er al 1987), the well known Kronig-Penney model has been
generalised to be applicable for polyatomic crystals, containing M different atoms in the
unit cell. Nevertheless, relativistic effects in the band structure have not been considered
in the above-mentioned model. These effects can be important at high energies on the
electrons in solids consisting of heavy atoms (for a review on relativistic electrons in one-
dimensional systems, see Roy (1986} ). Relativistic electronic states in diatomic (cqually
spaced atoms) crystals have been discussed in an earlier paper by Sen Gupta (1974). The
aim of the present work is to generalise the Dirac-Kronig-Penney maodel for polyatomic
crystals, taking into account relativistic effects.

A number of researchers have treated é-function potentials with the Dirac equation
(Sutherland and Mattis (1981) and McKellar and Stephenson (1987), and references
therein). It has also been noted that the solution obtained by solving the Dirac equation
for a é-function potential, and the expression attained when considering the limiting
case of a square well (or barrier) are different. Fairbairn et al (1973) argued that this
disagreement is related to the Klein paradox. In the above-mentioned work, McKellar
and Stephenson have shown a reasonable way to use o-function potentials with the one-
dimensional Dirac equation. For electrostatic-type potentials which approach a 8-
function hmit {located at x,), they found the following boundary condition for the two-
component electron wavefunction (in the standard representation):

| cos(A/ke) —isin(A/Ac) _
bl ) = —isin(A/#c) cos(A/kc) Vxo) W

A being the strength of the potential.
We shall use the boundary condition (1) to find the dispersion law of Dirac electrons
under the action of the crystal potential

M x
Vc(x) = E z Vpl(x - R,u - HL) (2)

H=1nr=—wx
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where the ‘atomic’ potentials are taken as V,(x) — A,8(x), with 4, > 0. The position
of each ion in the unit cell is denoted by R, and L is the lattice pdrameter The Bloch
theorem is as follows:

B(x) = exp(ixx)ep(x) 3)

¢(x) being a two-component periodic function, with the same period as the crystal
lattice. Therefore, it suffices to find @ (x) within the unit cell {0, L]. The function ¢(x)
satisfies the equation (Dominguez-Adame 1987)

[—ifhco (3, +iK) + o,mc® + V. (x) - E(&))e(x) =0 )]

o, and o, being the usual 2 X 2 Pauli matrices. The solution of this equation is readily
found

() = exp(—ixn)| P exp(—inx)
@ulx) = CeXpi —1KX "eXp(i?]rX) —g"eXp(Aiﬂx)

R, <x<R,, p=01,....M (3)
with RO =0 and Ry, = L. For simplicity, we have introduced the notation nhe =
(E? — m*c*)? and & = (E + mc?)/(E ~ mc?). P, denotes here a two-component con-
stant vector After applying the boundary cnndition (1) at each R,,, we obtain

Pﬂ+l =Du(n)Pp.¢ M=1,2,...,M (6)
where

a,(n) B.(m
O iy ez @
with
a, () = cos(A, /fic) — i(E/nhc) sin(A4, /hc)
B.(n) = —i(mc? /nhc) sin(A, /hc) exp(—2inR,,).

It is interesting to note that det|D,(n)| = 1; we shall use this property below. The
periodicity of ¢ (x) leads to the condition

(8)

exp(—inl) 0
Pyyy = CXP(IKL) exp(inL.) P (9)

and by successive use of equation (6) we immediately infer that

exp( inL 0
exp(ixL) (inL) P, =GP, (10)
exp(in

where we have defined G = G(17) = Dy{(n)Dy,_,(n) ... Di(n). This 2 X 2 matrix has
interesting properties, namely det|/G| = 1, G}, = G, and G# = G ;, as can be readily
verified from the properties of D, (7). The consistency of equation (10) and the afore-
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mentioned properties of G give us the required dispersion law of Dirac electrons in the
crystal potential:

cos{kL) = ReG,, cos(nL) — Im G, sin(nL) (11)

where Re z and Im z indicate real and imaginary parts, respectively, of the complex
number z. Note that we must evaluate only one element of the matrix G. The solution
of the dispersion relation E(x) has to be found numerically, for any arbitrary value of
M.

If only a few atoms are placed in the unit cell of the crystal, the dispersion law (11)
can be written in a more simplified form. For monatomic crystals, we have G|, = a(#n)
so that

cos(kL) = cos(nL) cos(A /fic) + (E/nhc) sin(nL) sin{A/kc). (12)

This expression has formerly been proposed by McKellar and Stephenson for the Dirac-
Kronig-Penney model. It should be observed that, as ¢ — =, equation (12) approaches
the non-relativistic Kronig-Penney result.

If we now place two different atoms in each unit cell, we have G,; = a()aa(n) +
BT (n)B2(n). Therefore, the relativistic dispersion law for diatomic crystals is found to
be

cos(kL) = cos(nL) cos[(A, + A,)/fc] + (E/nhc) sin(nL) sin[(A, + A,)/fic]

+ 2(mc? /yhe)? sin{A | /he) sin(A, /hic)

x sin[n(R, — Ry)]sin[n(L — R> + R})] (13)
which reduces to equation (12) as A, = 0. The non-relativistic limit can be written as
cos(kL) = cos(nl) + [m(A, + A,)/n4?] sin(nL)

+ 24, A.(m/nh?)? sin[n(R, — R)]sin[n(L — R, + R,)]. (14)

This 1s the expression obtained by Eldib et a/ who solved directly the Schrodinger
equation for the crystal potential (2).
In a similar way, the dispersion relation for triatomic crystals (M = 3) is found to be

cos(kL) = cos(npL) cos[(A,| + A + A3)/he| + (E/nhc) sin(nl)
xsin[(A| + Ay + Ay)/he] + 2(me? /nfic) {cos(A | /he) sin(A, /hc)
X sin{A s /he) sin[n(R; — R,)]sin[n(L.— Ry + R>)] + sin(A, /A¢)
X c0s(A,/ke) sin(As/hc) sin[n(Ry — Ry)]sin[n(L — Ry + R,)]
+ sin(A | /fic) sin{A, /fic) cos(A; /hic) sin[n(R, — R))]
x sin[n(L — Ry + Ry} + 2(E/nhc) sin(A, /he) sin(A, fAc)
X sin {A;/he) sin[n(Ry; — Ry)] sin[n(R, — R))]
xsin{n(L — Ry + Ry) |} (15)
which reduces again to the results of Eldib et a/ in the non-relativistic limit.
In summary, we have generalised the Dirac—Kronig-Penney model for polyatomic

crystals containing M atomsin each unit cell. The treatment given above may be regarded
only asasimple but very instructive way tostudy relativistic effectsin polyatomiccrystals.
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