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Biophysics of the ear hair bundle: motivation

Ear hair cell

Ear hair bundle



Biophysics of the hair bundle: motivation

Ca2+

tip link

Gating-spring model

ion channels
adaptation motors

G. A. Manley and R. R. Fay, Active Processes and Otoacoustic Emissions in Hearing, 30 (2008).
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Biophysics of the hair bundle: motivation
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Biophysics of the hair bundle: motivation

1. Distinguish between active and passive cells
2. Estimate energy dissipation

X(t)
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Motivation: From spontaneous oscillations



Estimating time irreversibility

Microscopic systems in the nonequilibrium stationary state
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Estimating time irreversibility
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Kullback-Leibler Divergence (KLD)
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Dissipation Irreversibility

KLD with partial information



Estimating time irreversibility

� ˙Wdiss�
kBT

≥ lim
τ→∞
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ḋx (KLD rate)

How to estimate the KLD rate of a continuous system
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��

from a single stationary trajectory?

xn1 = x1, x2, · · · , xn
∆t

n � 1



Estimating time irreversibility

ḋxEstimating

É. Roldan, J.M.R. Parrondo, Phys. Rev. E. 85 031129 (2012) 

É. Roldan, J.M.R. Parrondo, Phys. Rev. Lett. 105 150607 (2010) 

String counting (finite time statistics)

ḋx = lim
m→∞

ḋx,m
Unfeasible in continuous

(lack of statistics)

ḋx,1 =
1

∆t
D[pX(x)||pX̃(x)] = 0

ḋx,2 =
1

2∆t
D[pX(x1, x2)||pX̃(x1, x2)]



Estimating time irreversibility

ḋxA new estimator of 

X(t)
Transform the original series into new series 

X̃(t)

�(t)

�̃(t)

is not the time reversal of �(t) �̃(t) ⇒ ḋ�,1 > 0

�(t) �̃(t) are almost uncorrelated ⇒ ḋ� � ḋ�,1

one-to-one transformation ⇒ ḋx = ḋ�

�Ẇdiss�
kBT

≥ ḋx = ḋ� ≥ ḋ�,1
�Ẇdiss�
kBT

≥ ḋ�,1⇒



Estimating time irreversibility

Choosing the transformation X(t) �(t)
�

AR(k, �) model

AR(3, 2)

x6 = A1x5 +A2x3 +A3x1

x1+kl = A1x1+(k−1)l + · · ·+Akx1

Residual functional

xm → �m = �(x1, · · · , xm) = xm − (A1xm−� +A2xm−2� + · · ·+Akxm−k�)

x̃m → �m = �(x̃1, · · · , x̃m) = x̃m − (A1x̃m−� +A2x̃m−2� + · · ·+Akx̃m−k�)

one-to-one uncorrelated�(t), �̃(t) ∼ ḋ�,1 > 0



Estimating time irreversibility

�

ḋx,1 = 0 ḋ�,1 > 0

pX(x)
pX̃(x)

pE(�)

pE(�)

�Ẇdiss�
kBT

≥ ḋ�,1



Estimating time irreversibility

1st Fit        to              modelX(t) AR(k, �)

A1, · · · ,AkGet

2nd Apply the residual function
�(x1, · · · , xm) = xm − (A1xm−� +A2xm−2� + · · ·+Akxm−k�)

X(t)

X̃(t)

�(t)

�̃(t)

�

�

3rd Compute ḋ�,1



Results : simulations

λ
dX

dt
= −Kgs(X− Xa −DPo)− KspX+ η

λa
dXa

dt
= Kgs(X− Xa −DPo)− γNafp(C) + ηa

τ
dC

dt
= −C+ CMPo + δc

Ksp

Kgs

D

B. Nadrowski, P. Martin, and F. Jülicher., PNAS 101,12195 (2004)

top

motors
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Xa(t)
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C(t)
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only position



!
dX
dt " !Kgs"X # Xa # DPo# # K spX $ Fext $ % , [2]

!a
dXa

dt " Kgs"X # Xa # DPo# # &Nafp"C# $ %a, [3]

'
dC
dt " C0 # C $ CMPo $ (c. [4]

Eq. 2 describes the dynamics of the hair-bundle position X.
The hair bundle is subjected to friction, characterized by the
coefficient !, as well as to the elastic forces !KspX and !KgsY
and the external force Fext. Active hair-bundle movements result
from forces exerted by a collection of Na molecular motors
within the hair bundle. By adjusting the gating-spring extension,
these motors mediate mechanical adaptation to sustained stimuli
(reviewed in ref. 13). The variable Xa can be interpreted as the
position of the motor collection. Eq. 3 describes the mechanics
and the dynamics of these motors by a linear force-velocity
relation of the form !adXa!dt $ !F0 % Fmot, where !a charac-
terizes the slope of the force-velocity relation. In the hair bundle,
the motors experience an elastic force Fmot $ KgsY. At stall, these
motors produce an average force F0 $ Na&fp that is proportional
to the force f generated by a single motor and to the probability
p that a motor is bound to an actin filament. Active force
production by the motors corresponds to motors climbing up the
stereocilia, i.e., dXa!dt & 0, which tends to increase the extension
of the gating springs and to open transduction channels. In Eq.
3, we neglect the fact that adaptation is incomplete. Incomplete
adaptation could be described by introducing an additional
elastic element (22). Because mechanical adaptation is regulated
by Ca2% (ref. 23; reviewed in ref. 24), we assume that the
probability for an adaptation motor to be bound to actin p(C)
depends on the intracellular Ca2% concentration C at the motor
site. Eq. 4 describes the dynamics of C, which relaxes with a time
constant '. The steady-state Ca2% concentration maintained by
the cell if the transduction channels are closed is denoted C0 and
the concentration CM '' C0 is the maximal Ca2% concentration
at the location of the adaptation motors. It is expected to be
proportional to the Ca2% concentration in the endolymph (8). In
the following, we ignore nonlinearities in p(C) and truncate a
general expansion to linear order: p(C) " p0 % p1C. We define
the strength of the calcium feedback on the motor force F0 by the
dimensionless parameter S $ !CM p1!p0. As detailed in the next
section, we have added noise terms %, %a, and (c to account for
fluctuations that result from several types of stochastic processes.

