
J. S
tat. M

ech. (2017) 113403

Equilibria, information and frustration 
in heterogeneous network games  
with conflicting preferences

M Mazzoli1,2 and A Sánchez3,4,5

1 Dipartimento di Fisica, Universitá degli Studi di Torino, I-10125 Torino, 
Italy

2 Instituto de Física Interdisciplinar y Sistemas Complejos IFISC (CSIC-UIB), 
Campus UIB, 07122 Palma de Mallorca, Spain

3 Grupo Interdisciplinar de Sistemas Complejos (GISC), Departamento de 
Matemáticas and Institute UC3M-BS for Financial Big Data, Universidad 
Carlos III de Madrid, Leganés, 28911 Madrid, Spain

4 Instituto de Biocomputación y Física de Sistemas Complejos (BIFI),  
Campus Río Ebro, Universidad de Zaragoza, 500018 Zaragoza, Spain

5 Unidad Mixta Interdisciplinar de Comportamiento y Complejidad  Social 
(UMICCS) UC3M-UV-UZ, Universidad Carlos III de Madrid, 28911  Leganés, 
Spain

E-mail: mattia@ifisc.uib-csic.es

Received 13 June 2017
Accepted for publication 4 October 2017  
Published 17 November 2017

Online at stacks.iop.org/JSTAT/2017/113403
https://doi.org/10.1088/1742-5468/aa9347

Abstract. Interactions between people are the basis on which the structure of 
our society arises as a complex system and, at the same time, are the starting 
point of any physical description of it. In the last few years, much theoretical 
research has addressed this issue by combining the physics of complex networks 
with a description of interactions in terms of evolutionary game theory. We 
here take this research a step further by introducing a most salient societal 
factor such as the individuals’ preferences, a characteristic that is key to 
understanding much of the social phenomenology these days. We consider a 
heterogeneous, agent-based model in which agents interact strategically with 
their neighbors, but their preferences and payos for the possible actions dier. 
We study how such a heterogeneous network behaves under evolutionary 
dynamics and dierent strategic interactions, namely coordination games and 
best shot games. With this model we study the emergence of the equilibria 
predicted analytically in random graphs under best response dynamics, and we 
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extend this test to unexplored contexts like proportional imitation and scale free 
networks. We show that some theoretically predicted equilibria do not arise in 
simulations with incomplete information, and we demonstrate the importance 
of the graph topology and the payo function parameters for some games. 
Finally, we discuss our results with the available experimental evidence on 
coordination games, showing that our model agrees better with the experiment 
than standard economic theories, and draw hints as to how to maximize social 
eciency in situations of conflicting preferences.

Keywords: evolutionary game theory, socio-economic networks, agent-based 
models, critical phenomena of socio-economic systems

1. Introduction

The behavior of complex systems is determined by their components and, chiefly, by 
their interactions. Generally speaking, specifying the interactions of a complex system 
[1] involves a network that indicates who interacts with whom, and the rule or law 
governing the interaction itself. This paradigm applies to purely physical systems, but 
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also to social systems [2, 3], the dierence being that in the latter case interactions are 
strategic, i.e. the agents have some degree of intelligence and can anticipate the reac-
tions of their counterparts to their own actions. Such a situation requires a description 
in terms of game theory [4] and, in fact, this framework is becoming very common and 
useful to describe complex systems in social and economic systems [3, 5–8]. However 
traditional game theory fails to explain which Nash equilibrium is to be selected when 
more than one equivalent choices are present [9]. Evolutionary game theory and agents 
based modeling give a solution to this problem: evolution selects the successful strate-
gies, driving the population to an equilibrium while, on the other hand, agent based 
modeling tries to understand the results of adaptive behaviours in terms of emergence 
and self-organisation [10].

The complex systems community has devoted a lot of eort to this approach in this 
century (see, e.g. [11–14] for reviews). Typically, the models considered in this research 
are a combination of the above mentioned ingredients of games (describing how inter-
actions take place) and networks (describing the interaction structure) with some evo-
lutionary dynamics [15]. The rationale for such an approach is twofold: on one hand, 
several of the dynamics can be shown to lead to equilibrium states that are related to 
the Nash equilibria of the network game [4, 16], i.e. to what the system should be actu-
ally doing were it formed by rational agents. On the other hand, a dynamical approach 
is intended to explain which, if any, such equilibria are actually reached by pointing to 
a mechanism that shows how they can be reached by agents whose cognitive capabilities 
are bounded, i.e. they do not conform to the omniscient rational agents of economics.

