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Abstract

We consider exciton optical absorption in quasiperiedic lattices, focusing our attention on the Fibonacei case as a typical
example. The absorption spectrum is evaluated by solving numerically the equation of motion of the Frenkel-exciton
problem on the lattice, in which on-site energies take on two values according to the Fibonacci sequence. We find that the
quasiperiodic order causes the cccurrence of well-defined characteristic features in the absorption spectra. We also develop
an analytical method that relates satellite lines with the Fourier pattern of the lattice. Our predictions can be used Lo
determine experimentally the long-range quasipericdic order from optical measurements.

PACS: T1.35.+ z; 36.20.Kd; 61.44. +p

1. Introduction

Linear lattices described by means of the binary
Fibonacci sequence have been regarded as one-di-
mensional (1D) quasicrystals and, consequently, they
have been the subject of intensive theoretical studies.
These systems lack translational symmetry but, un-
like disordered lattices, display long-range order.
The corresponding electronic states present rather
unusual properties like fractal energy spectra and
self-similar wave functions. From the experimental
viewpoint, several electronic properties of solids can
be inferred from optical characterization techniques
like optical absorption, photoluminescence and fluo-
rescence after pulse excitation. Then, a complete
understanding of the interplay between the electronic
properties and the underlying quasiperiodic order
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requires a detailed analysis of optical processes. This
reason has motivated various works dealing with
optical properties of Fibonaccl systems, mainly de-
voted to Fibonacci semiconductor superlattices [1-4).

In previous works we have focused our attention
on excitons in Fibonacci lattices [5,6). In particular,
we have numerically evaluated optical absorption
spectra due to Frenkel excitons in self-similar aperi-
odic lattices (Fibonacci and Thue—Morse) [5]. We
found several characteristic lines specific of each
aperiodic system that are not present in periedic or
random Frenkel lattices, thus being an adequate way
for determining the particular structural order of the
system from experiments. When the two kinds of
optical centers composing the aperiodic lattice are
very different, the origin of all the absorption lines
can be successfully assigned by considering the ape-
riodic lattices as composed of two-center blocks, in
the same spirit as the renormalization group concepts
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developed in the tast few years [7,8]. This approach
neglects the long-range order present in the lattice
and only takes into account the short-range interac-
tion between nearest-neighbor optical centers. Thesc
results lead, in a natural way, to the question whether
long-range quasiperiodic order can also be character-
ized by means of optical absorption spectra. It is
clear that we must search for specitic lines due to the
long-range order in the opposife limit, namely when
the two kinds of optical centers are of similar nature.
We will show below that this is indeed the case.

In this work we investigate optical absorption due
to Frenkel excitons in 1D binary systems arranged
according to the Fibonacci sequence. We make use
of a general treatment which allows us to study the
dynamics of Frenkel excitons in these latfices, solve
the microscopic equations of motion and find the
optical absorption spectrum. The main conclusions
of this paper are twofold. First, we show that I'renkel
excitons in Fibonacci lattices with similar optical
centers lead to absorption lines specific of this kind
of ordering and, consequently, not present in peri-
odic or disordered lattices. Second, and most impor-
tant, by means of an analytical approach we are able
to explain the origin of these characteristic lincs,
which are related to the Fourier transform of the
lattice. Thus we successfully relate an optical prop-
erty (optical spectrum) with a structural one {topol-
ogy of the lattice).

2. Physical model and theory

We consider a system of N optically active,
two-level centers, occupying positions r, on a 1D
regular lattice with spacing unity. Therefore, the
effective Frenkel Hamiltonian describing this system
can be written (we use units such that i = 1)

& = Evna:an+ Z‘]nlaial' (1)

I#n

Here @! and a, creates and annihilates an electronic
excitation of energy V, at site n, respectively. J,,
{n#1[) is the intersite interaction of dipole origin
between the centers n and !/, assumed to be of the
form J,;= —J|r,—r,| ", where J is the coupling
between the nearest-neighbor centers. Since J,, is a

rapidly decreasing function of the distance between
the centers, we will omit interactions beyond nearest
neighbors.

In this work we will be concerned with the Irenkel
exciton dynamics in systems presenting a quasiperi-
odic distribution of optical centers. The Fibonacci
lattice is the archetypical example of deterministic
and quasiperiodically ordered structure. Any arbi-
trary Fibonacci system presents two kinds of build-
ing blocks, Tn our case, we choose those blocks as
individual two-level centers with on-site energies V,
and V;. The Fibonacci arrangement can be generated
by the substitution mle A — AB, B— A, In this
way, finite and self-similar quasiperiodic lattices are
obtained by n successive applications of the substitu-
tion rule. The ath generation lattice will have N=F,
elements, where F, denotes a Fibonacci number.
Such numbers are generated from the recurrence law
F =F _,+£F, _, starting with F,=F =1, a5 n
increases the ratio F,_,/F, converges toward T
= 4(y5 — 1)=0.618..., an irrational number which
15 known as the inverse golden mean. Therefore,
lattice sites are arranged according to the Fibonacci
sequence V, V V.V, VLV, VoV, L ., where the fraction
of B-centers is ¢~ 1 — 7.

