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Abstract

We present a thorough study of transmission and localization properties of Fibonacci superlattices, both in flat band
conditions and subject to homogencous electric fields perpendicular to the layers. We use the transfer matrix formalism to
determine the transmission coefficient and the degree of localization of the electronic states. We find that the fragmentation
pattern of the electronic spectrum is strongly modified when the electric field is switched on, this effect being more
noticcable as the system length increases. We relatc those phenomena to field-induced localization of carriers in Fibonacci

superlattices.

PACS: 71.50.4t; 72.15.Rn; 73.20.Dx

1. Introduction

The fabrication of aperiodic semiconductor super-
Tattices (SLs), arranged according to the Fibonacci
[1] and Thue-Morse [2] sequecnces, has given
rise to a growing interest in their exotic electronic
and transport properties [3-12]. Theoretical studies
demonstrate that ideal aperiodic SLs should exhibit
a highly-fragmented and fractal-like clectronic spec-
trum [4,9-111. This self-similar spectrum is observ-
able even when unintentional impertections arising
during the growth process are considered [12]. The
clectronic states associated to this peculiar spectrum
are no longer Bloch states and also present fractal-
like properties [ 13,14], although they extend over the
entire sample, most important for subsequent appli-
cations in actual devices, these novel properties have

I E-mail: mario@valbuena fis.ucm.cs.
2 E-mail: adame@valbuena.fis.ucm.es.

been experimentally observed. For instance, photolu-
minescence excitation spectroscopy at low tempera-
ture reveals the exisience of a fragmented density of
states consistent with theoretical predictions [5].
Most devices work under hias conditions and, con-
sequently, a complete characterization of electronic
states in aperiodic SLs subject to an applied electric
field is indeed needed. In this way, it has been re-
cently demonstrated that time-dependent coherent os-
cillations of electronic wavepackets induced by the ho-
mogencous electric field (Bloch oscillations) are ab-
sent in these SLs [15]. This is to be compared with
periodic SLs, where Bloch oscillations have been pre-
dicted and detected in Ga,_ Al;As [16,17]. In this
paper we address the study of the energy spectrum
and transmission properties of Fibonacci SLs (FSLs)
subject to an applied electric field. We aim to obtain
an insight into the interaction of fractal-like electronic
states of FLSs with the external field, which clearly
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is more complex than in the case of periodic SLs. We
will focus our attention on the effects of this elec-
tric field on the fragmented spectrum. Moreover, we
will also discuss the competition between the long-
range order of the FSL and the localization effects of
the cxternal electric field. To be specific, we consider
the scattering problem of an electron impinging on a
quasi-one dimensional FSL. Transport properties for
different electron energies will be described by means
of the transmission coefficient since this magnitude is
directly related to the conductance of the sample. To
get an estimation of the degree of localization of the
clectronic statc as a function of energy, we will use
the inverse participation ratio (IPR) to be defined be-
low. These two magnitudes will be shown below to be
enough for our present purposes.

2. Model

We consider quantum-well based SLs with the same
barrier thickness b in the whole sample. The height
of the nth barrier with center at z, = na is given by
the conduction-band offset, z being the coordinate in
the growth direction and a > b the separation be-
tween neighbouring barriers. We will focus on elec-
tronic states close to the bandgap with k. = 0 and ne-
glect nonparabolicity effects hereafter, so that the Ben
Daniel-Duke Hamiltonian suffices to describe those
states. For the sake of simplicity, we consider FSLs
with narrow barriers, namely we assume strong cou-
pling between quantum wells, From a mathematical
point of view we require that # — 0 whereas the area
of the barrier remains unchanged (8-function limit).
Therefore, the envelope-functions for electronic states
satisfy the following time-independent Schriodinger
equation,

ﬁ2 dZ N
(_ﬁd_zz - vtz ) - er)w(z)

=Eyi(z}, (1)

where V,a is the strength of the §-function, N is the
number of barriers and F is the electric field. We take
the origin of electron energies at the conduction-band
edge in the quantum-wells. FSLs can be grown start-
ing from two different barriers with strengths V and
v/, arranged according to the Fibonacci sequence. The

Fibonacci sequence S, is generated by appending the
st — 2 sequence to the 1 — 1 one, i.e, Sy = Si—1 52,
where Sy = V/ and §; = V. Thus, finitc and self-
similar quasiperiodic SLs are obtained by n successive
applications of these rules containing N = F, barri-
ers arranged according V V' VV V' ... The Fibonacci
numbers are generated from the recurrence law F, =
Fy_1 + Fn_a, starting with Fp = F; = 1.

