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Abstract

We propose a screened Coulomb potential leading to an exactly solvable one-dimensional Dirac equation. Unlike the
onc-dimensional Coulomb potential, the screened potential can support truly bound states because the Klein paradox is
absent, provided that the potential does not dive into the negative-energy continuum. The S-function limit of the potential
is considered in detail. In the conclusions we discuss possible applications of our results in different physical contexts.

The non-relativistic Schridinger equation for screened Coulomb potentials provides a useful description of
heavy quark physics [1]. In regards to lighter quarkonia, relativistic effects can be included in a non-perturbative
way by solving the Klein-Gordon equation [2]. Moreover, the solution of many other physical problems where
relativistic effects could play an important role (e.g. solid state physics [3]) are largely simplified using
screened potentials because singularities of form factors at the origin are smeared out. In this way, Banerjee and
Chakravorty [4] have investigated the scattering solutions of the Dirac equation for a short-ranged potential,
simulating the effects of a screened Coulomb-type interaction. On the other hand, Dominguez-Adame [5] has
studied relativistic effects on the bound states of the Hulthén potential, another kind of short-ranged potential
often used in molecular and solid state physics.

In many cases of interest, quantum mechanical equations for the three-dimensional screened potential cannot
be found analytically (see Refs. [6,7] and references therein). This is more dramatic when dealing with the
Dirac equation for some potentials {exponential, Hulthén, Yukawa, Morse), where the potential barrier due to
the spin of the particle does not allow us to find analytical solutions even for s states. On the other hand,
one-dimensional potentials can provide exact solutions to shed some light on the problem. Because of this, the
one-dimensional Dirac equation has been attracting much attention recently [8-11].

One of the most useful screened potentials is the Yukawa potential. It behaves like the Coulomb potential
close to the origin but decreases exponentially at large distances. The form factor for the Yukawa potential is
F(p) = (p*+a=2)~!, where a is the screening distance of the potential. In the theory of meson exchange, this
value is inversely proportional to the mass of the exchange particle. The one-dimensional potential presenting
the same form factor is the exponential potential V{x) = —(g/2a) exp(—|x|/a), where g denotes the coupling
constant. Close to the origin, it becomes of the form V(x) ~ —g/2a + (g/2a*)|x|. Besides the constant
background potential —g/2a, this limit is the solution of the Poisson equation for a point charge in a one-
dimensional space. On the other hand, far from the origin |x| > & it vanishes exponentially. Hence this potential
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could be regarded as a screened Coulomb potential in one dimension. In the present paper we obtain the steady
state sclutions of the Dirac equation (A=c=1)

(iaf%—i—B[E—V(x)] —m)qb(x)=0, (n

for an electrostatic-like (the time component of a four Lorentz vector) screened Coulomb potential. Here ¢
denotes the two-component particle wave function

_ [ (x)
b(x) = (4’2(16))' 2)

For convenience, we set the following representation for the Dirac matrices,

() 8=(0)

Therefore, Eq. (1} reads as follows,

d
—i— B+ e ) da(x) = méy (), (4a)
dx 2a
. d & —xja
i—+E+ e d1{x) =mdo(x), (4b)
dx 2a
for x > 0 and
. d g x/a
—i— + E+ —e"" | da(x) =mei(x), (5a)
dx 2a
. d g x/a
i— + E+ = et (x) = mer(x), (5b)
dx 2a
for x < Q.
We will be concerned with bound state solutions. Hence, ¢¢(x) should decrease at infinity in a suitable way,
| ]‘im &1 (x) =I llim @(x)=0. (6)
X|—00 X|—c0

We start with the solution for positive values of x. Inserting (4b) in (4a) one obtains the following Schrédinger-
like equation for the upper component

d2 l —Xx/a : —zx/a
[@ﬁqz-k%(ﬂi—l—;)e /+(§%—) e 2/]¢);(x)=0, (7)

where x > 0 and ¢ = (m? — E2)!/2 are real for bound states. Solutions vanishing at infinity can be written
in terms of regular confluent hypergeometric functions M{«, 8;z). After using Eq. (4b), the particle wave
function for x > O is found to be

M(1+ qa—iEa, 1+ 2qa; —ige /) ) (8a)

- g — Lige—+/a
b(x) = Ay oxp(—qx — yige )([(E—iq)/m]M(qaiEa,1+2qa;—ige_x/“)