State Diagram in the Absence of Noise
To explore the dynamic behaviors of the system described by
Eqs. 2–4, we first ignore the effects of fluctuations and assume
Fext $ 0. Steady states satisfy dX!dt $ 0, dXa!dt $ 0, and dC!dt $
0. Linear stability analysis of these steady states reveals condi-
tions for stability as well as for oscillating instabilities that lead
to spontaneous oscillations by a Hopf bifurcation (25). Because
calcium dynamics at the motor site is expected to be much faster
than the hair-bundle oscillations observed in the bullfrog’s
sacculus (26), we determined the state diagram for ' $ 0 (Fig.
1). The state diagram is a function of two parameters: the
maximal force fmax $ Nafp0 produced by adaptation motors along
their axis of movement, and the dimensionless feedback strength
S of the Ca2% regulation. We assume that increased Ca2% levels
at the motor site reduce active force generation by the motors
(p1 & 0).

The state diagram exhibits different regimes (Fig. 1). If the
force fmax is small, the motors are not strong enough to pull
transduction channels open. In this case, the system is mono-
stable with most of the channels closed. Increasing fmax leads to

channel opening. For intermediate forces and weak Ca2% feed-
back, the system is bistable, i.e., open and closed channels
coexist. For strong Ca2% feedbacks, however, the motors cannot
sustain the forces required to maintain the channels open. In this
case, the system is again monostable with most channels closed.
Spontaneous oscillations occur in a region of both intermediate
forces and feedback strengths. The boundary between a stable
state and an oscillatory state corresponds to a Hopf bifurcation.
This bifurcation is subcritical near the bistable region (broken
line in Fig. 1) but becomes supercritical at larger motor forces
(solid line in Fig. 1). Note that there is no oscillation in the
absence of Ca2% feedback, i.e., for S $ 0.

The behavior of the system in the presence of an external force
can be described by response functions. However, the calculated
linear response functions of the noiseless system in an oscillatory
state display sharp singularities that are not observed experi-
mentally (see Fig. 5, which is published as supporting informa-
tion on the PNAS web site).

Fluctuations and Noise
Spontaneous hair-bundle oscillations are noisy (5). Noise terms
%, %a, and (c in Eqs. 2–4 formally take into account the effects
of various sources of fluctuations that destroy the phase coher-
ence of hair-bundle movements. The stochastic forces % and %a
act on X and Xa, respectively. The consequences of these forces
have been analyzed for nonoscillating hair bundles (27). The
fluctuations (c of the Ca2% concentration in the stereocilia result
from stochastic transitions between open and closed states of the
transduction channels (28). Noise terms are zero on average.
Their strengths are characterized by autocorrelation functions
(%(t)%(0)), (%a(t)%a(0)), and ((c(t)(c(0)), respectively. We as-

Fig. 1. State diagram of a hair bundle as a function of the maximal force fmax

that adaptation motors produce and of the strength S of Ca2% feedback on
motor activity. Lines of equal open probability Po of the transduction channels
(dotted lines) are superimposed and each are indexed by the corresponding
value for Po. The diagram is parsed into regions in which the hair bundle can
be monostable with transduction channels mostly closed (MC) or mostly open
(MO), bistable (BI), or oscillatory (gray). Hopf bifurcations occur along the line
separating oscillating from stable states: for small fmax, the bifurcation is
subcritical (broken line), whereas the bifurcation becomes supercritical for
larger motor forces (solid line). For fmax $ 352 pN and S $ 0.65 with Po $ 0.5
(E), stochastic simulations of the system closely matched the behavior of a hair
bundle that was studied experimentally (see Figs. 2 and 3). For fmax $ 439 pN
and Po $ 0.5 (‚), the noisy system displayed a global maximum of sensitivity
to small stimuli (see Fig. 4). The quality factor of the bundle’s spontaneous
oscillations was also close to the global maximum there. The state diagram was
calculated by assuming that the calcium dynamics is instantaneous ' $ 0. In the
case of ' $ 0.1 ms, the oscillatory region expands slightly toward regions of
larger motor forces (dot-dash line). Parameters used are listed in Table 1.

12196 # www.pnas.org!cgi!doi!10.1073!pnas.0403020101 Nadrowski et al.

(kgs, D, ksp, · · · ) → (fmax, S)

Results : simulations
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FIG. 3: Position of the top of the hair bundle (in nm) as a function of time (in seconds). Top: fmax = 100pN and S = 0.5,
corresponding to a monostable closed situation. Medium: fmax = 300pN and S = 0.25 corresponding to a bistable oscillation.
Bottom: fmax = 325pN and S = 0.65, corresponding to the operating point of the hair bundle.
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fmax = 100pN , S= 0.5 (MC)

fmax=300pN, S=0.25 (BI)

fmax=600pN, S=0.5 (MO)

fmax=352pN, S=0.65 (O)

fmax=439pN, S=0.8 (O)

fmax=600pN, S=1.25 (O)

FIG. 4: KLD rate as a function of time Ḋ�(t) using a AR(10, 50) model for trajectories of the bundle’s top X(t) as a function
of the total time of the trajectory (in s). For each of the 6 cases shown in the figure, we simulate a single stationary trajectory
of total time T = 125s which is sampled at a rate of ∆t = 0.12ms. From this trajectory, we measure the KLD of a sequence of
times indicated in the x−axis of the figure.

