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The dispersion relation for relativistic electrons in one-dimensional polyatomic crystals is derived by means of the 
transfer matrix technique. The interaction of the electron with the lattice is taken to be an array of nonlocal separable 
potentials arranged periodically. This model leads to exact results even for arbitrary finite-ranged potentials. The 
6-function limit is also obtained and the results are compared to results previously found on local 6-function potentials. 

1. Introduction 

The use of the Kron ig -Penney  model is often restricted to one-dimensional (1D) monatomic  
crystals (a single a tom in the unit cell). Only a few papers [1-4] deal with nonrelativistic electrons in 1D 
crystals with basis (several atoms in the unit cell). In these papers,  the electron interaction with the 
lattice is taken to be an array of 6-function potentials, arranged periodically. Recently,  Dominguez-  
A d a m e  [5] has provided a generalization of the Kron ig-Penney  model for relativistic electrons in 1D 
polyatomic crystals, the so-called generalized D i r ac -Kron ig -Penney  model. The advantage of using 
6-function potentials is the existence of exact solutions in both nonrelativistic and relativistic 
f rameworks.  Nevertheless,  there exist limitations to the use of 6-function potentials to replace actual 
atomic potentials,  as pointed out by Erd6s and Herndon  [6]. This is easily understood considering that a 
zero-ranged potential  is a crude picture of the electron interaction with atoms in a solid. 

The aim of this paper  is to present an alternative way to describe the dynamics of relativistic 
electrons in 1D polyatomic crystals. The reduction to nonrelativistic electrons may be obtained in a 
similar way. The model is not only exactly solvable but also it is not restricted to zero-ranged potentials. 
The starting point is the possibility of finding a nonlocal separable potential,  or a sum of nonlocal 
separable potentials,  which can reproduce any set of given atomic states [7, 8]. In one dimension, a 
single-site nonlocal separable potential is constructed as 

V~b : Av(x) j dx'  v(x ' )~b(x ') ,  (1) 

where A is the coupling constant and v(x) is a shape function of finite range. The Dirac equation is 
exactly solvable for such a potential  in a rather simple way [9], without requiring the 6-function limit of 
v(x). A periodic chain of potentials of the form (1) has been considered by Glasser [10] to study the 
dynamics of Dirac particles in 1D monatomic  crystals. The dispersion relation has been found by 
solving a 2 x 2 determinant .  The t reatment  given by Glasser may be applied to polyatomic crystals with 
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M different atoms in the unit cell, but in this case the dispersion relation is calculated through a 
2M × 2M determinant. To avoid this difficulty we have found it most appropriate to use the transfer 
matrix method to solve the 1D Dirac equation (h = c = 1) 

( % p  + ~rzm - E)q, = -V4 , ,  (2) 
where the nonlocal potential is assumed to be 

ac 

zc m 

Vq j =  Z E A~ v(x  - x~, - n L  ) j dx '  v (x '  - x ,  - n L  )qJ(x') , (3) 

in the position representation. Here ~r denotes the usual Pauli matrix acting upon the two-component 
wave function ~. Each atom is placed at the position x~, (x 0 = 0 <  x I < x 2 • • • < x M < XM+ l = L )  of the 
unit cell [0, L]. Note that we have taken the same shape function v(x)  for all the atoms, although 
different shape functions could also be considered. We shall deal with even v(x)  functions. For 
simplicity we suppose that v(x)  vanishes beyond some finite distance a (the exact value of a is not a 
crucial parameter of the model) and that m i n l x , - X , _ l [  > 2 a  (nonoverlapping potentials). These 
assumptions are not too restrictive to simulate actual crystal potentials because electrons behave as 
nearly free particles in the region between atoms [11]. 

2. Transfer matrix for the single-site potential 

Firstly, we calculate the transfer matrix for the Dirac equation (2) with a single-site potential (1). 
The solution of the equation 

(o~p + o-xm - E)~0(x) = -Av(x)  _I dx'  o (x ' )0(x ' )  (4) 

may be written as 

( 1 i + A _  _ ~ - ,  - A d x '  G ( x , x ' ;  E ) v ( x ' ) x ,  

where q = (E 2 - m2) 1/2, ~ = [(E + m ) / ( E  - m)] 1/2, A+ are constants, and 

X =  X2 

The Green function for E 2 >  rn 2 is given by 

i ( ~ s g n ( x -  x ' ) ,  
G(x ,  x ' ;  E )  = ~ e 'qlx x'l sgn( x ' )  s c-I  ]"  

Inserting (5) in (6) we obtain the following relations 

1 
A+ - 2v(q) [(1 + iAJ (q )~ /2 )X1  +- (~  + i A J ( q ) / 2 ) X 2 ] ,  

(5) 

(6) 

(7) 

(8) 
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where 

J(q)= fdx f dx'v(x)v(xt)e iqlx-x'l, 

v( q) = f dx v(x) e iqx . 

