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Studies of the de conductance of Fibonacei superlailices at finite temperature are carried out. Exact
solutions of the Schridinger equation are used for our trcatment of the probiem. The results show a
strong dependence of electrical conduction on the chemical potential, which acts as a probe of the
underiying electronic structure. In particular, it is found that the Fihonacel superlattice shows metallic
behaviour when the chemical potential lies within allowed bands and it behaves as a semiconductor
when the chemical potential lies within gaps.

1. Introduction

It is well established that clectron localization in intentionally disordered quantum-well
based GaAs—Ga, _ Al As superlattices are due to the loss of quantum coherence [1]. Further,
a numbcr of studies have been performed on carrier dynamics in superlattices with
uncorrelated [2 to 4] and correlated |5 to 7] disorder. Besides intentionally disorderced
superlattices, it has heen possible to grow quasiperiodic quantum-well supcerlattices [8].
Most researches have counsidered Fibonacei superlattices (FSLs) as the archetype of
quasiperiodic heterostructures. One of the most conspicuous features of electron dynamics
in these systems is the occurrence of a highly fragmented, self-similar electronic spectrum
with a hierarchy of splitting subbands [9 to 11]. This rather exotic electronic spectrum
strongly influences clectron propagation [12, 13] and Landauer resistunce of the FSL [14].
Using a tight-binding model for the FSL, Macia et al. [15] have previously investigated the
influence of the underlying spectrum structure on the dc conductance at different tem-
peratures. The aim of this paper is to extend further these treatments considering a morc
elaborated model within the cffective-mass approximation.

2. Model

We describe electron dynamics by a scalar Hamiltonian corresponding to decoupled bands
in the host semiconductors. The corresponding wave equation for the envelope function is
a Schrédinger-like equalion for a particle of an energy-independent effective mass m*,
assumed 1o be constant throughout the FSL. Isotropic and parabolic bands usually work
well in some 11l V compounds near the band edge. In particular, our results are valid in
thc most widely investigated superlattice, namely GaAs Ga, _,Al As. In order to grow a
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FSL. we have to define two distinet building blocks, say A and B, and to arrange them
according to the Fibonacci sequence. Each building block can be composed of onc or more
layers of different materials and can have arbitrary thickness. A Fibonaccel sequence {S.}
of order n is obtained by n successive applications of the substitution rule A — AB and
B — A. The obtained sequence compriscs F, , elements A and F,_, elements B, I, being
a Fibonacci number obtained from the recurrentlaw F, = F,_ | + F,_,withFy = F, = L
For our treatment, we have taken rectangular potential barriers, due to conduction-band
offsels at the interfaces in GaAs—Ga, _ Al As, to obtain the FSL. Hence we are neglecting
band bending at the interfaces of the FSL. The dynamics of clcctrons in this superlattice
can be described by the following equation:

[ d? Al
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in units such that A = m* = 1; these units set the cnergy and length scales to he 11 meV and
5 nm in GaAs, respectively. The superlattice potential is V{z — z;) = V, for [z — 2} £ b2
and vanishes otherwise. Here ¥ and b, are the heights and widths of the rectangular
potential barriers. These parameters take on the values ¥, = V, or V, and b; = b, or by
according to the Fibonacei sequence. Assuming non-overlapping potentials, as usual in
semiconductor superlattices. (1) can be solved piccewise exactly using the well-known transfer
matrix formalism [14]. In particular, this method allows us to find the transmission coclficient
7(E) for any incident elcctron energy E. Therefore, using the Landauver formula [16] it is

possible to obtain the dc conductance at zero temperature x,(E}in units of e?/h as follows:

#olE) = (2)

To compute the de conductance of the system at finite temperature (T, ) we take recourse
(o the following expression due to Engquist and Andcrson [17]:

of
f(— ﬁ)z(m dE
of
J(— ar-:)“’ - 7(E) dE

where [ is the Fermi-Dirac distribution and g the chemical potential. Then, we have
limy .o %(T, f) = x,(E = p), that is, at zero temperature only electrons at the Fermi level
contribute 1o electronic conduction.