Ḋ�. Instead of focusing on the value of the KLD for a single trajectory, we study how this KLD rate changes when we

consider time series of total time t, X(t). We call Ḋ�(t) the KLD calculated from the statistics of a unique stationary

trajectory X(t) of total time t. In [5] it is shown that, for reversible series, such KLD for different times tends to

zero and scales like 1/t when considering series of time t, whereas for irreversible series, the KLD tends to a positive

value when t is large. We have studied the behavior of Ḋ�(t) for different regimes of the oscillator by using the same

estimator as before, with an AR(10, 50) model. For that, we generated trajectories of T = 125s and measured Ḋ�

using a AR(10, 50) model of subsequences of total time t < T , that start in the beginning of the original series and

end in t. In Fig. we show the value of Ḋ�(t) as a function of t in double logarithmic scale for different values of time

t = 0.125s, 1.25s, 12.5s and 125s. We observe that the scaling of Ḋ�(t) with time depends on the underlying dynamics

MO

BI

OSC



Results : simulations

Hopf bifurcation

KLD finds the 
bifurcation

2

300 350 400 450 500 550
20

40

60

80

100

120

140

fmax (pN)

Ku
llb

ac
k

Le
ib

le
r d

iv
er

ge
nc

e 
(1

/s
)

FIG. 1: Left: Variation of the simulation parameters along a supercritical bifurcation. Right: KLD rate of single stationary
trajectories of the position of the top of the hair bundle, X(t), with total time of the trajectory T = 1200s and facq = 8.3kHz,
Ḋ�, as a function of fmax along the line depicted in the left panel.

model exhibits different behaviors depending on the values of fmax and S. The state diagram (Fig. 1 in ??) shows

four different regions: monostable with transduction channels mostly open (MO) or mostly closed (MC), bistable (BI)

and oscillatory (O). In the case of bullfrog’s ear hair bundle, the operating point is located in fmax = 325pN and

S = 0.65, which is very close to the boundary between the oscillatory region and the bistable region. Notice that the

bifurcation is subcritical near the operating point and it becomes supercritical for large values of fmax.

We simulate the model described by Eqs. (1)-(3) for different values of fmax and S using Euler scheme. We first

analyze the dynamics of the system when it crosses the bifurcation in the region where it is supercritical. We vary

the parameters according to the left panel in Fig. . For each point (fmax, S) in the curve indicated in the figure,

we first generate a single trajectory of N0 = 108 data points with time step ∆t0 = 0.012ms, that is, simulations of

total time T0 = N0∆t0 = 1200s. From the simulations, we only take into account the evolution of the position of

the top of the bundle, X. We sample the trajectories X(t) every 10 points, that is, we use a sampling frequency of

fs = 1/(10∆t0) = 8.3kHz. In the end, we work with time series of N = 107 data points with time step ∆t = 0.12ms

and total time T = N∆t = 1200s. For every trajectory, we measure the irreversibility using the KLD rate with

the estimation technique described in sec. ??. In the estimation, we first fit the data to an AR(10, 50) model,

i.e., an AR(k, l) model of order k = 10 and lag l = 50. This corresponds to process blocks of 10 data separated

tlag = l∆t = 6ms, tblock = ktlag = 60ms being the total time of the block, which is much smaller than the period of

the oscillator tblock � tosc = O(1s).

We show in the right panel of Fig. the value of the KLD rate estimator (17) as a function of the value of fmax

along the curve that crosses the supercritical bifurcation. We observe that our estimator reaches a maximum value

when it crosses the bifurcation. This result suggests that the time irreversibility on X is maximum in the boundary

between the oscillatory and the monostable (open or closed) regions, and therefore KLD can be used to detect the

presence of a bifurcation. An analogous result is obtained when the bifurcation is crossed with a similar curve but in
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FIG. 1: Left: Variation of the simulation parameters along a supercritical bifurcation. Right: KLD rate of single stationary
trajectories of the position of the top of the hair bundle, X(t), with total time of the trajectory T = 1200s and facq = 8.3kHz,
Ḋ�, as a function of fmax along the line depicted in the left panel.

model exhibits different behaviors depending on the values of fmax and S. The state diagram (Fig. 1 in ??) shows

four different regions: monostable with transduction channels mostly open (MO) or mostly closed (MC), bistable (BI)

and oscillatory (O). In the case of bullfrog’s ear hair bundle, the operating point is located in fmax = 325pN and

S = 0.65, which is very close to the boundary between the oscillatory region and the bistable region. Notice that the

bifurcation is subcritical near the operating point and it becomes supercritical for large values of fmax.

We simulate the model described by Eqs. (1)-(3) for different values of fmax and S using Euler scheme. We first

analyze the dynamics of the system when it crosses the bifurcation in the region where it is supercritical. We vary

the parameters according to the left panel in Fig. . For each point (fmax, S) in the curve indicated in the figure,

we first generate a single trajectory of N0 = 108 data points with time step ∆t0 = 0.012ms, that is, simulations of

total time T0 = N0∆t0 = 1200s. From the simulations, we only take into account the evolution of the position of

the top of the bundle, X. We sample the trajectories X(t) every 10 points, that is, we use a sampling frequency of

fs = 1/(10∆t0) = 8.3kHz. In the end, we work with time series of N = 107 data points with time step ∆t = 0.12ms

and total time T = N∆t = 1200s. For every trajectory, we measure the irreversibility using the KLD rate with

the estimation technique described in sec. ??. In the estimation, we first fit the data to an AR(10, 50) model,

i.e., an AR(k, l) model of order k = 10 and lag l = 50. This corresponds to process blocks of 10 data separated

tlag = l∆t = 6ms, tblock = ktlag = 60ms being the total time of the block, which is much smaller than the period of

the oscillator tblock � tosc = O(1s).