(9a) 

(9b) 

We have used that v (x )=  v ( - x ) ,  so double-integrals involving off-diagonal elements of G(x, x';  E)  
vanish. 

On the other hand, the wave function for [xl > a must be a combination of plane waves. From (5) 
we find 

( )  [ i 
t O ( x ) : A +  E l ,  eiqx+ A _ - ~  A v ( q ) ( ~ X , - ~ 2 )  _ ~ - ,  , x < a  

_i  
(10) 

Considering a normalized plane wave incident from the left (A+ 
transmission t and reflection r amplitudes. Using (8) the result is 

1 - A E I ( q ) / q  + AZ(R2(q) + 12(q))/4 
t=  

1 + i A E J ( q ) / q  - A2j2(q)/4 ' 

- i A m R ( q ) / q  
r =  

1 + i A E J ( q ) / q -  A2j2(q)/4 ' 

= I , A  = 0), one can calculate the 

(11a) 

( lb) 

with the notation R(q)  = Re(J (q) )  and I (q)  = Im(J(q)) .  It is an easy matter  to check that the unitarity 
condition It] 2 + Irl'- = 1 is fulfilled. 

The transfer matrix R for the single-site potential relates the wave function on the right to the wave 
function on the left. Here R may be written as 

R = , , (12) 

where a = l / t*  and fl = r/t so that det(R) = 1. For a nonlocal separable potential with strength A. and 
centered at any arbitrary point x . ,  the transfer matrix elements transform according to a . - -*  ~ .  and 
fi~. --> ft. e x p ( - 2 i q x .  ). Therefore  

1 
a .  = ~ [D-. - i A u R ( q ) ( E / q  - Aul(q) ] ,  (13a) 

- i  
[3 = ~ [A m R ( q ) / q ]  e x p ( - 2 i q x . )  (13b) 

D .  

where we have defined the real parameters 

2 2 D 2 : 1 - A~,EI(q)/q + 1A. [ I  (q) -+ R Z ( q ) l  . (14) 
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3. Transfer matrix for the unit cell 

The potential in the unit cell, 

VO = ~ A~ ,v (x -xu)  dx' v ( x ' - x u ) l p ( x '  ) , (15) 
p - = l  - ~  

is a superposition of non-overlapping single-site potentials. Therefore, the transfer matrix for the unit 
cell 

TM:(AM.  M BBM ) (16) 

may be obtained as a matrix product 

TM=RMRM I ' " R 1 ,  (17) 

where the matrix elements of each R~, are given by (13). Let TM_ ~ be the transfer matrix for the first 
M - 1 single-site potentials, i.e. the unit cell except the last atom. Hence we can write 

T M : R M T M _  1 , (18) 

and then we find the recurrence relation 

A M = (a M + a M ,[3M/[3M_,)AM_ , -- ([3M/[3M_,)AM_2, (19) 

with the initial conditions A 0 = 1 and A~ = a~. An analogous equation can be stated for B M. This 
recurrence relation may be transformed into two coupled recurrence relations for the real and 
imaginary parts of the As, only involving real coefficients. 

4. Dispersion relation in polyatomic crystals 

The polyatomic crystal we consider is a periodic repetition of the unit cell, so the lattice potential is 
a periodic array of potentials given by (15). The Bloch theorem provides a link between the values of 
the electronic wave function at x = 0 and x = L. This theorem ensures that ~b(L)= exp(ikL)~b(0), 
where k is the crystal momentum. We have assumed that the electron is nearly free in the vicinity of the 
unit cell boundaries. Therefore 

¢p(0) : QM(0)~0,  (20a) 

~b( L ) = QM( L )C~L , (20b) 

where M(x)= diag(e iqX, e iqx) and Q is an energy-dependent matrix given by 

Q ;  , _ ~  , 
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and 4~o, ~bL are constant spinors satisfying 4~c = TM4~o. Thus we obtain 

[eikCM(0) - M ( L )  TM]4, o = O. 

Requiring the determinant  to vanish for nontrivial solutions one gets 

cos k L  = Re(AM) cos q L  - Im(A M) sin q L  . 

(22) 

(23) 

Real and imaginary parts of A~4 are recursively calculated from (19). Real values of k, obtained by the 
usual search methods, give us the dispersion relation E ( k )  and consequently the band structure of the 
polyatomic crystal. 