Having presented our model we now briefly de-
scribe the method we have used to calculate the
absorption spectra. The line shape I{ £) of an opti-
cal-absorption process in which a single exciton is
created in a lattice with M sites can be obtained as
follows [9]. Let us consider the total dipole moment
operator & = ¥ (d’, + a,), where the dipole moment
of each center is taken to be unity. Here we restrict
ourselves to the case of systems whose length 1s
much smaller than the optical wavelength. Denocting
by | k) and E, the eigenvectors and eigenvalues of
the Hamiltonian #, respectively, the absorption
line-shape is given by

1
!(E)=§21<k|9lvac)125(E—Ek), (2)
k

where |vac) denotes the exciton vacuum. In practice
one considers a broadened &-function to take into
account the instrumental resolution function. There-
fore we will replace the 8-function by a Lorentzian
function of half-width «, hereafter denoted by 6,.
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A reliable method for determining f( £) numeri-
cally involves the consideration of the correlation
functions [9]

G (1) = Y {vacla,(1)a}|vac). (3)

where a, (1) = exp(i#)a, exp(—1#1) is the anni-
hitation operator in the Heisenberg representation.
The function G,(¢) obeys the equation of motion

d
laGn(r) = ZHMGI(I)’ (4)
i

with the initial condition G (0)= 1. The diagonal
elements of the tridiagonal matrix H, , are V,
whereas the off-diagonal elements are simply given
by —J/. The microscopic equation of motion is a
discrete Schridinger-like equation on a lattice and
standard numerical techniques may be applied to
obtain the solution. Once these equations of motion
are solved, the line shape is found from the follow-
ing expression,

HE)= - ;zﬁf: dre ' sin{ Er) im(ZG,,(’t)).

CG)

where the factor exp(— ar) takes into account the
broadening duve to the instrumental resolution func-
tion of half-width a.

3. Numerical results

We have solved numerically the equation of mo-
tion (4) using an implicit {(Crank-Nicholson) integra-
tion scheme [10]. In the remainder of the paper,
energy will be measured in units of J whereas time
will be expressed in units of J~'. The energy and
time scales can deduced from the experiment since
the exciton bandwidth is 4./. Fibonacci lattices are
generated using the inflation rules discussed above.
In order to minimize end effects, spatial periodic
boundary conditions are introduced in all cases. We
have checked that the position and the strength of all
lines of the spectra are independent of the system
size, Hereafter we will take N=F,=1233 as a
representative value. We have set V, = 4.0, Vp = 4.8
and J=1 as typical values corresponding to centers

with similar characteristics. The width of the instru-
mental resolution was e = 0.15. The maximum inte-
gration time and the integration time step were 50
and 107°, respectively. Smaller time steps lead es-
sentially to the same results,

In the pure A lattice the spectrum 1S a single
Lorentzian line centered at E=V, —2J =20, with
our choice of parameters. When B-cenlers are intro-
duced according to the Fibonacci rules, a shift of the
position of the main line towards higher energies Is
observed. This shift is also observed in the case of
random lattices [11,12]. The main line is now located
around F = 2.30, as shown in Fig. |. Besides this
main absorption line, two satellite lines can be also
observed in the high-energy part of the spectrum,
centered at energies E!’=3592 and EW=4.03.
According to the renormalization group techniques
developed in Ref. [5], none of these satellites can be
explained within the so-called two-center approach.
Thus we are led to the conclusion that they are due
to long-range effects of the quasiperiodic ordering of
the lattice. This will be more evident after perform-
ing the analytical treatment,

4. Analytical results

In this section we develop a theoretical approach
to explain the shift of the main line and the occur-
rence of well-defined satellite lines in the high-en-
ergy region when B-centers are introduced quasiperi-
odically in the lattice. To this end we rewrite the
system Hamiltonian 2 = %, + %, 5, where

‘%AtVAEa:ani‘]E(aianﬁ-] +a:+lan)’ (63‘)
n

n

Hpp = E(Vn_vA)a’lan' (6b)

Here %, is the Hamiltonian corresponding to the
pure A lattice.

As a first step we consider the pure A lattice
whose Hamiltonian is #,. This Hamiltonian with
periodic boundary conditions can be exactly diago-
nalized, yielding the eigenvectors

1 \1/2
|k>=(ﬁ] Y exp(2wink/N)dl [vac),  (7a)
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with k=0...., N — L. The corresponding eigenvat-
ues read
E =V, —2Jcos(2mk/N). (7b)

Therefore, the dipole moment matrix elements within
this approximation satisfy the relation (k|2 {vac)
= §,,. Consequently, one obtains that [(E)=
(1/N)8 (E - E,). This result shows that the pure A
lattice presents a single Lorentzian absorption line
centered at E,=V, —2J, as we have mentioned
above.