We show in the right panel of Fig. the value of the KLD rate estimator (17) as a function of the value of fmax

along the curve that crosses the supercritical bifurcation. We observe that our estimator reaches a maximum value

when it crosses the bifurcation. This result suggests that the time irreversibility on X is maximum in the boundary

between the oscillatory and the monostable (open or closed) regions, and therefore KLD can be used to detect the

presence of a bifurcation. An analogous result is obtained when the bifurcation is crossed with a similar curve but in

ḋ�,1, AR(10, 50)τ = 1200s, facq = 8.3kHz



Results : simulations

Bistable to oscillatory

KLD is maximum
at maximum sensitivity

ḋ�,1, AR(10, 50)
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FIG. 2: Left: Variation of the simulation parameters along a curve with constant open channel probability Po = 0.5. Right:
KLD rate (blue squares, left axis) Ḋ� and maximum sensitivity (red circles, left axis) as a function of fmax for single stationary
trajectories of T = 1200s and facq = 8.3kHz with the parameters given by the values in the left pannel.

the region where the bifurcation is subcritical (results not shown).

We now study the behavior of the KLD when we vary the parameters following a path with constant open channel

probability equal to Po = 0.5 in the state diagram in the absence of noise (see left panel of Fig. ). When increasing the

value of S, the system crosses the bifurcation going from the bistable to the oscillatory regime. Once the bifurcation

is crossed, the sensitivity of the system to an external force increases when it enters into the oscillatory regime. In

the absence of noise, the model reaches the maximum value of the sensitivity when fmax = 439pN . For the values

of fmax and S indicated in the left panel of Fig. , we simulate the hair bundle dynamics and generate trajectories of

1200s with simulation time step of ∆t0 = 0.012ms. We restrict ourselves to the information given by the position X,

and sample the trajectories at fs = 8.3kHz, obtaining, for each value of the parameters, a single stationary trajectory

X(t) that contains N = 107 data points each of them sampled every ∆t = 0.12ms. As can be seen in the right pannel

of Fig. , the KLD estimation increases with the force for moderate values of fmax and it exhibits a maximum that

occurs near the maximum sensitivity point. Notice that we measured independently the maximum sensitivity for the

same values of the parameters.

We now study if we can distinguish between active and passive dynamics using the information from the position

of the bundle. In [5], it is shown that using the KLD one can distinguish between equilibrium and nonequilibrium

steady state by measuring the KLD of a series of data, even if this data only contains partial information of the

system. In this case, X(t) is also a partial description of the dynamics, and it is not straightforward to guess from the

time traces if they are generated by an active or a passive oscillator. In Fig. we show time series corresponding to

three different situations, two of them are generated by a passive oscillator (monostable closed and bistable) and the

third (bottom panel in Fig. ) corresponds to the operating point where oscillations of the hair bundle are produced

by active processes. Statistically speaking, the latter time series is in appearance more irreversible than the other two

because of the presence of irreversible patterns in the series.

To measure the degree of time irreversibility in these different situations, we make use of our KLD rate estimator
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FIG. 2: Left: Variation of the simulation parameters along a curve with constant open channel probability Po = 0.5. Right:
KLD rate (blue squares, left axis) Ḋ� and maximum sensitivity (red circles, left axis) as a function of fmax for single stationary
trajectories of T = 1200s and facq = 8.3kHz with the parameters given by the values in the left pannel.

the region where the bifurcation is subcritical (results not shown).

We now study the behavior of the KLD when we vary the parameters following a path with constant open channel

probability equal to Po = 0.5 in the state diagram in the absence of noise (see left panel of Fig. ). When increasing the

value of S, the system crosses the bifurcation going from the bistable to the oscillatory regime. Once the bifurcation

is crossed, the sensitivity of the system to an external force increases when it enters into the oscillatory regime. In

the absence of noise, the model reaches the maximum value of the sensitivity when fmax = 439pN . For the values

of fmax and S indicated in the left panel of Fig. , we simulate the hair bundle dynamics and generate trajectories of

1200s with simulation time step of ∆t0 = 0.012ms. We restrict ourselves to the information given by the position X,

and sample the trajectories at fs = 8.3kHz, obtaining, for each value of the parameters, a single stationary trajectory

X(t) that contains N = 107 data points each of them sampled every ∆t = 0.12ms. As can be seen in the right pannel

of Fig. , the KLD estimation increases with the force for moderate values of fmax and it exhibits a maximum that

occurs near the maximum sensitivity point. Notice that we measured independently the maximum sensitivity for the

same values of the parameters.

We now study if we can distinguish between active and passive dynamics using the information from the position

of the bundle. In [5], it is shown that using the KLD one can distinguish between equilibrium and nonequilibrium

steady state by measuring the KLD of a series of data, even if this data only contains partial information of the

system. In this case, X(t) is also a partial description of the dynamics, and it is not straightforward to guess from the

time traces if they are generated by an active or a passive oscillator. In Fig. we show time series corresponding to

three different situations, two of them are generated by a passive oscillator (monostable closed and bistable) and the

third (bottom panel in Fig. ) corresponds to the operating point where oscillations of the hair bundle are produced

by active processes. Statistically speaking, the latter time series is in appearance more irreversible than the other two

because of the presence of irreversible patterns in the series.