If only a few atoms are placed in the unit cell of the crystal, the dispersion law (23) can be written in 
a more simplified form. For monatomic crystals we have A~ = al so that 

D~ cos k L  = D ~ cos q L  + AjR(  q ) ( E / q  - A,l(  q ) / 2 )  sin qL  . (24) 

For two different atoms in the unit cell A 2 = O~10/2 q - ~ 3 / ~  2. Hence 

D ~ D + cos k L  = D ~ D ~ cos q L  + A~A2R2( q)(m2/q 2 - ( E / q  - AII( q) / Z ) ( E / q  - A2I( q) /2))  cos q L  

+ R ( q ) ( A z D ~ ( E / q  - A , I ( q ) / 2 ) +  A 1 D 2 ( E / q  - A 2 I ( q ) / 2 ) ) s i n  q L  

+ 2A1A2(mZ/q2)R(q)  sin q(x  2 - x l )  sin q ( L  - x 2 + x l ) .  (25) 

5. 8 - funct ion  l imit  

In the last sections we consider arbitrary even functions v(x)  in (3). To compare our results with that 
obtained by solving the Dirac equation for the local potential [5] 

M 

V(x)  = ~ A~,6(x - x,, - n L ) ,  (26) 
n = - ~  t t= l  

we take the limit v(x)---~ 6(x)  in the above equations. In such a case, J (q ) - - -1 ,  and then the matrix 
elements (13) reduce to 

E 
~ ,  = cos 0 - i -- sin 0~ , (27a) 

q 

m 
/3,, = - i  - -  sin 0~ exp(-2 iqx~, ) ,  (27b) 

q 

2 where sin 0 n = A~,/(1 + A~,/4). For M = 1 the dispersion relation is simply written as 

cos k L  = cos 0~ cos q L  + ( E / q )  sin 01 sin qL  , (28) 

and for M = 2 we obtain 

cos k L  = cos(01 + 02) cos q L  + ( E / q )  sin(01 + 02) sin qL  

+ 2(re~q) 2 sin 01 sin 02 sin q(x  2 - x l )  sin q ( L  - x 2 + xt)  . (29) 
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As we mentioned above, it is instructive to compare our results as v(x)---~ 6(x) with those obtained 
for the Dirac equation with local 6-function potentials. This problem has been recently solved by 
Dominguez-Adame [5] using a transfer matrix technique. For single-site potentials of the form 
A~ 6(x- x,) he has shown that the transfer matrix elements are given by 

E 
ce = cos A~ - i -- sin A~, , (30a) 

q 

m 
/3~, = - i  - -  sin A~, exp(-2iqx~,).  (30b) 

q 

We notice that these matrix elements are different to those given in (27). Both results only agree in the 
weak coupling limit (A ~ 1). This inconsistency comes from the fact that a relativistic, local 6-function 
potential is not the limiting case of a single nonlocal separable potential, as pointed out by Calkin et al. 
[12]. Since local 6-function potentials present ambiguities when introduced in the Dirac equation at the 
outset (ref. [13] and references therein), nonlocal separable potentials are the natural extension to 
obtain solvable band models. At low energies and weak couplings, both nonlocal and local 6-function 
potentials yield the same dispersion relation, and the latter coincides with that obtained by solving the 
Schr6dinger equation for the potential (3), reported in refs. [1-4]. In that limit situation the matrix 
elements (27) and (30) reduce to 

m 
c~ = 1 - i  ~7 A . ,  (31a) 

m 
/3  = - i  ~7 A~, exp(-2iq 'x~,) ,  (31b) 

where q ' =  [ 2 m ( E -  m)] ~/z, in agreement with the nonrelativistic results of Erd6s and Herndon [6]. Let 
us comment that the Dirac-Kronig-Penney model cannot be generalized to three dimensions using 
local 6-function potentials [14]. Therefore, nonlocal separable potentials provide a simple way to obtain 
solvable equations for relativistic band structures in three dimensions. 

6. Numerical  results and discussions 

In this section we discuss some numerical results for relativistic particles in both monatomic and 
diatomic lattices. Results are compared with nonrelativistic predictions. In order to facilitate a direct 
comparison between nonrelativistic and relativistic energy values, we introduce the parameter e = 
E - rn for relativistic particles, whereas e will simply denote the energy of nonrelativistic particles. We 
use units such that m = 1 hereafter. For our numerical studies we have chosen the following shape 
function 

v(x)= l /2a,  ]x]<a, 

= O ,  Ixl > a. 

To avoid the profusion of free parameters we have taken a = 0.5. Values of the coupling constants range 
from 0.01 to 1. Since the single-site potentials are then repulsive for particles (and attractive for 
antiparticles) we only consider positive values of the parameter e. 