This type of approach is currently being applied to understand dierent socially 
relevant issues, such as the emergence of cooperation [17]; where a paper on spatio-
temporal chaos [18] originated a huge number of papers on theoretical models [11, 12]. 
This eort further fructified in several experiments with human subjects [19–21] lead-
ing to the understanding of the dynamics in terms of moody conditional cooperation 
and reinforcement learning [22–24]. In this context, a very pressing issue that is key to 
understanding human societies and how they can be nudged towards cooperating with 
each other is that of identity (religious, linguistic, political, etc) as the source or reason 
for dierent preferences [25]. Indeed, the interplay between our preferences and the 
influence of our social relationships (friends, acquaintances, coworkers) on our choices 
arises in many aspects of our daily life. This occurs, for instance, when we choose 
friends [26] or neighbors [27], a process where individual preferences are a key in our 
decisions. Another example of the importance of preference is the large influence peers 
have on human behavior [7], aecting whether people’s behavior aligns to that of their 
social relationships [28]. Such social influence eects range from which products we buy 
[29], to the decision to get involved in criminal activities [30], or to our participation 
in collective action [31]. Particularly important is the case of strategic interaction in 
networks, a realization of which is the situation in which one has to decide on a tech-
nological product that should be compatible with the co-workers’s choices. This is a 
case of a coordination problem, in the class we will discuss below, and clearly choices 
change depending on others’ decisions, but every person has her own initial preference 
[32]. All these particular situations boil down to a specific research question: what is 
the eect of individual preferences on strategic interaction, be it of the coordination or 
anti-coordination type? 

https://doi.org/10.1088/1742-5468/aa9347
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We study this issue in a very broad range of socially relevant scenarios, by using 
the model introduced by Hernández et al [33]. This is a generalization of an earlier 
work [29] where two entire classes of games were studied, namely coordination games 
and social dilemmas (more precisely, strategic complements and strategic substitutes) 
in random networks. In [33], the problem of diversity in preferences was analyzed by 
considering that there are two dierent types of players in the population, and that 
each type prefers (because the corresponding payo is larger) one of the two avail-
able actions. Therefore, coordination and/or cooperation becomes more dicult, in so 
far that agents have incentives to choose a specific action that yields more benefit to 
them irrespective of the choices of those with whom they interact. In fact, as has been 
recently shown [34], this diculty in coordination is predicted to be largely dependent 
on the payo ratio between the preferred and the disliked actions, but it may even 
disappear when payos become similar. In this context, we here address a number of 
issues that are relevant from viewpoints of both the evolutionary dynamics of complex 
systems and its application to societal issues. Firstly, we intend to identify the eect 
of the presence of agents with dierent preferences in the system and how this eect 
depends on the network structure. Secondly, we want to understand whether these 
eects change in cases where all agents would prefer to choose the same action as the 
rest (complements/coordination) or dierent actions (substitutes/anti-coordination). 
Last, but not least, we want to assess the relevance and validity of our approach by 
comparing with existing experimental results.

Our results are organized as follows: we begin by introducing the main game theory, 
focusing on the conceptual dierences that the preferences paradigm brings in to the 
homogeneous framework (section 2). We then study in section 3 the dynamically rel-
evant equilibria and compare them with the ones found in [33, 34] with an analytical, 
static approach. Subsequently, we also extend the study to the case of a scale-free 
network and proportion imitation, comparing the dierences when the same games are 
played in the absence of individual preferences. Our next step is to look into the case 
of incomplete information (section 4), where agents do not have knowledge about their 
neighborhood, which we analyze having the complete information situation case as our 
reference point. In this case, only best response case is used because, as we will discuss 
below, proportional imitation cannot be applied for lack of information. In the conclu-
sion (section 5) we summarize our results, compare with the available experimental 
results, and discuss how they give insight on solving coordination problems in situa-
tions of conflicting preferences.

2. Model

The building blocks of our models are a set of agents, a game that specifies their 
interaction, and a network of connections between them that rules who interacts with 
whom. Each agent has two possible actions, which we label X = {0, 1} and a preference 
for one of them. Due to this preferential heterogeneity, individuals who choose their 
preferred action gain greater payos than when they choose the other one, for every 
game in the families we will consider below. This is mathematically represented by two 
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parameters, which represent the rewards for choosing the liked or disliked option, and 
hence aect the incentive to change action and so the dynamics of the game. In order 
to cover an ample set of games (i.e. of possible interactions between people) we work 
with a very general payo function

ui(θi, xi, xNi
) = λθi

xi
[1 + δ

∑
j∈ki

I{xj=xi} + (1− δ)
∑
j∈ki

I{xj �=xi}] (1)

where xi is the action taken by agent i, ki are the neighbors of agent i as specified by 
the corresponding network, xNi

 is the vector of actions taken by i’s neighbors, θi is 
agent i’s preference (that, as actions, can be 0 or 1), and I{xj=xi}indicates the neighbors 
who choose the same action as i. As for the payos λ takes the value α if the agent 
takes his liked action or β otherwise, where 0 < β < α < 2β, and δ defines the kind of 
game we are playing: if δ = 1 we are playing a coordination game (CG; the best action 
is to do as others do), if δ = 0 we are playing anticoordination game (AG; the best 
action is to do the opposite of what the others do). We note that in economics jargon 
these game families are usually referred to as strategic complements and strategic sub-
stitutes, respectively [29], but in this work we prefer to use the names above as they 
make it easier for the reader to grasp the actual meaning of the two types of interac-
tion. We also note that the original homogeneous model in [29] is recovered when all 
players have the same preference. Below, we will in addition dierentiate two types of 
arrangements: the first is a situation of complete information, where every individual 
knows who his neighbours are and what they do at every round of the game; the sec-
ond is a situation of incomplete information, where agents know how many neighbors 
they have and the distribution of preferences in the network, but they do not know 
what the specific preferences of their neighbors are. In this last case, agents can infer 
the proportion of neighbors who might prefer action 1 or 0 knowing the preferences 
distribution and their degree, but they do not know exactly the distribution of actions 
in their local network. Finally, we need to specify the dynamics we will consider in this 
model. Following [35], we will use the following two dynamics as representative of the 
more economics-style (best response) and evolutionary (imitation) choices.