To measure the degree of time irreversibility in these different situations, we make use of our KLD rate estimator

τ = 1200s, facq = 8.3kHz
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KLD distinguishes active prom passive oscillations

!
dX
dt " !Kgs"X # Xa # DPo# # K spX $ Fext $ % , [2]

!a
dXa

dt " Kgs"X # Xa # DPo# # &Nafp"C# $ %a, [3]

'
dC
dt " C0 # C $ CMPo $ (c. [4]

Eq. 2 describes the dynamics of the hair-bundle position X.
The hair bundle is subjected to friction, characterized by the
coefficient !, as well as to the elastic forces !KspX and !KgsY
and the external force Fext. Active hair-bundle movements result
from forces exerted by a collection of Na molecular motors
within the hair bundle. By adjusting the gating-spring extension,
these motors mediate mechanical adaptation to sustained stimuli
(reviewed in ref. 13). The variable Xa can be interpreted as the
position of the motor collection. Eq. 3 describes the mechanics
and the dynamics of these motors by a linear force-velocity
relation of the form !adXa!dt $ !F0 % Fmot, where !a charac-
terizes the slope of the force-velocity relation. In the hair bundle,
the motors experience an elastic force Fmot $ KgsY. At stall, these
motors produce an average force F0 $ Na&fp that is proportional
to the force f generated by a single motor and to the probability
p that a motor is bound to an actin filament. Active force
production by the motors corresponds to motors climbing up the
stereocilia, i.e., dXa!dt & 0, which tends to increase the extension
of the gating springs and to open transduction channels. In Eq.
3, we neglect the fact that adaptation is incomplete. Incomplete
adaptation could be described by introducing an additional
elastic element (22). Because mechanical adaptation is regulated
by Ca2% (ref. 23; reviewed in ref. 24), we assume that the
probability for an adaptation motor to be bound to actin p(C)
depends on the intracellular Ca2% concentration C at the motor
site. Eq. 4 describes the dynamics of C, which relaxes with a time
constant '. The steady-state Ca2% concentration maintained by
the cell if the transduction channels are closed is denoted C0 and
the concentration CM '' C0 is the maximal Ca2% concentration
at the location of the adaptation motors. It is expected to be
proportional to the Ca2% concentration in the endolymph (8). In
the following, we ignore nonlinearities in p(C) and truncate a
general expansion to linear order: p(C) " p0 % p1C. We define
the strength of the calcium feedback on the motor force F0 by the
dimensionless parameter S $ !CM p1!p0. As detailed in the next
section, we have added noise terms %, %a, and (c to account for
fluctuations that result from several types of stochastic processes.

State Diagram in the Absence of Noise
To explore the dynamic behaviors of the system described by
Eqs. 2–4, we first ignore the effects of fluctuations and assume
Fext $ 0. Steady states satisfy dX!dt $ 0, dXa!dt $ 0, and dC!dt $
0. Linear stability analysis of these steady states reveals condi-
tions for stability as well as for oscillating instabilities that lead
to spontaneous oscillations by a Hopf bifurcation (25). Because
calcium dynamics at the motor site is expected to be much faster
than the hair-bundle oscillations observed in the bullfrog’s
sacculus (26), we determined the state diagram for ' $ 0 (Fig.
1). The state diagram is a function of two parameters: the
maximal force fmax $ Nafp0 produced by adaptation motors along
their axis of movement, and the dimensionless feedback strength
S of the Ca2% regulation. We assume that increased Ca2% levels
at the motor site reduce active force generation by the motors
(p1 & 0).

The state diagram exhibits different regimes (Fig. 1). If the
force fmax is small, the motors are not strong enough to pull
transduction channels open. In this case, the system is mono-
stable with most of the channels closed. Increasing fmax leads to

channel opening. For intermediate forces and weak Ca2% feed-
back, the system is bistable, i.e., open and closed channels
coexist. For strong Ca2% feedbacks, however, the motors cannot
sustain the forces required to maintain the channels open. In this
case, the system is again monostable with most channels closed.
Spontaneous oscillations occur in a region of both intermediate
forces and feedback strengths. The boundary between a stable
state and an oscillatory state corresponds to a Hopf bifurcation.
This bifurcation is subcritical near the bistable region (broken
line in Fig. 1) but becomes supercritical at larger motor forces
(solid line in Fig. 1). Note that there is no oscillation in the
absence of Ca2% feedback, i.e., for S $ 0.

The behavior of the system in the presence of an external force
can be described by response functions. However, the calculated
linear response functions of the noiseless system in an oscillatory
state display sharp singularities that are not observed experi-
mentally (see Fig. 5, which is published as supporting informa-
tion on the PNAS web site).

Fluctuations and Noise
Spontaneous hair-bundle oscillations are noisy (5). Noise terms
%, %a, and (c in Eqs. 2–4 formally take into account the effects
of various sources of fluctuations that destroy the phase coher-
ence of hair-bundle movements. The stochastic forces % and %a
act on X and Xa, respectively. The consequences of these forces
have been analyzed for nonoscillating hair bundles (27). The
fluctuations (c of the Ca2% concentration in the stereocilia result
from stochastic transitions between open and closed states of the
transduction channels (28). Noise terms are zero on average.
Their strengths are characterized by autocorrelation functions
(%(t)%(0)), (%a(t)%a(0)), and ((c(t)(c(0)), respectively. We as-

Fig. 1. State diagram of a hair bundle as a function of the maximal force fmax

that adaptation motors produce and of the strength S of Ca2% feedback on
motor activity. Lines of equal open probability Po of the transduction channels
(dotted lines) are superimposed and each are indexed by the corresponding
value for Po. The diagram is parsed into regions in which the hair bundle can
be monostable with transduction channels mostly closed (MC) or mostly open
(MO), bistable (BI), or oscillatory (gray). Hopf bifurcations occur along the line
separating oscillating from stable states: for small fmax, the bifurcation is
subcritical (broken line), whereas the bifurcation becomes supercritical for
larger motor forces (solid line). For fmax $ 352 pN and S $ 0.65 with Po $ 0.5
(E), stochastic simulations of the system closely matched the behavior of a hair
bundle that was studied experimentally (see Figs. 2 and 3). For fmax $ 439 pN
and Po $ 0.5 (‚), the noisy system displayed a global maximum of sensitivity
to small stimuli (see Fig. 4). The quality factor of the bundle’s spontaneous
oscillations was also close to the global maximum there. The state diagram was
calculated by assuming that the calcium dynamics is instantaneous ' $ 0. In the
case of ' $ 0.1 ms, the oscillatory region expands slightly toward regions of
larger motor forces (dot-dash line). Parameters used are listed in Table 1.