*(T ) = , (3)

3. Results and Discussion

The main cmphasis of our numerical analysis is to evaluate %(T, ;1) over a wide range ol
temperatures {(from 0 up to about 1000 K). For our calculations we have chosen a FSL
of order r = 15 so that the total number of barriers is N = F;5 = 987. The separation
between nearest barriers is fixed at 2.5 (12.5 nm). Moreover, the conduction-band offset we
consider corresponds to heterojunctions GaAs—Ga, Al As with x = 0.5,1.e. barricr heights
of order of 55 meV. First of all, we have studied the conductance of the sample at zero
temperature, i.e., xo(E), as a function of the ¢lectron energy. The results are shown in Fig. 1,
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Fig. t. Dc conductance at zero temperature as a function
of the electron energy for V, = 50, ¥ =493 and
BO - hA = bB =02
w 4
040
]
0 = T 1
0

where it 1s noticeable that the highly fragmented nature of the spectrum causes strong
fluctuations of the value in the conductance, even for minor deviations from periodicity
(the ratio V,/V, is very close to unity). This feature can be understood [18] from the fact
that, for any finile approximation of the FSL, the allowed energies form a set of sparse
points approximating a pre-fractal Cantor-set structure. As the electron energy equals one
of these energy levels, an enhanced rescnant tunnelling takes place, leading to high
conductance peaks. In other words, the regions where »,(E) is large are allowed regions
of energies.

The results for dc conduclance at finite temperature arc shown in Fig. 2, where each unit
ol kT (k is the Boltzmann constant) corresponds to T & 130 K. The shape of these curves
show strong dependence of »x(T; ) on the value of the chemical potential g Hence, we have
considered two different cases, In the first one, we assume that the Fermi level lies within
an allowed band. In this case, which is claborated by graphs 1 and 2 of Fig. 2, the curves
#(T, y) show hump-like behaviour at low temperatures, similar to what is reported in [15],
At higher temperatures, x(7; u) decreases with T and reaches an asymptotic value on further
increasing T. The high values of dc conductance as well as their dependence on T are
similar to those metals whose Fermi energy is located within the conduction band. In the
second case, we study the behaviour of 3( T, 4) when the Fermi level falls within a forbidden
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A M fa oF . Q. potential; (1) g = 4.0, {2) 3.0, and (3) 3.8. Curves
— . labeled a correspond to the same barricr param-
% ¥ cters as in Fig, 1, whereas curves labeled b corre-
) i spond to the 3-function limit of the barriers (zero
width and constant arca A) with strengths A, = 1.00
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region. This situation is demonstrated by curves 3 in Fig. 2. Here, dc conductance is very
small initially and increases monotonically with temperature, although the numerical values
are one order of magnitude smaller than in the previous case. This behaviour is like
that of semiconductors whose Fermi level falls within the gap. Moreover, from Fig. 2 we
sce that the behaviour of »(T, u) is qualitatively the same for barrier potentials and é-function
potentials, although the results differ noticeably from the quantitative viewpoint.

4. Conclusions

We have studied a semiconductor superlattice in which the constituent blocks are arranged
according to the Fibonacci sequence. We have used exact solutions of the Schrodinger-like
equation for the electronic envelope functions in the effective mass framework. The energy
spectrum shows the typical featurcs of quasiperiodic systems: The spectrum appears highly
fragmented and displays a well-developed self-similar structure, characteristic of a pre-ractal
Cantor-like sel. The electronic structure of the energy spectrum is naturally translated into
the dc conductance of such system. The dc conductance shows metallic or semiconductor
behaviour, depending on whether the chemical potential lies within or outside an allowed
band, respectively. Hence the chemical potential may be used as a probe of the electronic
spectrum. The way to scan the chemical potential over the spectrum is achicved by changing
pressure, doping, or the applied voltage at the buffer layers. This shows the possibility of
a certain degree of engineering on transport properties during sample growth, by adjusting
chemical composition and sample length suitably. This result can be of significant importance
in view of growing applications of superlatiice structures.
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