To develop an approach that can explain the
results in Fibonacci systems one must explicitly con-
sider the effects of the topology through the term
#,5. To carry out such an approximation we have
used the nondegencrate perturbation theory, Let
| K““®)Y be the perturbed cigenvector describing the
exciton state when the influence of the term 5, is
taken into account. To evaluate the perturbed dipole
moment matrix element, we expand | kA% in the
basis of the unperturbed eigenvectors | k7 given in
(7a)

H & | &
| kY = | k) + EMH

- >, (8a)
I+k L —E

whereas the perturbed eigenvalues are given by
EAD =E + (k| # 1 k)
=E{®) + 4T sin’(wk/N), (8b)

where E{B = ¢V, + (1 — )V, —2J. Notice that
#,p shifts all levels by the same amount. This shift
is given by (k| k) =c(Vg—V,) for all k.
With the chosen parameters this amounts to 0.30, in
perfect agreement with our numerical results shown
in Fig. 1.

Inserting (8) in (2) one finally obtains

8,(E— E*™)

1
I(E) =~

1 -1
+= X | F(k)I'8,(E - EM), (9)
Nk=1

where for brevity we have defined

(0] #p | k)
4J sin®(wk/N)

F(k) = (10)

I(E) (arb. units)

Fig. 1. Absorption speetra for a Fibonacel lattice with ¥ — F, —
233 active centers and on-site energies V, = 4.0 and Vg = 4.8,
The solid ling indicates the numerical result and the dashed line
the analytical approach.

Therefore, the spectrum consists of a main Lorentzian
line centered at EN® =cV, +(1 =)V, —2J=
2.30, in agreement with the virtual crystal approxi-
mation, and several satellite lines at E{*®). The most
remarkable fact of expression (9), however, is that it
relates the finer details of the absorption spectrum,
an experimentally measurable magnitude, with the
Fourier transform of the lattice describing the topo-
logical long-range ordering of the optical centers. To
demonstrate this point, we recall that unperturbed
eigenvectors are orthogonal. Thus
)

1
=% Y v, exp(2wikn/N), k#0,

(11)

which is nothing but the aforementioned Fourier
transform. A comparison of the perturbative predic-
tion {9) with the numerical results is given in Fig. 1,
where an excellent agreement is achieved in the
weak-perturbation limit we have considered. In par-
ticular, our analytical approach predicts the existence
of two satellite lines at E" = 5.78 and E¥ = 4.13,

In order to get a deeper insight into the problem,
we relate our results with those reported in the

<0i%AB |k>= <0

Z(Vn - VA)aTnan
n
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Fig. 2. Plot of |F(k)|® as a function of the ratio &/~ for
Fibenacci lattiees, showing the occurrence of well-defined Bragg
peaks, labelled according to successive powcers of 7,

various works dealing with the Fourier transform of
the Fibonacci sequence, some of them in connection
with X-ray diffraction in aperiodic semiconductor
superlattices [13,14]. The Fibonacci lattice is known
to exhibit a Fourier spectrum displaying well-defined
Bragg peaks. The Fourier intensity |{0].#,, 14)1°
consists of a series of peaks located at values of the
momentum 27 k/N of the form 77, where p is an
arbitrary inmeger. Each peak of the Fourier intensity
leads to a large contribution to the sum (9) and,
consequently, to a well-defined sateilite line in the
absorption spectrum.

Fig. 2 shows | F(k)|? as a function of the ratio
k/N evaluated from expression (10), the results be-
ing independent of the system size. A sequence of
Bragg peaks, arranged according to successive pow-
ers of 7, are clearly observed in this plot. The
stronger one, which is responsible for the highest-en-
ergy satellite line centered at £ = 5.78, is located
atk,/N=038= 72 ( p = 2). Therefore the mode is
located close to the top of the excitonic band (k/N
= (0.5). On decreasing the momentum, the next Bragg
peak is located at k,/N =023 =7 (p=3), lead-
ing to an energy value 4.13, in perfect agreement
with the energy of the second satellite peak in the
high-energy region of the spectrum observed in Fig,
1. The analytical treatment predicts the existence of
other satellite lines with smaller energy, but they are
hidden by the main absorption line.

Our results are suitable for a direct physical inter-
pretation. Each satellite linc of high energy is cansed
by the coupling of two modes, namely the
lowest-lying and &, through the topology of the
quasipenodic lattice. Notice that a different arrange-
ment of the centers would lead to a completely
diferent Fourier intensity |<0|.#,; [k)|°. Thus,
the exciton acts as a probe of the long-range order of
the quasiperiodic lattice. This is one of the main
results of the present work since it provides us with a
useful method to be applied in experimental situa-
tions.

5. Conclusions

In summary, we have studied numerically the
absarption spectra corresponding to the Frenkel-exci-
ton Hamiltonian on self-similar quasiperiodic Fi-
bonacci lattices. Besides the main line, which is
shifted with respect to that of the pure lattice, we
found several satellite lines in the high-energy region
of the absorption spectra. We have also developed an
analytical method which successfully explains not
only the shift of the main line and the position of the
satellite lines but also their shape. Our analysis
clearly indicates that each satellite line is directly
related to a particular Bragg peak of the Fourier
transform of the underlying lattice. We have shown
that each satellite ling comes from the coupling
between the lowest-lying mode and a particular mode
lving close to the top of the excitonic band. This
relationship surely should facilitate future experi-
mental work on optical properties of molecular sys-
tems with long-range order.
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