2.1. Best response

Let us call χi the number of agent i’s neighbors who choose action 1, so the number of 
neighbors that choose action 0 is ki − χi. As described in [33], from the purely static, 
theoretical viewpoint in economics, we have two thresholds to compare with χi in order 
to permit to agent i to decide which action to take:

τ(ki) =

[
β

α + β
ki −

α− β

α + β

]
, (2)

τ(ki) =

[
α

α + β
ki +

α− β

α + β

]
. (3)

With these two thresholds, the best response for agent i with preference θi = 1 in a 
CG is given by:

https://doi.org/10.1088/1742-5468/aa9347
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xi =

{
1 iff χ � τ(ki)

0 otherwise; (4)

Conversely, the best response for agent i with preference θi = 0 is given by:

xi =

{
0 iff χi � τ(ki)

1 otherwise. (5)

These two options for the CG are simply illustrated in the sketch of figure 1. below.
Similarly, in the case of an AG, agent i will choose the liked action when χi � τ(ki) 

for θi = 1 and when χi � τ(ki) for θi = 0. With these results, the predictions from the 
analysis in [33] are that equilibria in the network are such that all players coordinate on 
one action (specialized) or both actions are chosen by dierent players (hybrid). There 
are two categories of equilibria, depending on whether all players coordinate in choos-
ing the action they like (satisfactory) or at least one player chooses the disliked option 
(frustrated). So we have four possible equilibria: (i) satisfactory specialized (SS) where 
all players coordinate on the same action, which is their preferred choice (so, this can 
happen only in the homogeneous model, where all agents have the same preference); 
(ii) frustrated specialized (FS), where all players coordinate on the same action, but at 
least one of them is choosing his disliked option; (iii) satisfactory hybrid (SH), where all 
players choose their preferred option but there is at least one player with a preference 
dierent from the rest, so that both actions are present; and (iv) frustrated hybrid (FH) 
which presents both actions and at least one player chooses her disliked option. We will 
analyze below what happens dynamically, i.e. when the game is repeated for a number 
of rounds starting from a random initial condition and players choose their action in 
their next round through myopic best response [36], by deciding their next action as a 
best response to their neighbors’ actions in the previous round.

2.2. Proportional imitation

The second dynamics we will consider in this study consists of the imitation of a neigh-
bor: at each time step a fraction of the agents choose one of their neighbors at random 
and, if the neighbor’s payo is higher than her payo, she chooses the neighbor’s action 
for the next time step with a probability given by the dierence between their two 
payos, according to

P{π → π
(t+1)
i } =

{
(π

(t)
j − π

(t)
i )/φ if π

(t)
j > π

(t)
i ,

0 otherwise.
 (6)

The reason for considering this dynamics is that it is the evolutionary version of the 
well-known replicator dynamics [4] that, in the limit of an infinite number of agents, 
can be shown to converge to the Nash equilibria of the game. However, the approach to 
the equilibria is dierent from the best response case: in best-response, all agents try to 
choose directly the action that would give them the largest payo given the actions of 
the others, whereas in imitation dynamics agents have a much smaller cognitive capa-
bility and limit themselves to imitate some action that they perceive to yield higher 
payos. Imitation is thus a much more realistic dynamic to represent human (or even 

https://doi.org/10.1088/1742-5468/aa9347
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animal or bacteria) decisions as arising from something akin to a learning (or adapta-
tion) process. On the other hand, the best response is deterministic whereas imitation 
dynamics is stochastic, which provides another interesting comparison.

2.3. Simulations

In what follows, we report the results of a simulation program in which we have 
looked at the behavior of the model for its most important parameters: the payo 
to choose the liked option, α, the payo to choose the disliked option, β, and the 
proportion of 1-preference agents ρ, always respecting the conditions of the games: 
0 < β < α < 2b and 1 < ρ < 0. We have considered networks with n = 102 nodes (except 
when specified) and all the results are averaged over a number of simulation iterations 
each one composed of the amount of time steps t necessary to reach the equilibrium in 
that specific case. Equilibrium is defined as is customary in this context as a state that 
once it is reached it is not abandoned by the system. Therefore, for larger values of t 
we would always observe the same state. Simulations with more nodes have also been 
made and will be reported below in order to check our conclusions, and the number 
of iterations has been taken to be 20 or 50, also for verification purposes. Simulations 
are run over 8  ×  8 dierent sets of values for α and β, choosing 0.2 � α � 0.9 and 
α
2
< β < α, and they are as long as needed for the system to equilibrate. We verified our 

code by checking that, for the homogeneous model, we recovered the results reported in 
[35], with very satisfactory results. In addition, we considered two types of networks: 
an Erdös–Reńyi (ER) [37] random graph, for dierent values of connectivity m, and a 
Barabási–Albert (BA) [38] scale free graph, with three (the parameter typically referred 
to as m in the BA model, dierent from the connectivity m of our ER networks) edges 
connecting every new node added to the graph to nodes already in the network. The 
reason for this is that the theoretical predictions summarized above are only valid for 
an uncorrelated random graph, which is represented by the ER network. Therefore, we 
find it interesting to include a completely dierent network, such as the BA one, that 
is in fact associated to many more realistic social situations.

