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Non-local separable solutions of two interacting particles in a harmonic trap
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We calculate the energy levels of two particles trapped in a harmonic potential. The actual two-body
potential, assumed to be spherically symmetric, is replaced by a projective operator (non-local separable
potential) to determine the energy levels in a closed form. This approach overcomes the limitations of the
regularized Fermi pseudopotential when the characteristic length of the two-body interaction potential is
of the order of the size of the harmonic trap. In addition, we recover the results obtained with the Fermi
pseudopotential when the length of the interaction is much smaller than the size of the trap.

© 2010 Elsevier B.V. All rights reserved.
1. Introduction

The rapid development of experimental techniques in the field
of ultra-cold atoms has led to a renewed interest in the two-body
problem, especially if the interacting atoms are subjected also to
confinement potentials. In this context, Stöferle et al. studied two
trapped 40K atoms in an optical lattice. They tuned the atom–atom
interaction potential using a Feshbach resonance to form diatomic
molecules from fermionic atoms [1]. The diatomic molecules were
created in a deep optical lattice, when the tunneling between in-
dividual wells is suppressed and the three-dimensional (3D) con-
finement potential can be regarded as a harmonic trap.

The problem of two cold atoms in a 3D harmonic trap was ear-
lier considered theoretically in Ref. [2]. In this work, the actual
atom–atom interaction potential was replaced by a zero-range po-
tential [3], known as regularized Fermi pseudopotential. However,
as the size of the harmonic trap decreases, it is apparent that the
details of the interaction potential between atoms become more
important. Therefore, atomic collisions in narrow harmonic traps
are not expected to be accurately described by a zero-range po-
tential. The lack of accuracy will appear when the range of the
atom–atom interaction potential is comparable to the size of the
harmonic trap.

The aim of this work is to develop a suitable approximation
of the interaction potential to describe two-body collisions under
strong confinement conditions. This study has two main goals. In
the first place, we look for a replacement of the actual interaction
potential by a non-local potential, while keeping the computa-
tional effort to a minimum. In other terms, we introduce a solvable
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model of the two-body problem in a 3D harmonic trap that al-
lows us to obtain the energy levels in a closed form. In the second
place, the results obtained with the regularized Fermi pseudopo-
tential should be recovered when the size of the harmonic trap is
much larger than the range of the two-body potential.

2. The zero-range pseudopotential

Consider two particles of mass M trapped in a 3D harmonic
potential of characteristic frequency ω. After separating off the
center-of-mass degree of freedom, the Hamiltonian for the relative
motion is

Hrel = − h̄2

2μ
∇2 + 1

2
μω2r2 + V (r) ≡ H0 + V (r), (1)

where μ = M/2 is the reduced mass, r = r1 − r2 is the rela-
tive coordinate and V (r) is the interaction potential, assumed to
be spherically symmetric hereafter. The actual interaction poten-
tial is often replaced by a regularized Fermi pseudopotential of the
form [2–5]

V (r)ψ(r) −→ h̄2

2μ
4πasδ(r)

∂

∂r

[
rψ(r)

]
, (2)

where as is the s-wave scattering length.
The interaction energy E of the two particles can be calculated

using the Green function for the 3D harmonic oscillator

(H0 − E)G
(
r, r′; E

) = δ
(
r − r′), (3)

from which the corresponding eigenfunction is obtained as follows

ψ(r) = −4πasG(r,0; E)
∂

′
[
r′ψ

(
r′)]

r′=0. (4)

∂r
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The consistency of Eq. (4) leads to an implicit equation for the
interaction energy

1 = −4πas
h̄2

2μ

∂

∂r

[
rG(r,0; E)

]
r=0. (5)

The Green function associated to the 3D harmonic oscillator is
well known [6]

G
(
r, r′; E

)
= − 1

h̄ω

(
μω

π h̄

)3/2

exp

(
− r2 + r′2

2L2

) 1∫
0

z1/2−ε
(
1 − z2)−3/2

× exp

(
2r · r′z − (r2 + r′2)z2

L2(1 − z2)

)
dz, (6)

where L = √
h̄/μω is the size of the harmonic trap and ε = E/h̄ω.

Inserting (6) in (5) and after a lengthly but straightforward algebra
one gets

L

as
= 2

�(3/4 − ε/2)

�(1/4 − ε/2)
, (7)

�(z) being the Gamma function. This result is in agreement to that
obtained earlier in Ref. [2].

3. Finite-range interactions

One way to obtain a solvable model when the two particles are
subjected to a finite-range interaction is to start with a non-local
separable potential (NLSP), which could be a reasonable approxi-
mation to the local potential. In this case the resulting equation
can be exactly solved without tedious and elaborated calculations.
What is more important, it is always possible to find an NLSP (or a
sum of them) able to reproduce any set of given quantum states [7]
and, consequently, there is no theoretical limitation to the numer-
ical accuracy with which physical results can be obtained. NLSPs
have proved useful in the study of few-body problems in nuclear
and condensed matter physics [8–12].

