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Abstract
A new type of quantum interference device based on a graphene nanoring in which all edges are
of the same type is studied theoretically. The superposition of the electron wavefunction
propagating from the source to the drain along the two arms of the nanoring gives rise to
interesting interference effects. We show that a side-gate voltage applied across the ring allows
for control of the interference pattern at the drain. The electron current between the two leads
can therefore be modulated by the side gate. The latter manifests itself as conductance
oscillations as a function of the gate voltage. We study quantum nanorings with two edge types
(zigzag or armchair) and argue that the armchair type is more advantageous for applications.
We demonstrate finally that our proposed device operates as a quantum interference transistor
with high on/off ratio.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Graphene is a promising candidate for replacing semiconduc-
tors as the basic material for the design of new nanodevices
due to its truly two-dimensional geometry as well as large
carrier mobility [1]. Low-energy electronic excitations in
graphene can be described by the Dirac Hamiltonian for
massless particles [2]. It is well established that the Dirac
equation leads to the so-called Klein tunneling [3]. In graphene
Klein tunneling manifests itself as the occurrence of perfect
transparency of barriers at normal incidence, as predicted by
Katsnelson et al [4] and observed later in experiments [5].
This peculiar tunneling would lead to undesired charge leakage
in graphene-based devices. While in particle physics it is
known that there exist relativistic interactions for which Klein
tunneling is absent [6, 7], it seems that they have no counterpart
in graphene, and confining electrons is a challenging task
while being necessary for many applications. Therefore, a
significant amount of effort has been focused on graphene-
based nanodevices that could enhance carrier confinement,
such as p–n junctions [8, 9], superlattices [10–12] and field
effect transistors (FET) [13, 14].

Interference effects of coherent electron transport through
graphene nanorings open an alternative possibility of
controlling quantum transport without relying on potential
barriers. Interference effects in graphene subjected to a
perpendicular magnetic field, such as current revivals [15]

or Aharonov–Bohm conductance oscillations in ring-shaped
devices [16–20], have already been studied. In particular,
in [18] it was pointed out that these conductance oscillations
are robust under the effects of either edge or bulk disorder. Wu
et al [19] investigated quantum transport through a graphene
nanoring theoretically and concluded that the device behaves
like a resonant tunneling one, in which the resonance energy
can be tuned by varying the size of the device or the external
magnetic field. Effects of an electrostatic potential applied to
one of the arms on the Aharonov–Bohm magnetoconductance
were discussed in [20].

In contrast to previous studies of magnetically induced
interference effects [16–19], in this work we consider a new
design of graphene interference device in which electron
transport is controlled without applying a magnetic field. We
demonstrate that charge carrier transport can be tuned instead
by applying a side-gate voltage across a graphene nanoring.
We show that in this case the relative phase of the electron
wavefunction in the two arms can be varied, leading to a
constructive or destructive interference at the drain, which
results in conductance oscillations and current modulation.

2. System and modeling

The studied system comprises a graphene nanoring with 60◦
turns attached to semi-infinite leads. The schematic diagram of
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Figure 1. Schematic diagram of the device: a graphene nanoring
attached to two leads. The geometry is determined by the parameters
L , W and w. The side-gate voltage VG is applied across the nanoring
as shown in the plot. A back-gate voltage can also be applied to shift
the Fermi level.

the device is shown in figure 1. The total length of the ring is L,
its total width is W while the width of all nanoribbons is w. It is
known that the dispersion relation of a quasi-one-dimensional
graphene nanoribbon is drastically different from that of a
two-dimensional sheet of this material [21]. In particular,
the electronic structure of the nanoribbon is very sensitive to
the type of edges [22]. Thus, if a nanoribbon has a turn
which does not preserve the edge type, a propagating charge
carrier would experience strong scattering at the turn due to the
electronic structure mismatch, which is disadvantageous for
transport. We propose therefore the above-mentioned design
of the quantum nanoring with 60◦ turns, which does preserve
the edge type and greatly reduces such scattering at the turns.
According to recent studies [23], atomic-scale precision along
the edges can be experimentally achieved, which can facilitate
the fabrication of the proposed device.

To model our device, we consider the following tight-
binding Hamiltonian describing the motion of a single electron
in graphene:

H =
∑

i

εi |i〉〈i | +
∑

〈i, j〉
Vi j |i〉〈 j |, (1)

where the second sum is restricted to nearest neighbors.
Hereafter we use the simplest model and assume that the
graphene lattice is undistorted, so we take Vi j = −t with t =
2.8 eV [1] and neglect all spin-related effects (see, e.g., [24, 25]
or [26] for a review). The site energy εi can depend on the
position of the i th atom due to the presence of the source–drain

(SD) and both back-gate and side-gate voltages. The profile
of the electric field can be calculated by solving the Poisson
and Schrödinger equations self-consistently. However, for
simplicity, we assume a simplified side-gate potential profile: it
is linear in the y direction (|y| < W/2) while in the x direction
it is (i) constant within the nanoring area (|x | � L/2) and (ii) it
decays exponentially toward the two leads (for |x | � L/2).