12196 # www.pnas.org!cgi!doi!10.1073!pnas.0403020101 Nadrowski et al.
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fmax = 100pN , S= 0.5 (MC)

fmax=300pN, S=0.25 (BI)

fmax=600pN, S=0.5 (MO)

fmax=352pN, S=0.65 (O)

fmax=439pN, S=0.8 (O)

fmax=600pN, S=1.25 (O)

FIG. 4: KLD rate as a function of time Ḋ�(t) using a AR(10, 50) model for trajectories of the bundle’s top X(t) as a function
of the total time of the trajectory (in s). For each of the 6 cases shown in the figure, we simulate a single stationary trajectory
of total time T = 125s which is sampled at a rate of ∆t = 0.12ms. From this trajectory, we measure the KLD of a sequence of
times indicated in the x−axis of the figure.

average dissipation of the oscillator is at least 100kT/s. This value is of the same order of magnitude of the average

energy dissipated by a single adaptation motor per unit of time. Therefore, we are able to predict the minimum

irreversibility or energy dissipated by the oscillator from the statistics of a single stationary trajectory of the bundle’s

top.

In addition to this analysis, we studied a model of two coupled oscillators governed by eqs. (1)-(2). We simulated

a model of two coupled oscillators described in ref. [15], using the simplest case with two oscillators with two degrees

of freedom (X and Xa) that move in one dimension and are coupled by a linear force of stiffness K. In fig we show

the value of the KLD rate measured using a the recording of the position of one of the two oscillators, X(1)(t) as a

function of the stiffness of the coupling K. We ignored the data from the active variable for the two coupled hair

bundles, X(1,2)
a , as well as the position of one of the bundles, X(2)(t). Fig. shows that the KLD rate, and therefore,

the time irreversibility associated to the position of one of the bundle’s top, increases when the coupling between the

oscillator increases. The value of our estimator Ḋ�(t) (using an AR(10, 50) model) reaches a stationary value when the

coupling is strong enough and the two oscillators are coupled. In Fig. we have included the value of the correlation

coefficient between the position of the two bundles C(X(1)(t), X(2)(t)). The KLD rate saturates when the correlation

is around 0.99 which corresponds to a situation in which the two bundles are completely coupled.

APPLICATION TO EXPERIMENTAL DATA

We now study if our technique can be applied to distinguish between active and passive oscillations of hair bundles

using experimental data. We apply our technique, measuring the KLD rate of stationary time series obtained from

the recording of the position of the top of a hair cell of bullfrog’s sacculus. (Experimental details).
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FIG. 3: Position of the top of the hair bundle (in nm) as a function of time (in seconds). Top: fmax = 100pN and S = 0.5,
corresponding to a monostable closed situation. Medium: fmax = 300pN and S = 0.25 corresponding to a bistable oscillation.
Bottom: fmax = 325pN and S = 0.65, corresponding to the operating point of the hair bundle.
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fmax = 100pN , S= 0.5 (MC)

fmax=300pN, S=0.25 (BI)

fmax=600pN, S=0.5 (MO)

fmax=352pN, S=0.65 (O)

fmax=439pN, S=0.8 (O)

fmax=600pN, S=1.25 (O)

FIG. 4: KLD rate as a function of time Ḋ�(t) using a AR(10, 50) model for trajectories of the bundle’s top X(t) as a function
of the total time of the trajectory (in s). For each of the 6 cases shown in the figure, we simulate a single stationary trajectory
of total time T = 125s which is sampled at a rate of ∆t = 0.12ms. From this trajectory, we measure the KLD of a sequence of
times indicated in the x−axis of the figure.

Ḋ�. Instead of focusing on the value of the KLD for a single trajectory, we study how this KLD rate changes when we

consider time series of total time t, X(t). We call Ḋ�(t) the KLD calculated from the statistics of a unique stationary

trajectory X(t) of total time t. In [5] it is shown that, for reversible series, such KLD for different times tends to

zero and scales like 1/t when considering series of time t, whereas for irreversible series, the KLD tends to a positive

value when t is large. We have studied the behavior of Ḋ�(t) for different regimes of the oscillator by using the same

estimator as before, with an AR(10, 50) model. For that, we generated trajectories of T = 125s and measured Ḋ�

using a AR(10, 50) model of subsequences of total time t < T , that start in the beginning of the original series and

end in t. In Fig. we show the value of Ḋ�(t) as a function of t in double logarithmic scale for different values of time

t = 0.125s, 1.25s, 12.5s and 125s. We observe that the scaling of Ḋ�(t) with time depends on the underlying dynamics

MO

BI

OSC

0
t

τ

ḋ�,1, AR(10, 50)
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!
dX
dt " !Kgs"X # Xa # DPo# # K spX $ Fext $ % , [2]

!a
dXa

dt " Kgs"X # Xa # DPo# # &Nafp"C# $ %a, [3]

'
dC
dt " C0 # C $ CMPo $ (c. [4]