The NLSP method replaces V (r) in (1) by a projective operator
of the form

V (r)ψ(r) → −λh̄2

2μ
u(r)

∫
d3r′ u

(
r′)ψ(

r′) (8)

where we set λ = ±1 hereafter without loss of generality, namely
the strength of the potential is embodied in the shape function
u(r).

The Schrödinger equation for the potential (8) reduces to an
algebraic equation in momentum space (see, e.g., Ref. [13]). There-
fore, the NLSP method allows all magnitudes of interest, such as
resonance energy, phase shift or bound state energy, to be ex-
pressed in a closed form. In particular, the s-wave scattering phase
shift δ0(k) satisfies the equation [9]

k cot δ0(k) = 1

4πλ|̃u(k)|2
[

1 + 2λ

π
P

∫
d3q

|̃u(q)|2
k2 − q2

]
, (9)

where P denotes the principal value and

ũ(k) = 1

4π

∫
d3r eik·ru(r) (10)

is the Fourier transform of the shape function.

3.1. Yamaguchi NLSP

The Yamaguchi NLSP, u(r) = (g/r)exp(−r/a), was introduced
to describe nucleon–nucleon interaction in nuclear physics [14].
Later, it was also applied to describe Wannier excitons in quan-
tum dots [15]. The scattering length and the effective range of the
potential depends on the parameter a. From Eq. (9) we get

k cot δ0(k) = − 1

2a
+ (1 + k2a2)2

ξa
, (11)

where ξ = 4πλg2a3. Taking into account that at low energy
k cot δ0(k) � −1/as + (1/2)r0k2, where r0 is the effective range of
the interaction potential, one gets

as = a

(
1

2
− 1

ξ

)−1

, r0 = 4a

ξ
. (12)

When λ is positive the NLSP supports a bound state if ξ > 2,
i.e. as > 0. The unnormalized eigenfunction is

ψ0(r) =
⎧⎨
⎩

1

r

(
e−k0r − e−r/a), k0 �= a−1,

e−r/a, k0 = a−1,

(13)

and the corresponding energy is E0 = −h̄2k2
0/2μ, where k0 is given

by

k0 = 1

a
[√ξ/2 − 1]1/2. (14)

3.2. δ-shell NLSP

As a second working example of NLSP we consider the δ-shell,
u(r) = gδ(r − a) [15]. In this case, from Eq. (9) we obtain

k cot δ0(k) = −k cot ka + k2a

ξ sin2 ka
, (15)

whose limit at low energy leads to

as = a

(
1 − 1

ξ

)−1

, r0 = 2

3
a

(
1 + 1

ξ

)
. (16)

The δ-shell NLSP supports a bound state when λ is positive and
ξ > 1 (as > 0). In this case the unnormalized eigenfunction is

ψ0(r) = 1

r

[
e−k0|r−a| − e−k0(r+a)

]
, (17)

where k0 is the root of the transcendent equation

1 = 1 − e−2k0a

2k0a
ξ, (18)

and the energy of the bound state is E0 = −h̄2k2
0/2μ.

4. Two particles in a harmonic trap

The collision properties of the two particles whose interaction
is described by a NLSP are strongly modified when they are placed
in a harmonic trap. The solution of the Schrödinger equation for
the relative motion can be expressed as

ψ(r) = − h̄2λ

2μ

∫
d3r′ G

(
r, r′; E

)
u
(
r′)I, (19)

with

I =
∫

d3r u(r)ψ(r), (20)

where the Green function is given by (6). After inserting (19)
into (20) and performing the angular integration we obtain the
following equation for the energy of the relative motion

μ
2

= −
∫ ∫

dr dr′ (rr′)2 G
(
r, r′; E

)
u(r)u

(
r′), (21)
2πλh̄
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Fig. 1. a) Lowest energy level in the case of the Yamaguchi NLSP, in units of h̄ω, as a function of the scattering length, expressed in units of L, for different values of the
parameter a. b) Lowest energy level as a function of a/L for as/L = 60.

Fig. 2. a) Lowest energy level in the case of the δ-shell NLSP, in units of h̄ω, as a function of the scattering length, expressed in units of L, for different values of the
parameter a. b) Lowest energy level as a function of a/L when as → ∞. The solid line in the inset corresponds to the energy obtained from Eq. (25).
where the radial Green function is given by [16]

G
(
r, r′; E

) = �(3/4 − ε/2)

�(3/2)L3h̄ω
exp

(
− r2 + r′2

2L2

)
× M

(
3/4 − ε/2,3/2, r2

</L2)
× U

(
3/4 − ε/2,3/2, r2

>/L2), (22)

M and U being the confluent hypergeometric functions [17]. Here
r> and r< denotes the largest and the smallest value of the pair
(r, r′), respectively.