Figure 1 shows the dispersion relation e(k) for two different monatomic lattices with period L = ~r, 
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Fig. 1. Dispersion relation for nonrelativistic (dashed lines) and relativistic (solid lines) particles in a monatomic  lattice of  period 
L = ~ and coupling constant  (a) A =0 .1  and (b) A = 1. 

and A = 0.1 and A -- 1, respectively. We observe that gaps become wider and bandwidths narrower with 
increasing value of the coupling constant A, for both nonrelativistic and relativistic particles. The 
position of the bottom of the first allowed band is the same in the nonrelativistic and relativistic cases, 
so the first gap remains unchanged when relativity is considered. Nevertheless, the second gap is 
narrower for relativistic particles (see fig. 2). This result is in contrast to that obtained by Glasser and 
Davison [15] in dealing with the Dirac-Kronig-Penney model (a Dirac particle in a periodic array of 
6-function potentials), who found that all gaps are not affected by relativity, However, our results are 
in good agreement to that found by solving the wave equations for more realistic potentials like the 
Mathieu potential [16]. In this case, the gaps are also narrower for relativistic particles. 

We have found that the top of the first allowed band is 0.500 for nonrelativistic particles in 
monatomic lattices, no matter the value of the coupling constant. On the contrary, this energy gradually 
increases from 0.415 to 0.650 with increasing A in the case of relativistic particles. The width of the first 
allowed band is also found to be smaller for relativistic particles, in the case of relatively weak coupling, 
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Fig. 2. First gap for nonrelativistic and relativistic particles (short-dashed line) and second gap for nonrelativistic ( long-dashed 
line) and relativistic (solid line) particles in a monatomic  lattice of  period L = o ,  as a function of the coupling constant.  
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as seen in fig. 3. This shrinkage of the spectrum has also been observed in the periodic [15] as well as in 
the quasiperiodic [17] Dirac-Kronig-Penney models. It can be seen in fig. 3 that the allowed band is 
wider in the relativistic case for A larger than about 0.8. For large values of the coupling constant, 
nonrelativistic and relativistic bandwidths show a rather different behaviour. Nonrelativistic bandwidths 
diminish gradually as A increases, whereas relativistic bandwidths decrease up to a value of A = 1.5 and 
then increase with A. This fact may be qualitatively understood considering that an electrostatic-like 
potential with large, positive coupling constant strongly binds an antiparticle, so mixing of particle and 
antiparticle states will occur in that case. One cannot expect to observe this phenomenon in ordinary 
solids because it requires very high values of the coupling constant. However, it would be an 
appreciable effect in the nuclear model of McKellar and Stephenson [18], in which quarks are assumed 
to move in a one-dimensional periodic structure. 

Relativistic effects in diatomic lattices are rather similar to those discussed above. In particular, the 
shrinkage of the spectrum is observed when relativistic effects are considered, except that the first gap 
remains unchanged. The first gap as a function of the coupling constant is shown in fig. 4. As expected, 
the gap increases as A~ and A 2 increase. 

Concerning the band structure in one-dimensional binary alloys, Saxon and Hutner [19] proposed 
the following conjecture: "Forbidden energies which are common to a pure A lattice and a pure B 
lattice (with the same lattice period) will always be forbidden in any arrangement of A and B atoms in a 
substitutional solid solution". The proof of this conjecture for nonrelativistic electrons in the special 
case of 6-function potentials was given by Luttinger [20]. Relativistic generalizations of the Saxon- 
Hutner  conjecture has been discussed in refs. [21, 22]. Our numerical results suggest that the relativistic 
Saxon-Hutner  theorem is also valid for nonlocal potentials. In fig. 5 we show the allowed bands of two 
different monatomic lattices, with period L = 7r and coupling constants A = 0.3 and A = 0.8, along with 
the allowed bands of a diatomic lattice with A l = 0.3 and ~2 = 0 .8 ,  with a distance between nearest- 
neighbours L = ~r (period L = 2w). We notice that the prediction of the Saxon-Hutner  theorem is still 
valid in this case. 
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Fig.  3. W i d t h  of  the first a l l owed  b a n d  for nonre la t iv i s t i c  
( d a s h e d  l ine)  and  re la t iv is t ic  (sol id l ine)  par t ic les  in a 
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Fig. 4. Firs t  gap  for  nonre la t iv i s t i c  and  re la t iv is t ic  par t ic les  in 
a d i a t o m i c  la t t ice  of  pe r iod  L = ~r and  x 2 - x  1 = 1.1, as a 
func t ion  of  h. 2 for d i f fe ren t  va lues  of  )q. 
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Fig. 5. Comparison between allowed bands (hatched areas) and gaps of monatomic lattices with period L = ~ and coupling 
constants (a) A = 0.3 and (b) A = 0.8 with (c) the band structure of a diatomic lattice with period L = 2~, distance between 
nearest-neighbours x~ - x~ = ~r and coupling constants A~ = 0.3 and A2 = 0.8. Dashed lines indicate common forbidden energies. 
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