Eq. 2 describes the dynamics of the hair-bundle position X.
The hair bundle is subjected to friction, characterized by the
coefficient !, as well as to the elastic forces !KspX and !KgsY
and the external force Fext. Active hair-bundle movements result
from forces exerted by a collection of Na molecular motors
within the hair bundle. By adjusting the gating-spring extension,
these motors mediate mechanical adaptation to sustained stimuli
(reviewed in ref. 13). The variable Xa can be interpreted as the
position of the motor collection. Eq. 3 describes the mechanics
and the dynamics of these motors by a linear force-velocity
relation of the form !adXa!dt $ !F0 % Fmot, where !a charac-
terizes the slope of the force-velocity relation. In the hair bundle,
the motors experience an elastic force Fmot $ KgsY. At stall, these
motors produce an average force F0 $ Na&fp that is proportional
to the force f generated by a single motor and to the probability
p that a motor is bound to an actin filament. Active force
production by the motors corresponds to motors climbing up the
stereocilia, i.e., dXa!dt & 0, which tends to increase the extension
of the gating springs and to open transduction channels. In Eq.
3, we neglect the fact that adaptation is incomplete. Incomplete
adaptation could be described by introducing an additional
elastic element (22). Because mechanical adaptation is regulated
by Ca2% (ref. 23; reviewed in ref. 24), we assume that the
probability for an adaptation motor to be bound to actin p(C)
depends on the intracellular Ca2% concentration C at the motor
site. Eq. 4 describes the dynamics of C, which relaxes with a time
constant '. The steady-state Ca2% concentration maintained by
the cell if the transduction channels are closed is denoted C0 and
the concentration CM '' C0 is the maximal Ca2% concentration
at the location of the adaptation motors. It is expected to be
proportional to the Ca2% concentration in the endolymph (8). In
the following, we ignore nonlinearities in p(C) and truncate a
general expansion to linear order: p(C) " p0 % p1C. We define
the strength of the calcium feedback on the motor force F0 by the
dimensionless parameter S $ !CM p1!p0. As detailed in the next
section, we have added noise terms %, %a, and (c to account for
fluctuations that result from several types of stochastic processes.

State Diagram in the Absence of Noise
To explore the dynamic behaviors of the system described by
Eqs. 2–4, we first ignore the effects of fluctuations and assume
Fext $ 0. Steady states satisfy dX!dt $ 0, dXa!dt $ 0, and dC!dt $
0. Linear stability analysis of these steady states reveals condi-
tions for stability as well as for oscillating instabilities that lead
to spontaneous oscillations by a Hopf bifurcation (25). Because
calcium dynamics at the motor site is expected to be much faster
than the hair-bundle oscillations observed in the bullfrog’s
sacculus (26), we determined the state diagram for ' $ 0 (Fig.
1). The state diagram is a function of two parameters: the
maximal force fmax $ Nafp0 produced by adaptation motors along
their axis of movement, and the dimensionless feedback strength
S of the Ca2% regulation. We assume that increased Ca2% levels
at the motor site reduce active force generation by the motors
(p1 & 0).

The state diagram exhibits different regimes (Fig. 1). If the
force fmax is small, the motors are not strong enough to pull
transduction channels open. In this case, the system is mono-
stable with most of the channels closed. Increasing fmax leads to

channel opening. For intermediate forces and weak Ca2% feed-
back, the system is bistable, i.e., open and closed channels
coexist. For strong Ca2% feedbacks, however, the motors cannot
sustain the forces required to maintain the channels open. In this
case, the system is again monostable with most channels closed.
Spontaneous oscillations occur in a region of both intermediate
forces and feedback strengths. The boundary between a stable
state and an oscillatory state corresponds to a Hopf bifurcation.
This bifurcation is subcritical near the bistable region (broken
line in Fig. 1) but becomes supercritical at larger motor forces
(solid line in Fig. 1). Note that there is no oscillation in the
absence of Ca2% feedback, i.e., for S $ 0.

The behavior of the system in the presence of an external force
can be described by response functions. However, the calculated
linear response functions of the noiseless system in an oscillatory
state display sharp singularities that are not observed experi-
mentally (see Fig. 5, which is published as supporting informa-
tion on the PNAS web site).

Fluctuations and Noise
Spontaneous hair-bundle oscillations are noisy (5). Noise terms
%, %a, and (c in Eqs. 2–4 formally take into account the effects
of various sources of fluctuations that destroy the phase coher-
ence of hair-bundle movements. The stochastic forces % and %a
act on X and Xa, respectively. The consequences of these forces
have been analyzed for nonoscillating hair bundles (27). The
fluctuations (c of the Ca2% concentration in the stereocilia result
from stochastic transitions between open and closed states of the
transduction channels (28). Noise terms are zero on average.
Their strengths are characterized by autocorrelation functions
(%(t)%(0)), (%a(t)%a(0)), and ((c(t)(c(0)), respectively. We as-

Fig. 1. State diagram of a hair bundle as a function of the maximal force fmax

that adaptation motors produce and of the strength S of Ca2% feedback on
motor activity. Lines of equal open probability Po of the transduction channels
(dotted lines) are superimposed and each are indexed by the corresponding
value for Po. The diagram is parsed into regions in which the hair bundle can
be monostable with transduction channels mostly closed (MC) or mostly open
(MO), bistable (BI), or oscillatory (gray). Hopf bifurcations occur along the line
separating oscillating from stable states: for small fmax, the bifurcation is
subcritical (broken line), whereas the bifurcation becomes supercritical for
larger motor forces (solid line). For fmax $ 352 pN and S $ 0.65 with Po $ 0.5
(E), stochastic simulations of the system closely matched the behavior of a hair
bundle that was studied experimentally (see Figs. 2 and 3). For fmax $ 439 pN
and Po $ 0.5 (‚), the noisy system displayed a global maximum of sensitivity
to small stimuli (see Fig. 4). The quality factor of the bundle’s spontaneous
oscillations was also close to the global maximum there. The state diagram was
calculated by assuming that the calcium dynamics is instantaneous ' $ 0. In the
case of ' $ 0.1 ms, the oscillatory region expands slightly toward regions of
larger motor forces (dot-dash line). Parameters used are listed in Table 1.