4.1. Yamaguchi NLSP

When u(r) is the Yamaguchi potential, the integration in (21)
cannot be expressed in a closed form. However, it can be obtained
easily by numerical methods since both the Green function and the
Yamaguchi potential fall off rapidly with the distance. In addition,
using the asymptotic limits [17]

M(α,3/2, z) � 1,

U (α,3/2, z) �
√

π/z

�(α)
− 2

√
π

�(α − 1/2)
, (23)

when z → 0+ we recover the result obtained with the zero-range
pseudopotential (7) for a = 0. Thus, we come to the conclusion
that the low-energy scattering properties of the regularized pseu-
dopotential (7) and those of the Yamaguchi NLSP when a → 0 are
the same.
Fig. 1(a) depicts the dependence of the lowest energy level on
the positive scattering length as > 0 for different values of the
parameter a, in the case of the Yamaguchi NLSP. Energy is mea-
sured in units of h̄ω and length is expressed in units of L. We
observe that the curves shift to the high scattering length side of
the plot on increasing the value of a/L. A more detailed inspec-
tion of the numerical solution of Eq. (21) reveals that the lowest
energy level increases smoothly as a function of the parameter a
when as → ∞ (weakly interacting particles) and approaches the
limiting value E = (3/2)h̄ω. This is shown in Fig. 1(b), where we
have taken as/L = 60 to solve Eq. (21) numerically, but we have
checked that the results remain unchanged within the numerical
uncertainty when as/L = 70.

4.2. δ-shell NLSP

In the case of the δ-shell, we arrive at the following equation
for the interaction energy from Eq. (21)

L

as
= L

a
− �(3/4 − ε/2)√

π
exp

(
−a2

L2

)
× M

(
3/4 − ε/2,3/2,a2/L2)

× U
(
3/4 − ε/2,3/2,a2/L2). (24)

Using the asymptotic limits given by (23) we recover again the
result obtained with the zero-range pseudopotential (7).

Fig. 2(a) shows the lowest energy level as a function of the
positive scattering length for different values of the parameter a,
in the case of the δ-shell NLSP. The results resemble qualita-
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Fig. 3. Energy levels of the two particles in a harmonic trap, in units of h̄ω, as a
function of the scattering length, expressed in units of L, for different values of the
parameter a. Results correspond to the zero-range pseudopotential and the NLSPs
(Yamaguchi and δ-shell), as indicated in the legends.

tively those obtained with the Yamaguchi NLSP, shown in Fig. 1(a),
including the energy decrease without bound as the scattering
length vanishes (strongly interacting particles). In the opposite
limit, when as → ∞, the lowest energy level increases smoothly
when the parameter a increases, and approaches the limiting value
E = (3/2)h̄ω. This behaviour is shown in Fig. 2(b). Furthermore,
using the asymptotic limits of the confluent hypergeometric func-
tions [17], one can obtain the following expression for the lowest
energy state when a/L � 1 and as → ∞

E

h̄ω
≈ 3

2
− 2a√

π L
exp

(
−a2

L2

)
. (25)

The solid line in the inset of Fig. 2(b) represents the energy ob-
tained from Eq. (25), which is fully consistent with the numerical
results for a/L > 3.

Finally, Fig. 3 compares the first few levels of the zero-range
pseudopotential and the NLSPs (Yamaguchi and δ-shell), for posi-
tive and negative scattering length. It is important to stress that
the results for the zero-range pseudopotential (dashed line of
Fig. 3) can be recovered from the NLSP approach by taking a 
 L. If
the parameter a is of the order of the size of the harmonic trap, the
NLSP predicts a remarkable increase of the energy levels (solid and
dash-dotted lines of Fig. 3) as compared to the zero-range pseu-
dopotential result, when the magnitude of the s-wave scattering
length as is large (irrespective of its sign). Also notice that the in-
teraction energy obtained with the NLSPs reaches an asymptotic
limit when as is negative or as > 2L.

5. Conclusions

We have shown how one can construct a solvable model based
on non-local separable potentials to calculate the energy levels
of two particles trapped in a harmonic trap. The interaction en-
ergy can be obtained in a closed form by solving the transcendent
equation (21), for any arbitrary non-local separable potential. As a
working example, we considered the Yamaguchi and the δ-shell
NLSPs, and compared the predicted energy levels to those ob-
tained by a regularized zero-range pseudopotential. In both cases,
the low-energy scattering properties of the non-local potentials ap-
proach those shown by the regularized zero-range pseudopotential
when the parameter a vanishes.
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