Detecting active processes from spontaneous oscillations of ear hair bundles

Édgar Roldán, Juan M.R. Parrondo, Frank Jülicher, Pascal Martin

Universidad Complutense and GISC (Madrid, Spain) Max-Planck-Institut für physik Komplexer Systeme (Dresden, Germany) Laboratoire Physico-chimie Institut Curie (Paris, France)

X GISC Workshop (UC3M, Madrid, 8th Feb 2013)

Detecting active processes from spontaneous oscillations of Ear Hair bundles

GISC Workshop 2010 : "Dissipation and information in stochastic processes"

Dissipation and information in stochastic processes

Édgar Roldán and J.M.R. Parrondo Universidad Complutense de Madrid GISC Workshop '10. February 19th 2010. Madrid (Spain). Detecting active processes from spontaneous oscillations of Ear Hair bundles

I. Biophysics of the hair-bundle: motivation

2. Estimating time irreversibility

3. Results : simulations

4. Results : experiments

5. Conclusion

Biophysics of the ear hair bundle: motivation

Ear hair bundle

Ear hair cell

Biophysics of the hair bundle: motivation

Transduction — Calcium ions

G. A. Manley and R. R. Fay, Active Processes and Otoacoustic Emissions in Hearing, 30 (2008).

Biophysics of the hair bundle: motivation

Spontaneous oscillations of the hair bundle in the absence of external forces

Biophysics of the hair bundle: motivation

Motivation: From spontaneous oscillations

Microscopic systems in the nonequilibrium stationary state

É. Roldan, J.M.R. Parrondo, Phys. Rev. E. 85 031129 (2012)

$$\frac{\dot{\langle W_{diss} \rangle}}{k_{\rm B}T} = \lim_{\tau \to \infty} \frac{1}{\tau} D\left[\mathcal{P}\left(\{z(t)\}_{t=0}^{\tau} \right) \middle| \left| \mathcal{P}\left(\{\tilde{z}(\tau-t)\}_{t=0}^{\tau} \right) \right]$$

Dissipation

Irreversibility

Kullback-Leibler Divergence (KLD) $D[\mathcal{P}\{z(t)\}||\mathcal{P}\{z(\tau-t)\}] = \int dz \ \mathcal{P}\{z(t)\} \ln \frac{\mathcal{P}\{z(t)\}}{\mathcal{P}\{z(\tau-t)\}}$

KLD with partial information

$$\frac{\langle W_{\text{diss}} \rangle}{k_{\text{B}}T} \ge \lim_{\tau \to \infty} \frac{1}{\tau} D\left[\mathcal{P}\left(\{ x(t) \}_{t=0}^{\tau} \right) \middle| \left| \mathcal{P}\left(\{ \tilde{x}(\tau-t) \}_{t=0}^{\tau} \right) \right] \ge 0$$

$$\frac{\langle \dot{W}_{\text{diss}}^{\cdot} \rangle}{k_{\text{B}}T} \geq \lim_{\tau \to \infty} \frac{1}{\tau} D\left[\mathcal{P}\left(\{ x(t) \}_{t=0}^{\tau} \right) \middle| \left| \mathcal{P}\left(\{ \tilde{x}(\tau-t) \}_{t=0}^{\tau} \right) \right] \geq 0$$
$$\dot{d}_{x} \text{ (KLD rate)}$$

How to estimate the KLD rate of a continuous system

$$\dot{d}_{x} = \frac{1}{\tau} D\left[\mathcal{P}\left(\left\{ x(t) \right\}_{t=0}^{\tau} \right) \middle| \left| \mathcal{P}\left(\left\{ \tilde{x}(\tau - t) \right\}_{t=0}^{\tau} \right) \right]$$

from a single stationary trajectory?

$$x_1^n = x_1, x_2, \cdots, x_n \qquad n \gg 1$$
$$\Delta t^{\uparrow}$$

Estimating d_x

String counting (finite time statistics)

$$\dot{d}_{x,1} = \frac{1}{\Delta t} D[\mathbf{p}_{X}(x) || \mathbf{p}_{\tilde{X}}(x)] = 0$$
$$\dot{d}_{x,2} = \frac{1}{2\Delta t} D[\mathbf{p}_{X}(x_{1}, x_{2}) || \mathbf{p}_{\tilde{X}}(x_{1}, x_{2})]$$

 $\dot{d}_x = \lim_{m \to \infty} \dot{d}_{x,m}$

Unfeasible in continuous (lack of statistics)

É. Roldan, J.M.R. Parrondo, *Phys. Rev. E.* **85** 031129 (2012) É. Roldan, J.M.R. Parrondo, *Phys. Rev. Lett.* **105** 150607 (2010)