12196 # www.pnas.org!cgi!doi!10.1073!pnas.0403020101 Nadrowski et al.
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)FIG. 6: Displacement of the top of the bundle with respect to its average value (in nm) as a function of time (in s) for different

cells. Top: Hair cell that exhibits active oscillations, recorded with an acquisition frequency of 14kHz during 90s of experiment.

Middle: Same cell after the exposure to gentamicin also sampled at 14kHz. Bottom: Passive cell displacements, sampled at

2.5kHz for 60s of experiment.

bundles, X
(1,2)
a , as well as the position of one of the bundles, X

(2)
(t). Fig. shows that the KLD rate, and therefore,

the time irreversibility associated to the position of one of the bundle’s top, increases when the coupling between the

oscillator increases. The value of our estimator Ḋ�(t) (using an AR(10, 50) model) reaches a stationary value when the

coupling is strong enough and the two oscillators are coupled. In Fig. we have included the value of the correlation

coefficient between the position of the two bundles C(X
(1)

(t), X
(2)

(t)). The KLD rate saturates when the correlation

is around 0.99 which corresponds to a situation in which the two bundles are completely coupled.

APPLICATION TO EXPERIMENTAL DATA

We now study if our technique can be applied to distinguish between active and passive oscillations of hair bundles

using experimental data. We apply our technique, measuring the KLD rate of stationary time series obtained from

the recording of the position of the top of a hair cell of bullfrog’s sacculus. (Experimental details).

The frequency of the oscillations of ear hair bundles of bullfrog’s sacculus depends on the cell: different cells oscillate

at different frequencies [16]. To verify that our technique is valid for several cases, we have to check if we can distinguish

between active and passive cells with different oscillation frequencies. To do that, we recorded the displacement of

the top of the bundle with respect to its average value using the data of different hair cells and different sampling

rates. First, we measure the position of the top of a hair bundle X(t) of a cell that exhibits spontaneous oscillations

of amplitude 20nm using an acquisition frequency of 14kHz (see top panel in Fig. ). Secondly, we added gentamicin

to the endolymph of the cell. As pointed in [16], gentamicin blocks transduction channels are and produces that the

oscillations of the bundle become Hookean of amplitude 5nm as shown in the middle panel of Fig. . As a third case

active (alive)

gentamicin (drugged)

passive (dead)

Rana catesbeiana

τ ∼ 100s
fosc = {8, 15, 20} Hz
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FIG. 7: Kullback-Leibler divergence rate of the position of the bundle’s top X(t), recorded in experiments, as a function of
time. We use the estimator of the KLD The estimator of the KLD rate of Eq. (17), Ḋ�(t), after fitting the series to an a
AR(10, 50) model. Yellow squares: Cell 1, with total time of the recording T = 60s and data acquisition rate f = 14kHz. Blue
circles: Cell 2, T = 90s and f = 25kHz. Red diamonds: Cell 3, T = 50s and f = 20kHz. Black open squares: Cell 1 with same
total recording time and acquisition frequency in gentamicin endolymph. Brown: Passive cell, with T = 30s and f = 2.5kHz.
The KLD of the experimental noise is also shown in dashed lines (Magenta ”+” noise light with T = 30s and f = 25khz, green
triangles noise off with T = 30s and f = 25khz). In cyan, we add a line that has a dependence of 1/time to guide the eye.

study, we measured the position of the bundle of a cell that does not exhibit spontaneous oscillations but only passive

oscillations due to the thermal fluctuations of the environment. The position of the bundle is also oscillatory and

stochastic with an amplitude of 10nm as shown in the bottom panel of Fig. .

We now analyze how the KLD rate of a single trajectory of the top of the bundle X(t) changes with time for

different hair cells. Apart from the cells whose oscillations are shown in Fig. , we also measured the position of the

bundle in two other cells that oscillated spontaneously at different frequencies. For completion, we also measured

the KLD of the experimental noise (noise off? on?). Fig. is a summary of our results where the KLD rate for the

different cases is shown as a function of time (details of every cell are specified in the caption). We observe that for

the three cases in which the cell oscillates spontaneously, the KLD rate shows a plateau for long times, saturating

to a value that is greater than zero. The KLD of the rest of the signals (passive oscillation, experimental noises and

the oscillation of one of the cells in the presence of gentamicin) goes to zero like 1/time as shown in Fig. , which is

indicative of the system to be in equilibrium.

IRREVERSIBILITY AND ENTROPY PRODUCTION IN THE STEADY STATE.

We consider stationary processes that are described by a sequence of real-valued numbersX(t) = {x(t1), x(t2), · · · }.

A stationary process is considered statistically reversible if, for every sequence length n, the series {x(t1), · · · , x(tn)}

and the time-reversed series {x(tn), · · · , x(t1)} have the same joint probability distributions, i.e. p[x(t1), · · · , x(tn)] =

τ ∼ 100s

ḋ�,1, AR(10, 50)

ḋ�,1 ∼ 100s−1

�Wdiss� ≥ 100
kBT

s

Energy dissipation
of a single motor

active

passive



Conclusion

Estimation of minimum energy dissipation 

Detection of bifurcations

The KLD has potential applications in stationary 
processes of microscopic biological systems:

Distinction between active and passive oscillations

Detection of bifurcations

Distinction between active and passive oscillations

Estimation of minimum energy dissipation 
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