3. Complete information

We begin by discussing the results where players have complete information about 
their neighbors’s preferences. For the sake of clarity, we present the results separately 
for each type of game and each type of dynamics. In this section and throughout the 
paper, in all plots every dot is a particular set of parameters. In equilibria graphics, red 
dots are the specialized satisfactory equilibria, yellow ones are the specialized frustrated 

Figure 1. Action change thresholds for both preferences in the Coordination 
Game.

https://doi.org/10.1088/1742-5468/aa9347
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equilibria, green ones are the hybrid frustrated equilibria, and blue ones are potentially 
hybrid satisfactory equilibria or hybrid frustrated.

3.1. Coordination game

3.1.1. Best response. In order to compare with the predicted results from the static 
approach, we discuss first the uncorrelated networks given by the ER model. Our first 
observation is that, as we raise the connectivity of ER networks, equilibria tend to be 
more specialized and hybrid equilibria tend to disappear. Figure 2 shows clearly that 
equilibria are symmetric for dierent fractions of preferences, as was to be expected 
as there is nothing intrinsically dierent between the two types. When the two prefer-
ences have an equal number of agents in the population, the final density of agents who 
choose action 1 in equilibrium takes values in a range around 0.5, a range that tends 
to decrease the more we raise the ratio α/β. This is due to the particularities of the 
dierent networks realized in the simulations, as there may be local environments that, 
just by chance, make agents choose an action that is not their preferred one.

It is important to realize that the ratio α/β gives us a direct measure of the incen-
tive given to agents to maintain their preferred action instead of changing it, so it is 
clear that when this incentive is small a larger variety of outcomes are possible. For 
instance, when α/β → 1, if the simulation starts with a 60% of 0 agents, the final equi-
libria will be a 0-specialized frustrated one, because the 40% of initial 1 agents are not 
suciently motivated to maintain their liked option. On the contrary, when α/β → 2, 
in the same case of a 60% of initial 0 preferences, a relevant part of the 1 agents resist 
the temptation to go against their preferences, because the incentive to maintain their 
preferred action is really higher than the one given to change (unless in very specific 
realizations one 1 agent is surrounded by a large number of 0 agents; this is something 
that occasionally, but not frequently, will occur). Therefore, the final equilibrium is not 
specialized anymore, but it is hybrid and there will be less frustration in the final state. 
This is seen in figure 2 by the fact that for small α/β the transition from one specialized 
equilibrium in the action of the majority of the agents to the other is much more abrupt 
than for large α/β, implying that the range of fractions of each type leading to hybrid 
equilibria is larger in the latter case. This is especially so in the less connected graphs: 
in the case of α/β → 2 in the final states there are more satisfied agents, because they 
are pushed to maintain their action as they do not have many neighbors who could 
induce them to change. We can say the opposite in the case with α/β → 1 where in the 
final states we find more frustrated agents and specialized equilibria. Figure 3 confirms 
this insight by showing the equilibria for the two extreme values of the payo ration 
and including the density of frustrated agents. For small α/β, the fraction of frustrated 
agents grows approximately linearly with the fraction of 0 agents until they reach a 
50–50 distribution: this makes sense as for small payo ratios only a small majority of 
agents of the opposite preference is needed to make one change. Interestingly, frustra-
tion is much lower for larger α/β, reflecting the fact that locally it may pay to keep 
one’s preferred action even if there are more neighbors of the opposite side. This is 
particularly true for low connectivity networks; larger connectivity leads to a greater 
chance of having many neighbors of the opposite type forcing one to change (keep in 
mind that best response is deterministic and always chooses what is best in view of the 
environment).

https://doi.org/10.1088/1742-5468/aa9347
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Let us now look at the case of the BA scale free graph. As we can see from the 
plot, the overall behavior is not far from the ER random graph one with m = 5. This is 
likely to result from the fact that there is a large majority of agents that have a small 
number of neighbors, and therefore in terms of the total fraction of agents choosing 
each action this subset of nodes dominates the dynamics. On the contrary, hubs are 
just one neighbor of other agents, so in a best response environment their contribution 
to the decision of their neighbors is not particularly relevant. In this manner, we have 
identified two main variables that determine the type of equilibria that will come out 
in a coordination game: the connectivity of the graph and the payo ratio.

In the light of what we know about the homogeneous model [33], we observe that in 
both models connectivity is a catalyst for the achievement of a specialized equilibrium: 
the more the connectivity is, the less the hybrid equilibria will be. What was true in 
the homogeneous case about cooperation (understood as coordination in the Pareto-
dominant or more profitable equlibrium) can be also said of the heterogeneous model 
about coordination: if full cooperation was reached thanks to high connectivity under 
the same cooperation incentive, now high connectivity allows, under the same reward 
ratio, to reach full coordination (which means specialized equilibria) in the most of the 
cases. On the other hand, an important dierence with the previous model is that, 
in the homogeneous case, agents had an incentive to cooperate (α) which helped the 
achievement of fully cooperative final states. When preference enters the game, there 
is a payo ratio which hinders full coordination, because it preserves the satisfaction 
of the individual. Therefore, preference does qualitatively change the problem and, 
more importantly, the perception of the outcome of evolution as satisfactory by the 
individuals.