Using the quantum transmission boundary method [27, 28]
for each energy E and gate voltage VG we obtain the wave-
function in the whole sample and the transmission coefficient
T (VG, E). Using the latter we can calculate the current–
voltage characteristics. We performed numerical simulations
for nanorings of a variety of sizes, geometries and both possible
types of edges: zigzag and armchair (see the insets in figure 2).
We found that these two types of edges result in very different
transmission coefficient patterns. These patterns are intimately
related to the dispersion relation in the nanoribbons forming
the sample. It has been demonstrated that carbon atoms
at graphene edges undergo considerable reconstruction [22]
which changes the energy dispersion close to the Dirac point.
The states which are more affected by such a reconstruction
are edge states. Those, however, are not very promising from
the point of view of electronic transport because, being quasi-
one-dimensional states, they will also be strongly affected by
edge disorder and become localized. The more usual states
have low electron density at the edges and will therefore not see
themselves affected so much by neither the edge reconstruction
nor the edge disorder. We will focus primarily on the latter
states and neglect therefore all reconstruction related effects. In
figure 2 we present the energy dispersion relations calculated
for infinite nanoribbons. The transverse wavenumber k is
measured from the Dirac point in units of the inverse lattice
spacing a−1 along the nanoribbon (i.e. a = √

3a0 for zigzag
edges and a = 3a0 for armchair ones, where a0 ≈ 1.4 Å is
the interatomic distance). The left panel shows the dispersion
in the case of a zigzag-edged nanoribbon. The dispersion
is gapless, with low-energy excitations corresponding to high
wavenumbers k. For a symmetric nanoribbon with armchair
edges the energy spectrum depends on the number N of
hexagons per wider nanoribbon slice [22]. If N �= 3n − 1,
where n is a positive integer, the spectrum is gapless and linear
for small k (see the middle panel); otherwise the dispersion
has a gap at k = 0 and it is quadratic in the vicinity of

Figure 2. Dispersion relations calculated for three different nanoribbons: a nanoribbon with zigzag edges and N = 70 (left panel) and
nanoribbons with armchair edges with N = 62 and 63 (middle and right panels, respectively). The insets show the corresponding atomic
arrangement of each nanoribbon.
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Figure 3. The upper panel shows the transmission map for a system with armchair edges and N = 62, as a function of the Fermi energy E
and the gate voltage VG. Lower left and right panels show a cross section of the transmission map along the horizontal red and vertical blue
lines in the upper plot, corresponding to VG = 0 and E = 19.2 meV, respectively.

this point, as can be seen in the right panel. Such an energy
spectrum is typical for conventional semiconductors. As we
show below, the latter configuration presents more robust
and promising transmission patterns for transport control and
applications. In all three cases, when the ribbon width is
increased consecutive dispersion branches become closer to
each other and the energy region with a small number of
propagating eigenmodes shrinks. Because we are interested
in interference related effects we will be focusing on the one
mode regime in which these effects are not smeared out due to
the superposition of several modes.

3. Transmission coefficient: resonance bands

The sample that we address in this section has armchair edges
and the following geometry: L = 214 nm, W = 107 nm and
w = 15.1 nm (which corresponds to N = 62). In figure 3 we
show the transmission coefficient as a function of the Fermi
energy and side-gate voltage VG. The transmission pattern
consists of a series of very sharp and narrow resonance lines.
Outside the resonances the transmission is vanishingly small.
To illustrate this more clearly we show cross sections of the
transmission map taken along the horizontal red and vertical
blue lines in the upper panel of figure 3, which corresponds to
VG = 0 (lower left panel) and E = 19.2 meV respectively
(lower right panel). We checked that the wavefunction
of a high transmission state (not shown here) has a huge
pile up in the region of the nanoring, which is the typical
wavefunction structure of a resonance state. We note that such
a wavefunction is always localized in only one arm of the
nanoring.

Although in the vicinity of a resonance the transmission
can be changed abruptly by a very small variation of the side-

gate voltage, which could be very attractive for applications,
this type of device can hardly be practical because the
resonances are very narrow and can easily be affected by
perturbations, such as disorder. Our calculations confirmed this
conjecture.