To proceed, we use the transfer-matrix method to
calculate the transmission coefficient, in a similar fash-
jon to the case of periodic SLs [18]. We define the
length £ = £(F) = (#/2meF)', the dimension-
less parameter A = A(F E) = (2m/12¢2F?)1/E, and
the dimensionless variable y = y(z, FE) = ${A +
z/£)*/2, in order to obtain the solution of (1) in terms
of the Hankel tunctions of first and second kind,

Uu(2) = Any' PHUN () + By PHI ().

Xno] < X < Xp, (2)

where the constants A, and B, are to be determined
by the boundary conditions. The coefficients in the
free-field regions (x < xg and x > xy) are related
through the transfer matrix Ty as follows,

i
A A A
(G)-m(i)=TIm(z)

_ 14 anfn/in a'ngn/in
My = ( —aghnfin 1— anfn/i") 4

is the site transfer matrix and for brevity we
have defined @, = (2méVya/h?)(3ya/7) 13 with
vo = y(na.FBE), fu = HROVHD ()

HODNHZ (00, & = HpOVH ), by =
[H2O()]1® and iy = [H3(»)]?. The total
transfer matrix Ty connects the amplitudes of plane
waves in the free-field regions and the transmission
coefficient is then determined from the relationship
7= |det(Tw) / (Tw) 22|

As mentioned Section 1, we use the IPR to deter-
mine the degree of localization of the wave function
for different incoming energies. The amplitude distri-
bution of the electronic states can be characterized by
the moments associated to the measure in the system
defined by us (in our case the probability of finding
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Fig. 1. Transmission coefficient as a function of the electron en-
ergy in periodic (dashed ling) and Fibonacci superlattices (solid
line) under flat band conditions. The number of barricrs is
N = Fj3 =377 in both cases.

the electron at a given point of the lattice). We then
use the second moment of this distribution, which is
nothing but the so-called IPR, defined as follows,

N 4
IPR = ZNn:] ‘wﬂ (na) { )
[2 51 [¥n(na}|?]?

The IPR is usually used to evaluate the degree of lo-
calization of electronic states. Delocalized states arc
expected to present small IPR, of order of N™1, while
localized states have larger IPR.

(5)

3. Results and discussions

As typical values of physical parameters we lake
V =25meV, V' = 28meV and a = 10A. To simplify
the numerical analysis and to facilitate direct compari-
son with previcus results in periodic SLs [ 18], we de-
fine two dimensionless quantities. We then introduce
the reduced energy & = £/V and the reduced electric
field £ = ¢Fa/V. In addition, we focus our attention
on the first allowed miniband of the SL, which ranges
from & = 0.9 to & = 14.2 in the pericdic SL with our
chosen parameters.

Fig. 1 collects our results on transmission in both
periodic and Fibonacci SLs with N = Fi; = 377 un-
der flat band conditions. Results demonstrate that the
miniband structure is changed when quasiperiodicity
is introduced in the SL. Nolice the occurrence of gaps
within the allowed miniband, which are absent in the
periadic SL. This phenomenon is by now well under-
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Fig. 2. Transmission coefficient as a function of the clectron energy
in periodic (dashed lines) and Fibonacci {solid lines) SLs with
(a) ¥ =144 and (b} N = 377 barriers. The applied electric field
is £ = 0.005 in all cases. Inset: transmission coefficient for the
FSL with N = Fj3 = 377 for F =001

stood (sec Ref. [9] and relerences therein), and is
due to the reduction of the resonant coupling between
neighbouring quantum wells. We should also mention
that this picture does not change very much on in-
creasing the SL length due to the so-called asymptotic
stability [9], i.e. the global properties can be obtained
in practice by considering very short approximants to
the FSL, whereas increasing the system length leads
to changing only finer details.