In order to verify the above conclusions, we raised the number of agents to n = 103 
to see if network size could aect the final equilibria. Comparing graphics in figure 4 
with those with n = 102 nodes we can see that the size of the network fosters coordina-
tion. Hybrid equilibria almost disappear, although we find some hybrid equilibria for 
low connectivities, particularly in ER graphs with m = 5 and in BA scale free graphs. 
Levels of frustration go up since every agent now coordinates better with their neigh-
bors, and this takes the final configuration to a more frequent specialized equilibria. 
Figure 5 confirms this interpretation: indeed, for α/β = 2 we observe a small dierence 
from the case with 100 nodes, with a phase transition from a specialized equilibrium 
to the other that is much sharper for high connectivities. Correspondingly, frustra-
tion curves in figure 5 show higher curves than before, since now coordination is more 
frequent and agents prefer to change action when α/β = 1. On the contrary, when 
α/β = 2 preference matters more when preference distribution is close to equal compo-
sitions, and in fact when the distribution is 50–50 the system reaches a more satisfac-
tory equilibrium even if it is not hybrid satisfactory. Therefore, what we observe is that 
for larger systems coordination is found in a wider range of fractions of 0-preference 
agents, but that even for 1000 agents there is still quite a sizable range for which hybrid 
equilibria are possible. Increasing the network size up to 10 000 nodes might have given 
us a better understanding of the role of connectivity in the reach of equilibria, but this 
range of sizes was beyond our capabilities due to time consuming computational issues: 
with 1000 node networks, simulations took up to one day to run all the necessary time 
steps to reach equilibrium. In any event, by increasing the network size from 100 to 

https://doi.org/10.1088/1742-5468/aa9347
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Figure 2. Final average density of agents who play action 1 d1 against fraction 
of 0-preference players ρ0 and reward ratio α/β in equilibrium, for the CG on 
dierent ER networks (connectivity as indicated in the plot) and a BA network. 
Red: specialized satisfactory equilibria; yellow: specialized frustrated equilibria; 
green, hybrid frustrated equilibria; blue, potentially hybrid satisfactory equilibria 
or hybrid frustrated.

Figure 3. Final average density of frustrated agents df over 50 realizations against 
0-preference density ρ0 (solid lines). Shown also is the corresponding final average 
density d1 (dashed lines). (a) Coordination game with reward ratio α/β = 1. (b) 
Coordination game with reward ratio α/β = 2. Lines are as indicated in the plot.
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1000 nodes we have already seen an important reduction of the outcomes variability 
for every kind of network. Indeed, both for ER and BA networks, we did not observe 
significant variabilities in the outcomes when running dierent realizations of the same 
network games with the same conditions. In particular, for BA networks the outcome 
variablity is much lower than the one observed in ER networks.

3.1.2. Proportional imitation. We now turn to the study of the model under propor-
tional imitation dynamics. In this case, we simulated ER random graphs for dierent 
values of connectivities and a BA scale free graph with only 10 iterations to save com-
puting time, because reaching the equilibrium sometimes takes much longer than in the 
deterministic case of the best response discussed in the previous subsubsection.

It is interesting to keep in mind that in simulations of the homogeneous model with 
proportional imitation no hybrid equilibria were found [35], the only equilibria aris-
ing being specialized. In our study, for the heterogeneous model hybrid equilibria do 
appear, expecially in the scale free graph as shown in figure 6. While in the ER random 
graphs hybrid equilibria appear only in the neighbourhood of a 50–50 distribution of 
preferences, in the scale free graphs almost the whole set of parameters leads to the 
emergence of hybrid equilibria.

Frustration curves (figure 7) do not show large dierences between ER and BA 
graphs, the main reason being that when the reward ratio is low and the distribution 
is equal, the selection dynamic goes totally random. This is so because agents choose 
a random neighbor, independently of their preference, and subsequently they choose 
their neighbours action if the payo is better than their own one. When α/β = 1 this 
implies that half of the 0-individuals and the half of the 1-individuals will eventually 
change their action, which results in a 50% of the frustration in the final state. This 
is independent of the type of network because, for this, dynamics agents update their 
action without taking into account their whole neighborhood as they only look at a 
randomly chosen neighbor.

On the other hand, the reward ratio does not aect the sharpness of the crossover 
from one specialized equilibrium to the other one as the connectivity does: indeed, less 
connected ER and BA scale free graphs in figure 7 show smoother crossovers for both 
values of the reward ratio, while the frustration curves are also very similar for α/β = 1 
and α/β = 2.