The straight lines observed in the maps shown in figure 3
can easily be understood using the following reasoning. The
effect of the transverse electric field can be seen as a shift in
energy in the upper and lower arms of the nanoring. Therefore,
if a side-gate voltage VG is applied, then the energy shifts
in the upper and lower arms can be estimated as +VGW̃/2
and −VGW̃/2, respectively. Here W̃ is some effective
width of the nanoring. Therefore, an incoming mode with
wavevector k(Ein) will propagate through the upper branch
with a wavevector k(Ein + VGW̃/2) and with k(Ein − VGW̃/2)

in the lower one. If the resonance condition without transverse
field is obtained at Eres, then when a small voltage is applied,
there will be resonances at Eres±VGW̃/2. When the dispersion
relation is linear or almost linear, this condition leads to the
occurrence of the observed straight lines crossing at VG = 0 in
the transmission map. To check the validity of this simplified
picture we calculated the transmission for a system with one
single arm, which resulted in the same transmission map but
without the lines corresponding to resonances of the removed
branch.

4. Transmission coefficient: interference-induced
bands

We now turn to the most promising configuration: a nanoring
composed of nanoribbons with armchair edges and N = 3n−1
(n being a positive integer) for which the energy spectrum
has a gap at the Dirac point. The dispersion relation in this
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Figure 4. Same as in figure 3 but for N = 63 and E = 51.9 meV. The green dashed square shows the region used to calculate the
current–voltage characteristics in section 6. In the lower right panel we mark the first two maxima and the first minimum. The corresponding
wavefunctions are plotted in figure 5.

case is parabolic in the vicinity of k = 0 (see the right
panel of figure 2), which makes it similar to conventional
semiconductors. The energy gap decreases as the nanoribbon
width increases. The transmission coefficient presented in
figure 4 manifests two regions: at lower Fermi energies the
aforementioned resonant behavior with very narrow peaks is
observed while at higher energies the transmission comprises
wider bands. As we show below these bands arise from
interference effects. The lower right plot in figure 4 shows the
dependence of the transmission coefficient on the gate voltage
for a fixed Fermi energy (it corresponds to the cross section
of the transmission map along the vertical blue line in the
upper panel). Similar plots are obtained for other higher Fermi
energies, as long as only one single mode contributes to the
transmission.

In order to study the nature of these wider bands we
plot the real part of the envelope wavefunction for the three
energies marked by open circles and letters A–C in the lower
right panel of figure 4. The system has high transmission
for the first and the last energy values (denoted A and C);
the corresponding wavefunctions manifest a clear constructive
interference pattern at the right lead (upper and lower panels
of figure 5). Contrary to that, as the middle panel suggests,
the two parts of the low transmission state B are propagating
along the two branches of the nanoring in such a way that they
arrive at the right extreme of the nanoring being out of phase
with each other, which gives rise to destructive interference at
the drain and practically zero transmission coefficient. Similar
patterns are obtained for all other extrema in this higher Fermi
energy region.

We note that these interference-induced bands are much
wider than those having resonance nature and therefore we
expect them to be more robust and stable with respect to

Figure 5. Real part of the envelope wavefunction corresponding to
the three states with different transmission coefficients marked by
open circles and labeled A, B and C in the lower right panel of
figure 4.

perturbations, such as disorder. Effects of disorder will be
discussed in section 5, where we show that such a conformation
of the nanoribbons comprising the nanoring is the most
favorable for applications.

For completeness, we address the sample with zigzag
edges; the conforming nanoribbons have a width of w = 15 nm
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Figure 6. Same as in figure 3 but for zigzag edges and N = 70.

(N = 70). Other geometrical parameters are as follows:
L = 150 nm and W = 102 nm. Such a nanoribbon
has a gapless dispersion relation, with low-energy excitations
corresponding to high wavenumbers k (see the left panel of
figure 2). Similar to the previous case of the armchair edged
sample, the transmission map also presents interference bands
(see figure 6). However, these bands are considerably narrower
than in the case of the armchair edges, which makes them less
robust under perturbations and, presumably, less suitable for
applications.

5. Effects of the edge disorder

In this section we address the effects of the edge disorder
on the transport properties of the proposed device. We
take the second sample with armchair edges to study these
effects. To do so, we remove pairs of carbon atoms from
the edges with some given probability p. By removing
pairs rather than individual atoms we ensure that there are no
dangling atoms in the sample, so we do not have to deal with
complicated edge reconstruction effects. The transmission
coefficient calculated for one particular realization of disorder
for p = 0.05 and zero side-gate voltage is presented in figure 7.
The dashed red line represents the transmission coefficient
of an ordered sample, and the solid blue line represents the
disordered one. There are two important trends that can be
observed. First, the transmission bands in the latter case are
shifted to higher energies with respect to their positions in
the regular sample. This is due to the fact that we were
removing the atoms from the edges of the nanoribbons, making
them effectively narrower, which leads to higher quantization
energy in the lateral direction. Second, one can observe the
appearance of anti-resonances in the bands. We attribute
those to the edge states localized by the disorder. Such

Figure 7. Transmission coefficient of the ordered sample (dashed red
line) and a disordered one (solid blue line). The inset shows a typical
disorder realization.

discrete states lie at the continuum of band states. Mixing
between a discrete state and one belonging to the continuum
gives rise to the typical Fano resonance [29, 30]. The most
important finding is that transmission bands are not destroyed
by the moderate disorder, so we conclude that such a device
(with armchair edges and gapped spectrum) is robust under
perturbations. Our calculations confirm that nanorings having
different configurations (zigzag edges or armchair edges with
linear dispersion) are affected by the disorder to a much larger
extent.