A, being an integration constant. To find the solution for negative x we can use the symmetry of the Dirac
equation. To be specific, replacing x, ¢ and ¢, in Egs. {4) by —x, ¢ and ¢, respectively, we obtain
Eqgs. (5), so the solution for x < 0 is readily written as
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Fig. 1. Ground state energy level for a particle of mass unity as a function of the coupling constant g for several values of the range of the
screened Coulomb potential,

(8b)

P(x) = A_exp(gx — jige™) ( (B~ iq) /mIM(ga~iEa, | +2ga; ~ige'l" ) ,

M(1 + ga— iEa, | + 2ga; —ige*/?)

with A_ an integration constant which, of course, is related to A, requiring the continuity of the wave function
at x =0,

Notice that ¢p(x) decreases exponentially as |x| — oo, being square-integrable and thus representing a truly
bound state. Therefore, the one-dimensional screened Coulomb potential we have introduced can actually bind
particles. This is not a trivial result in view of the fact that the Dirac equation for the one-dimensional Coulombic
coupling (linear electrostatic-like potential) equation only presents scattering states because electrostatic linearly
rising potentials polarize the vacuum and create electron—positron pairs, no matter how small the coupling
constant is [12-15]. This phenomenon is exactly analogous to the well-known Klein paradox.

The corresponding bound state levels are found by imposing the continuity of the wave function at the origin,
as we mentioned before. Using Eqgs. (8) and the Kummer transformation M (e, 8;z) =e* M(B — a, B, —2)
(see Ref. [16]) we get

(E— iq)2 _ M(ga+iEa, 1+ 2qa;ig)M(1+ ga— iEa, 1 + 2qa; —ig) 9

m "~ M(ga— iEa,1 + 2qa; —ig) M(1 + ga + iEa, 1 + 2qa;ig)’
[ntroducing the notation Ay = Ap(E, g) = arg[ M(k + ga + iEa, 1 4 2ga;ig)] where k£ =0, 1, we finally obtain
g=FEtan(A; — Ap) (10)

for the energy levels. This transcendental equation has to be solved by the usual search methods. It is worth men-
tioning the existence of an underlying symmetry that explains how the one-dimensional screened Coulomb po-
tential can bind particles or antiparticles. This is clearly seen taking into account that A, {—E, —g) = — A (E, g2),
so that using (10) the following symmetry is obtained,

E(g) =-E(-g). (11)

Hence, reversing the sign of the coupling constant, the opposite energy spectrum is reached. Therefore, we can
restrict ourselves to study only the case g > 0. Fig. 1 shows the ground state level for different values of the
coupling constant g and the range of the potential a for a particle with m = 1. As it should be expected, for a
given value of a the bound state becomes deeper on increasing the coupling constant g. On the other hand, for
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a fixed value of g, the bound state becomes shallower on increasing a because the range of the potential alsc
appears in the pre-exponential factor, and actually the effective minimum value of the potential is —g/2a.

Let us now discuss the limit of a very shori-ranged potential (¢ — 0). In such a case, V(x) approaches the
S-function limit of the form —g&(x). One way to solve the Dirac equation for a sharply peaked potential i
to find the solution for a square well (or barrier), and then allow the width to go down to zero while keepin;
the area of the well constant [17]. As we have already mentioned, the screened Coulomb potential with :
vanishing screening distance is an alternative way to study this limit. From the definition of A, it is clear tha
Ao =0 and A; =g as a — 0. Therefore, we find a single bound state for particles whose energy is given by the
relationship ¢ = Etan g. The same expression is obtained by solving the Dirac equation for any sharply peakex
potential [18,19], as it should be. The corresponding energy level is labelled a =0 in Fig. 1. It is seen that the
S-function potential can bind particles stronger than finite-ranged potentials.

Finally, we discuss briefly the physical contexts where our results may be of interest. On the one hand, it i
usually difficult to study the quantum dynamics of relativistic fermions under short-ranged interactions exactl;
and results must restore on numerical or perturbative solutions, as we mentioned above. One-dimensiona
potentials bring the opportunity to obtain exact results which are easily interpreted, while keeping the essentia
physics. On the other hand, our present results may also be useful in semiconductor physics in view of th
analogy existing between the Dirac equation and the two-band model Hamiltonians of semiconductors [20]. In
particular, in the study of nonparabolicity effects in 8-doped semiconductors, which can be described in practic:
by a potential analogous to the above-introduced screened Coulomb potential [21], one is faced with a simila
problem as the one we have solved in the present paper. Hence we believe that our work is beyond the forma
solution of the Dirac equation for a particular screened Coulomb potential and it should be of great interest it
a variety of physical situations.
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