3.2. Anticoordination game

3.2.1. Best response. In this subsection, we will be dealing with AG, i.e. strategic 
interactions in which the best thing to do is the opposite of one’s partners. However, 
this is not easy in so far as in our model players intrinsically prefer a specific action 
over the other, which may coincide with that of their partners. In our simulations for 
the AG we do not observe very relevant dierences for dierent connectivities, but in 
figure 8 we do observe dierences between ER and BA scale free graphs: for the former, 
the dependence on the reward ratio is smoother, but for the BA network (and, to some 
extent, for the ER network with m = 5) it appears that there is a type of behavior when 
α/β � 1.5, and a dierent one for larger values. Small reward ratios lead to behavior 
that is mostly independent of the preference composition of the population, whereas 
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larger reward ratios give rise to final states in which there is a linear relation between 
the density of 0 actions and the density of 0 agents. In other words, for large α/β 
less agents will feel inclined to change their preferred action to anti-coordinate with 
their neighbors. Figure 9, that shows the frustration dependence on the composition 

Figure 4. Final average density of agents who play action 1 d1 against fraction 
of 0-preference players ρ0 and reward ratio α/β in equilibrium, for the CG on 
dierent ER networks (connectivity as indicated in the plot) and a BA network. 
Simulations with 1000 agents. Colors as in figure 2.

Figure 5. Final average density of frustrated agents df over 50 realizations against 
0-preference density ρ0 (solid lines). Shown also is the corresponding final average 
density d1 (dashed lines). (a) Coordination game with reward ratio α/β = 1,  
(b) Coordination game with reward ratio α/β = 2.
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for the two extreme cases of the reward ration, indicates clearly that this is the case. 
Another interesting feature that this plot shows is that, opposite to the case of CG, 
the minimum frustration occurs for intermediate compositions, being clearer for large 
α/β. Specialized equilibria do not exist in this case for any population composition, and 
neither do satisfactory equilibria. Interestingly, for low reward ratios anti-coordination 
is almost perfect, in the sense that half the agents choose one action and the other half 
choose the other, but their choices do not correlate with their preferences, which in turn 
makes half the population frustrated.

Comparing this case with the same one in the homogeneous model is not easy since 
we had no reward parameters in that case. In the homogeneous model connectivity 
fostered defection, whereas in the heterogeneous model connectivity has no role as we 
have just discussed. Similarities can be seen when we take into consideration scale free 
graphs, because in this structures anticoordination works generally better and frustra-
tion is reduced in heterogeneous distributions. In fact, in the homogeneous model, as in 
the heterogeneous one we see that final configurations are better anticoordinated than 
those in the random graphs.

3.2.2. Proportional imitation. The dynamics of AG under proportional imitation is, 
generally speaking, similar to that under best response, but there are some specific 
features worth discussing. First of all, with a homogeneous distribution the system can-
not change its state by definition, since no agent can imitate an action that nobody is 
playing. This is represented by the extreme cases (red dots) in figure 10. Outside these 
special values, a large degree of anticoordination is achieved in most cases. In the case 
of heterogeneos preference distributions with reward ratio α/β → 1, anticoordination is 
reached almost always, except for the scale free networks, where the transition to spe-
cialized equilibria is smoother than in the random graphs (see also figure 11). As before, 
anticoordination works worse when α/β → 2, because obviously the agents are more 
motivated to keep on playing their preferred option. Frustration final values show that 
for homogeneous distributions there is no frustration in the final states, as of course 
they did not anticoordinate at all, so they kept on playing their liked action till the end. 
We observed a dierence between the random graphs and the scale free graphs: when 
α/β → 1 frustration is reduced when the distribution is close to 50–50, but not in the 
scale free graphs where there is a maximum of frustration; when α/β → 2 it appears 
that the scale free architecture makes it more dicult to anticoordinate and to stay 
satisfied. With α/β = 1 the crossover to specialized equilibria is sharp, although not so 
much for low connectivity graphs. On the contrary with a high reward ratio α/β = 2, 
connectivity does not aect the equilibria at all, but raising the reward ratio makes the 
crossover much smoother than before.

4. Incomplete information

Thus far, we have been discussing a situation in which all agents have full informa-
tion about their surroundings, both about types of partners and about their actions. 
However, in many social contexts it is dicult to have information about others’ pref-
erences, and therefore it is worth considering how the results change when we switch 
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to an incomplete information framework. In this case, agents know what they like (i.e. 
their own preference, of course), they know how many neighbors they have, but they do 
not know who these neighbors are. All they can resort to, to decide on their action, is a 
distribution of preferences that allows them to estimate the quantity of the two types of 

Figure 6. Final average density of agents who play action 1 d1 against fraction 
of 0-preference players ρ0 and reward ratio α/β in equilibrium, for the CG on 
dierent ER networks (connectivity as indicated in the plot) and a BA network. 
Colors as in figure 2.

Figure 7. Final average density of frustrated agents df over 10 realizations 
against 0-preference density ρ0 (solid lines). Shown also is the corresponding final 
average density d1 (dashed lines). Coordination game with reward ratio α/β = 1, 
Coordination game with reward ratio α/β = 2.
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neighbors they will have around them. This is a quite realistic assumption as very often 
one has an idea of how opinions or preferences are distributed in the population (e.g. 
through polls) but is unaware of the specific preferences of the people with whom one is 
interacting. Our aim is to show if the simulation results of our agents based model fit 
with the theoretical analysis, which showed how the incomplete information framework 
reduces the multiplicity of Nash equilibrium with respect to those obtained with the 
complete information framework.

