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We analyze numerically the spatial extent of eigenfunctions of a one-dimensional Anderson
model with ronrandom long-range hopping, which is assumed to fall proportionally to a
power u of the distance between sites m and n (J,, ~ |m — n|™). We show that at pr < 3/2
the eigenstates at the top of the band undergo the Anderson localization—delocalization
transition, while at u > 3/2 all the states are localized.
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1 INTRODUCTION

After the advent of the one-parameter scaling theory [1], it was conjectured
that localization effects [2] in low-dimensional systems are more dramatic
than in bulk materials, in the sense that all eigenstates are exponentially
localized and that the localization—delocalization transition no longer exists
in the thermodynamic limit. This conjecture has been rigorously proven
in one-dimensional (1D) tight-binding models with both uncorrelated

¥ On leave from Vavilov State Optical Institute, Saint-Petersburg, Russia.

ISSN 1058-7268 print; ISSN 1029-2500 online © 2002 Taylor & Francis Ltd
DOT: 10.1080/1058726021000044901



290 S. LOPEZ et dl.

diagonal disorder and nonrandom short-range hopping (see Ref. [3] for
a comprehensive review). However, correlations in the disorder or
long-range hopping are often found in different physical systems (e.g.
Frenkel excitons).

As it has been suggested recently [4], extended states may appear at the
top of the band in 1D disordered systems due to nonrandom long-range
hopping. In this contribution, we report further progress along these
lines. In particular, we deal with multifractal properties of the eigenfunc-
tions close to the localization—delocalization transition and estimate the
critical value of disorder for the transition to occur.

2 ANDERSON MODEL WITH NONRANDOM LONG-RANGE
HOPPING

We consider the 1D Anderson Hamiltonian with diagonal disorder and non-
random long-range hopping on a regular 1D lattice with N sites [4]

N N
H=7 eln)nl+ D Julmd(nl, M
n=1 1

m,n—

where |n) is the ket vector of a state with energy ¢, which is assumed to be
a stochastic variable, uncorrelated for different sites and uniformly distrib-
uted within an interval of width A. The hopping is chosen to be of the form
I =Jm —n|"* with 1 < u<3/2,J >0and ., =0.

The level spacing at the top of the band of the unperturbed system (with-
out disorder), E ~ JN!7# [4], decreases upon increasing the system size
slower than the strength of effective disorder (reduced by the quasi-particle
motion), A ~ A/+/N. Therefore, if the disorder is a perturbative magni-
tude for a given lattice size, it will remain perturbative even on increasing
the size. Consequently, the Hamiltonian supports extended states at this par-
ticular band edge, despite its 1D nature {4]. On the contrary, if the degree of
disorder A is large compared to the width of the unperturbed band, it will
localize all the states. Thus, a critical value of A should exist, at which the
system undergoes the localization—delocalization transition. At u > 3/2,
the level spacing JE decreases faster than the effective disorder o, and
therefore all the states become localized when N — oo.
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3 SCALING OF THE PARTICIPATION NUMBER

Here we provide further evidences of the above statement from a detailed
numerical study of the participation number of the normalized eigenstate
V) = 3, ¥, In), given by P, = [X0L, ¥, *T".

We take advantage of the Lanczos method [5], enabling one to calculate
a few eigenstates of the Hamiltonian (1) for rather large system sizes. We
have found that the participation number of the states close to the top of
the band scales proportional to N for a moderate disorder (of the order of
or smaller than the width of the unperturbed band, being ~ 10.J for the
sizes studied in the present work), thus revealing the extended nature of
these eigenstates. However, these eigenstates are localized for stronger dis-
order, as it is indeed the case for A = 40./, where the participation number
does not show any size scaling (see Fig. 1).

4 MULTFRACTALITY OF THE EIGENSTATES

The discussion in the preceeding paragraph makes it possible to conclude
that a localization—delocalization crossover should be observed upon
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FIGURE 1 Size scaling of the participation number of the uppermost eigenstate for y = 5/4
and different degrees of disorder. The participation number scales as N for A = 8] (extended
state) while remains constant for A = 4017 (localized state).
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increasing the degree of disorder. To monitor this transition, we have
assumed that the multifractal character of the eigenfunctions at the transi-
tion is one of the most salient features in the Anderson localization problem
(see Refs. [6,7] and references therein: they feature fluctuations on all
length scales). Consequently, strong fluctuations in the participation num-
ber close to the transition might be one of its clearest fingerprints. We
have undertaken the task of computing numerically the width of the distri-
bution function of the participation number as a function of the degree of
disorder. Figure 2 shows the results for a particular value of the exponent
i=>5/4. As it can be seen, the typical fluctuation of the participation
number, op, displays a strong enhancement around A = 11.J. From the
previous discussion, we argue that this value corresponds to the critical
degree of disorder for the transition to occur.

5 CONCLUDING REMARKS

The above value of the critical disorder has been obtained for a system of
finite length (N = 1000) with a particular value of the exponent (u = 5/4).
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FIGURE 2 Typical fluctuation of the participation number o, as a function of the degree of
disorder A for N = 1000. The curve comprises the average over 1000 realizations of the
disorder. The vertical arrow indicates the critical value at which the localization—delocalization
transition takes place.
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Due to the relatively slow decay of the hopping as a function of the distance
between sites, finite size effects are much more important than those found
in the standard Anderson problem with nearest-neighbor interactions. For
instance, the width of the unperturbed band is the natural energy scale
determining the value of the critical value of disorder. Within the standard
Anderson model this band width rapidly approaches the value 4d J (d being
the dimensionality of the lattice) upon increasing the system size. On the
contrary, it slowly converges towards its limiting value (>~ 10.6J for
N—o) in the case of long-range hopping. Consequently, the critical
value of disorder displays the same trend, slowly going up to the magnitude
corresponding to the infinite system.

Finally, we would like to mention that the above conclusions can easily
be generalized to two-dimensional disordered systems with long-range
hopping. In particular, the localization—delocalization transition occurs
whenever 2 < u < 3, but the critical value of the disorder strength
depends on the system size even stronger than in 1D geometries. Work
along these lines is now in progress.
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