A new estimator of d_x

Transform the original series $\frac{X(t)}{\tilde{X}(t)}$ into new series $\frac{\varepsilon(t)}{\tilde{\varepsilon}(t)}$

one-to-one transformation $\Rightarrow \dot{d}_x = \dot{d}_{\epsilon}$

 $\begin{array}{ll} \varepsilon(t) & \tilde{\varepsilon}(t) & \text{are almost uncorrelated} & \Rightarrow \dot{d}_{\varepsilon} \simeq \dot{d}_{\varepsilon,1} \\ \\ \varepsilon(t) & \text{is not the time reversal of } \tilde{\varepsilon}(t) & \Rightarrow \dot{d}_{\varepsilon,1} > 0 \\ \\ \frac{\langle \dot{W}_{\text{diss}} \rangle}{k_{\text{R}}T} \ge \dot{d}_{x} = \dot{d}_{\varepsilon} \ge \dot{d}_{\varepsilon,1} & \Rightarrow & \frac{\langle \dot{W}_{\text{diss}} \rangle}{k_{\text{R}}T} \ge \dot{d}_{\varepsilon,1} \end{array}$

Choosing the transformation $X(t) \xrightarrow{\epsilon} \epsilon(t)$

 $\begin{aligned} \mathbf{x}_{\mathrm{m}} &\to \mathbf{\varepsilon}_{\mathrm{m}} = \mathbf{\varepsilon}(\mathbf{x}_{1}, \cdots, \mathbf{x}_{\mathrm{m}}) = \mathbf{x}_{\mathrm{m}} - (\mathbf{A}_{1}\mathbf{x}_{\mathrm{m}-\ell} + \mathbf{A}_{2}\mathbf{x}_{\mathrm{m}-2\ell} + \cdots + \mathbf{A}_{k}\mathbf{x}_{\mathrm{m}-k\ell}) \\ \tilde{\mathbf{x}}_{\mathrm{m}} &\to \mathbf{\varepsilon}_{\mathrm{m}} = \mathbf{\varepsilon}(\tilde{\mathbf{x}}_{1}, \cdots, \tilde{\mathbf{x}}_{\mathrm{m}}) = \tilde{\mathbf{x}}_{\mathrm{m}} - (\mathbf{A}_{1}\tilde{\mathbf{x}}_{\mathrm{m}-\ell} + \mathbf{A}_{2}\tilde{\mathbf{x}}_{\mathrm{m}-2\ell} + \cdots + \mathbf{A}_{k}\tilde{\mathbf{x}}_{\mathrm{m}-k\ell}) \end{aligned}$

one-to-one $\epsilon(t), \tilde{\epsilon}(t) \sim \text{uncorrelated} \quad \dot{d}_{\epsilon,1} > 0$

Residual functional

Ist Fit X(t) to AR(k, l) model

Get A_1, \cdots, A_k

2nd Apply the residual function $\epsilon(x_1, \dots, x_m) = x_m - (A_1 x_{m-\ell} + A_2 x_{m-2\ell} + \dots + A_k x_{m-k\ell})$ $X(t) \xrightarrow{\epsilon} \epsilon(t)$ $\tilde{X}(t) \xrightarrow{\epsilon} \tilde{\epsilon}(t)$

3rd Compute $\dot{d}_{\varepsilon,1}$

$$\begin{vmatrix} \lambda \frac{dX}{dt} &= -K_{gs}(X - X_a - DP_o) - K_{sp}X + \eta & top \\ \lambda_a \frac{dX_a}{dt} &= K_{gs}(X - X_a - DP_o) - \gamma N_a fp(C) + \eta_a & motors \\ \tau \frac{dC}{dt} &= -C + C_M P_o + \delta c & Calcium \end{aligned}$$

B. Nadrowski, P. Martin, and F. Jülicher, PNAS 101, 12195 (2004)

$$(k_{gs}, D, k_{sp}, \cdots) \rightarrow (f_{max}, S)$$

 $f_{max} =$ Maximum force of the motors $-\frac{C_M}{f_{max}}\frac{df_a}{dC}$ S =

Strength of Calcium feedback

Hopf bifurcation

 $\tau = 1200s, f_{acq} = 8.3kHz$

 $d_{\epsilon,1}, AR(10,50)$

KLD finds the bifurcation

Bistable to oscillatory

 $\tau = 1200s, f_{acq} = 8.3kHz$

 $\dot{d}_{\epsilon,1}, AR(10,50)$

KLD is maximum at maximum sensitivity

KLD distinguishes active prom passive oscillations

Results : experiments

American bullfrog (Rana catesbeiana) Experiments: P. Martin, J. Barral

Results : experiments

Rana catesbeiana

 $\begin{aligned} \tau &\sim 100s \\ f_{\rm osc} &= \{8, 15, 20\} \, {\rm Hz} \end{aligned}$

active (alive)

gentamicin (drugged)

passive (dead)

Results : experiments

KLD distinguishes active / passive and estimates dissipation

Conclusion

The KLD has potential applications in stationary processes of microscopic **biological** systems:

Detection of bifurcations

Distinction between active and passive oscillations

Estimation of minimum energy dissipation

Thanks for your attention