In what follows, we discuss our results under best response dynamics. In the frame-
work of incomplete information, we cannot consider proportional imitation dynamics, 
since it is not permitted for the agent to know their neighbour’s payo, the agent 
knows only their own preference, the number of neighbours and distribution of prefer-
ences present in the network. Therefore, a payo comparison is not possible, making 
the dynamics unapplicable to this case.

4.1. Coordination game

Compared with the equilibria we found with the complete information framework we 
see a strongly reduced and ordered set of equilibria in figure 12, confirming what the 
work of Galeotti et al [29] predicted. There are less dots in the figure, indicating that 
the system ends up with a reduced set of configurations. On the other hand, there 

Figure 8. Final average density of agents who play action 1 d1 against fraction 
of 0-preference players ρ0 and reward ratio α/β in equilibrium, for the AG on 
dierent ER networks (connectivity as indicated in the plot) and a BA network. 
Colors as in figure 2.
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are similarities between the two informational setups: as we discussed above, raising 
connectivity implies the loss of many hybrid equilibria, taking the system to more 
specialized configurations. Looking at frustration in figure 13 we see full satisfactory 
equilibria when we play games with 50-50 distributions. This agrees with the analytic 
results obtained [33], where it was found that when the distribution on preferences is 

very heterogeneous, α
α+β

> ρ > β
α+β

, with ρ being the fraction of players with preference 

1 in the population, then satisfactory hybrid configurations appear as a consequence of 
symmetric equilibrium. The theoretical predictions are in fact more specific, and can be 
summarized as follows: there exists only a pure symmetric equilibrium, and

 •	 if α
α+β

> ρ > β
α+β

 then every symmetric equilibrium is satisfactory for any 

connectivity,

 •	 if ρ > α
α+β

 then the action of a given player may only go from 0 to 1 as the degree 
increases, and all players with preference 1 are satisfied, and

 •	 if ρ < β
α+β

 then the action of a given player may only go from 1 to 0 as the degree 

increases, and all players with preference 0 are satisfied.

As is also shown in figure 13, similarly to the previous cases, with α/β = 1 connec-
tivity does not aect at all the sharpness of the crossover, but for α/β = 2 we notice 
an interesting linear behavior with respect to the proportion of players of one or the 
other preference. With α/β = 2, the plot shows that in the range of 0.4 < ρ < 0.6 full 
satisfactory hybrid equilibria are reached for the CG in this incomplete information 
framework. In figure 14 we show the behaviour of frustration in an alternative presen-
tation to better compare the results directly with the theory. As can be see from the 
four cases, the theoretical limits for ρ to reach full satisfactory equilibria may not be 
quantitatively correct, but most importantly the analytical prediction demonstrates 
to be qualitatively correct and even reasonably accurate. Cases (a) and (c) are sym-
metric, demonstrating the symmetry of the equilibria. In case (d) the full satisfactory 

Figure 9. Final average density of frustrated agents df over 50 realizations against 
0-preference density ρ0 (solid lines). Shown also is the corresponding final average 
density d1 (dashed lines). (a) Anti-coordination game with reward ratio α/β = 1, 
(b) Anti-coordination game with reward ratio α/β = 2.
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Figure 10. Final average density of agents who play action 1 d1 against fraction 
of 0-preference players ρ0 and reward ratio α/β in equilibrium, for the AG on 
dierent ER networks (connectivity as indicated in the plot) and a BA network. 
Colors as in figure 2.

Figure 11. Final average density of frustrated agents df over 10 realizations against 
0-preference density ρ0 (solid lines). Shown also is the corresponding final average 
density d1 (dashed lines). (a) Anti-coordination game with reward ratio α/β = 1, 
(b) Anti-coordination game with reward ratio α/β = 2.
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configuration is never reached, since the 1-preferences density is too low compared to 
β

α+β
, even if it is higher than α

α+β
.

4.2. Anticoordination game

The case of AG under best response dynamics is peculiar because, as discussed in 
[36], the fact that agents try to anticoordinate leads to unrealistic outcomes when 

Figure 12. Final average density of agents who play action 1 d1 against 0-preference 
density ρ0 and reward ratio α/β.

Figure 13. Final average density of frustrated agents df over 50 realizations 
against 0-preference density ρ0. (a) Coordination game with reward ratio α/β = 1, 
(b) Coordination game with reward ratio α/β = 2.
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the population is homogeneous. Let us keep in mind that agents are given exclusively 
informations about the distribution of preferences but not about actions, so they act to 
maximize their payo expecting that neighbors are going to take their preferred action. 
In the case of homogeneous distributions, for example when the whole network is made 
of 1-preferences, every agent knows that he has to anticoordinate with a neighbor-
hood full of 1-preferences, the result is that he will obviously choose action 0, but this 
happens with every agent in the network. For heterogeneous distributions, the more 
the connectivity of the graphs, the higher the reward ratio has to be to allow hybrid 
equilibria to appear in the final configuration, which means that connectivity fosters 
specialized equilibria, while a large reward ratio, as usual, helps agents to keep satisfied 
and not change their action. Therefore, anticoordination is reached easier when con-
nectivity is low and reward ratio is high. These conditions for anticoordination lead 
to strong outcome dierences. These same conditions allow satisfactory equilibria to 
appear. Of course the dynamics shown above for homogeneous distributions give very 
large values for agents frustration, since the loss of information about neighbors actions 
makes them totally blind about what is going on. This implies that, while they try to 
anticoordinate between same preference neighbors, they end up being totally coordi-
nated on the same undesired action. In this sense, it turns out that an equal distribu-
tion of preferences is optimal to reach anticoordination, since agents think that half of 
the neighborhood is like them so they are not pushed to change their action to maxi-
mize their payo. For α/β = 1, connectivity does not aect at all the dynamics of the 