6. Current–voltage characteristics

In this section we address current–voltage characteristics of the
device with armchair edges and gapped spectrum. In order
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Figure 8. Current–voltage characteristics of the device with armchair edges and the spectrum with a gap.

to calculate transport properties of the device, the Landauer–
Büttiker scattering formalism is used. The current flowing
through the device can be calculated as follows [31, 32]:

I = 2e

h

∫
T (VG, E)[ fl(E, VSD) − fr(E, VSD)] dE, (2)

where the Fermi functions of the left and right contacts
are given by fl(E, VSD) = [1 + exp (EF − E)/kT ]−1 and
fr(E, VSD) = [1+exp (EF − eVSD − E)/kT ]−1, respectively,
VSD is the SD voltage applied across the whole sample in the
x direction, and EF is the Fermi energy at equilibrium, the
position of which can be controlled by the back-gate voltage.
The temperature T is set to 4 K. The I –V characteristics
were calculated within the region of the SD and gate voltages
marked with the dashed green rectangle in figure 4. We
assume here that the Fermi energy of both contacts is set to
the working point by the back-gate voltage: to the energy ES

(corresponding to the left edge of the rectangle) and then the
SD voltage is changed within the selected window.

The corresponding I –V characteristic is presented in
figure 8. The upper panel shows the complete I (VG, VSD)

surface. As can be seen from the figure, the side-gate voltage
can be used to control the current through the device. The
lower panel of the figure shows the dependence of the current
on the side-gate voltage VG for several fixed values of SD
voltage (specified in the legend). Note that the on/off ratio
of this quantum interference transistor can be as high as about
10. It should be stressed that the current–voltage dependences
typical for a traditional FET are monotonic functions of the
gate voltage. Our proposed device manifests a more interesting
gate voltage dependence. In particular, the I –V curves have
negative differential resistance parts, which can be very useful
for applications. Another underlying difference between a
traditional FET and the proposed device is the principle of
operation. In the latter case it is based upon an essentially
quantum mechanical effect: the interference between the two

paths of the wavefunction propagating along the two arms of
the nanoring.

Several designs of nanodevices based on single organic
molecules exploiting various quantum mechanical effects have
already been put forward (see, e.g., [33, 34] and references
therein). In particular, Stafford et al studied quantum
interference effects in aromatic molecules to modulate the
current flow [33]. More complex organic molecules, such as
DNA, were proposed to design FETs and more sophisticated
devices [34]. However, single-molecule electronics often
requires almost atomic level control of contacts, it can be
affected greatly by vibrations and could be subject to structural
instabilities under required voltages. Fabrication of graphene
nanorings seems to be more feasible (at least nowadays), and
they can also sustain higher voltages and currents, which is
advantageous for applications.

Finally, we point out that our proposed device should
be operating in the single-mode regime in order to use the
interference effects in their most pure form. When the second
mode comes into play the interference bands smear out and
the current control is expected to be less efficient. In this
regard, the dispersion relations of the nanoribbons constituting
the device provide an important starting point because they
allow us to select the appropriate energy window where one
single mode is contributing to the transport. For the considered
nanoribbon width of about 15 nm such a window is of the
order of 40 meV (see the right panel of figures 2 and 4).
As the width w is increasing the window is shrinking while
its lower edge is approaching the Dirac point. On the other
hand, electronic transport through wider nanoribbons are less
affected by the edge disorder. These considerations should be
taken into account when designing and fabricating the real-
world device.
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7. Summary

In summary, we have proposed and studied a new quantum
interference device based on a graphene nanoring with 60◦
turns. Transport properties of the device are sensitive to the
type of edges (zigzag or armchair). The ring comprised of
nanoribbons with armchair edges and quadratic dispersion with
a gap were found to be the most advantageous for electronic
transport because the transmission pattern presents wide bands
of high electronic transmittance in this case. We showed
that the current flow through the device can be controlled by
the side-gate voltage. Such a voltage changes the relative
phase of the electron wavefunction in the two arms of the
ring, resulting in constructive or destructive interferences at
the drain. Consequently, the current flow can be modulated
efficiently without applying a magnetic field, so the device
operates as a quantum interference effect transistor. We
demonstrated that the predicted transistor effect is robust
under moderate edge disorder. We conclude therefore that
our proposed device is a promising candidate for real-world
technological applications.
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