The above scenario under flat band conditions is no
longer valid when moderate electric fields are applied.
Fig. 2 shows the results when F = 0.005 for both pe-
riodic and Fibonacci SLs with different lengths. In the
case of periodic SL, only minor differences can be de-
tected on increasing the length (see Figs. 2a and 2b),
besides a decrease of the upper miniband-edge. On
the contrary, marked ditferences appear in the case of
FSLs when increasing the length when an applied elec-
tric field is applied. By comparing Figs. 2a and 2b, we
observe a strong reduction of transmission properties,
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Fig. 3. Ratio of the IPR in FSL and in periodic SL as a function
of the electron energy with N = F|; = 144 (dashed ling} and

N = F13 = 377 (solid line) barmers. The applied electric field is
F =0.005 in both cases.

especially at the lower miniband-edge, where several
transmission peaks completely disappear. Thus we are
led to the conclusion that the interplay between the
long-range order of FSLs and the localization proper-
ties of the electric field effects 18 more complex than in
periodic SLs. These differences clearly arise from the
very different nature of the eigenstates in both types
of SLs [14]. In particular, we deduce from the above
results that the localization properties of the electric
field are more pronounced in the case of FSLs. On in-
creasing the electric field the miniband shrinks, as can
be scen in the inset of Fig. 2b, especially at low ener-
gies. Further increase of the electric field leads to the
vanishing of the miniband, as occurs in periodic SLs
{18].

To obtain {urther confirmation of the above state-
ment we have studied the degree of localization of
wave functions. In order to facilitate comparison be-
tween the localization for a flat band and subject to
an applied electric field, we define a new parameter R
as the ratio of the IPR of the FSL and the IPR of the
periodic SL at the same values of the energy, electric
field and system length. Results are collected in Fig. 3
for N = F|| = 144, For a flat band the value of the
parameter R fluctuates around unity, as can be seen in
Fig. 3. This implics that the degree of localization is
similar in both kinds of SL. This agrees with previ-
ous observations that electronic states spread over the
entire Fibonacci system, although the nature of those
states is completely different from those in periodic
systems [ 14 |. Howcever, as soon as the electric field is

applicd, electrons are much more localized in the FSL
than in the periodic SL., as the dramatic increasc of
the parameter R shown in Fig. 3 demonstrates. Notice
that the peaks of R correspond to the gaps revealed
in the transmission coefficient. This observation re-
inforces our claim that the localization effects of the
electric field are stronger in FSL.

4. Conclusion

In this paper we have studied the transmission prop-
ertics of clectrons in Fibonacci semiconductor super-
lattices subject to an electric ficld. Results have been
compared to those obtained in periodic superlattices
with the same parameters. By tuking the approxima-
tion of narrow barriers, which is of interest when res-
onant coupling between neighbouring barriers takes
place and consequently minibands arise, we have been
able to obtain a closed cxpression for the transmis-
sion coefficient within the transfer matrix formalism.
In addition, the same approach allows us to discuss the
degree of localization of wave funclions by means of
the inverse participation ratio. We have found that for
a flat band small gaps appear within the lower mini-
band as scon as quasiperiodicity is introduced in the
sample. However, the Fibonacci SL still presents good
transmission properties, which is consistent with the
fact that electronic states spread over the entire sam-
ple in the absence of de voltage. On the contrary, dra-
matic changes occur whenever the de field is switched
on. In particular, we have found a strong reduction of
the transmission properties, this reduction being more
significant as the length of the system increases. The
IPR confirms these results and points out that elec-
tronic states are much more localized in Fibonacci SLs
than in periodic ones under the same bias conditions.
For large enough electric fields one could expect that
the fragmented pattern of the clectronic spectrum will
he severcly modified. We believe that this result is
very important from a practical point of view since it
demonstrates that changes in the electronic structure
should be taken into account when samples are driven
by a dc field.
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