Figure 14. Final density of frustrated agents df against reward ratio α/β.  
(a) ρ = 0.6 (b) ρ = 0.5 (c) ρ = 0.4 (d) ρ = 0.3.
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network, but satisfaction is dicult to achieve because agents are free to change their 
actions without changing their payo, and correspondingly there are some outcomes 
that show full satisfaction when the distribution is close to 50-50, but by no means 
are all of them satisfactory. On the contrary, when α/β = 2, frustration is avoided in 
the most of the cases if the distribution is heterogeneous, and low connectivity helps 
agent to avoid frustration because they can maintain their liked option. Diering from 
the same experiment in the complete information framework, here anticoordination 
is harder to achieve due to the loss of information about the neighbors actions, but 
satisfactory equilibria appear with some restrictions on reward ratio and connecitivity, 
which did not appear with complete information.

5. Conclusions

In this paper, we have presented the results of a numerical simulation program address-
ing the issue of preference in network games from an evolutionary viewpoint. We 
have considered both coordination and anti-coordination games, as well as dierent 
network structures, including random and scale free graphs. We have also studied two 
dynamics, best response and proportional imitation, which are more economic-like and 
biological-like, respectively, in order to assess the eects of noise and of a local perspec-
tive on decision making. Finally, we completed the picture by looking at two informa-
tional contexts, complete and incomplete. This program has allowed us to address the 
research questions we pointed out in the introduction. Thus, beginning in order of gen-
erality, regarding the question about the eects of preferences, a first, general finding 
is that in all scenarios the heterogeneous model behaves under evolutionary dynamics 
much closer to the expectations from economic theory [33, 34] than the homogeneous 
one studied in [35]. Beyond this broad finding, it is important to point out that our 
model leads to a number of specific predictions which we summarize below.

Let us now summarize our results about the cases of coordination and anticoor-
dination. For the case of coordination games, we have observed that both types of 
dynamics lead to full coordination for a wide range of compositions of the population. 
This is in contrast with the homogeneous case, in which the outcome of proportional 
imitation was always coordination in the risk-dominant, less beneficial action. Here 
agents tend to coordinate in the action that is preferred by the majority, which leads 
to a better payo for the population as a whole, even if the minority is choosing the 
action they dislike. When there are two preferences in the population, there are only 
mixed equilibria when the composition is approximately in the range 40%–60% of one 
type. In turn, this implies that equilibria are never satisfactory, in the sense that for 
any population composition there will always be frustrated agents playing the action 
they dislike. This problem aggravates in the already mentioned 40%–60% range, par-
ticularly for low α/β values; a higher reward for the preferred action leads to players 
sticking to their preferences, reducing the degree of coordination, but at the same time 
lowering global frustration. Connectivity also plays a fundamental role in the achieve-
ment of coordination: indeed, more connected networks result in full coordination even 
in contexts of evenly split population, especially when the reward ratio is kept small, 
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i.e. when preferences are not particularly salient. In this respect, we observed that scale 
free networks with low degree are not connected enough to permit the development of 
full coordination and a higher density of ties between individuals would be needed to 
let them achieve higher eciency. High connectivity has been shown to foster reach-
ing of full coordination: this is a common feature observed in games such as the voter 
model and the naming game [10]. Interestingly, there are also cases in which high 
connectivity, in particular the small world property, slows down the reaching of con-
sensus, e.g. for Moran processes [10] or innovation spreading [40]. In these examples 
high connectivity becomes an obstacle, in terms of speed, to the diusion of consensus. 
This behavior may be explained thinking of the increased number of connections, i.e. 
neighbors, in complex networks with respect to ER networks, which makes necessary 
an increased number of steps to reach the equilibria. Nonetheless, even if high connec-
tivity slows down the process, full coordination equilibria are found more often than 
in low connected networks. Thus, it would be interesting to find specific conditions 
leading to full coordination equilibria in these games more at a faster velocity, which 
would be important in the context of innovation diusion. However, the study of the 
dynamics of the equilibration process is beyond the scope of our work here and is left 
for future research.

Moving to anti-coordination we have observed that, also for both dynamics, the 
final states of the model are better in the sense that players do choose the opposite 
action to their partners. When interaction is of this type, particularly when the reward 
for choosing the preferred action is large, the amount of frustration is lower than that 
observed in the coordination problem. This is not what takes place when the reward 
is small: in that situation, players do anti-coordinate but the action they choose is 
determined by their surroundings more than by their own preferences, which in the 
end makes a large fraction of players unsatisfied. It is also interesting that connectivity, 
while still playing a role, has a less determinant influence on anticoordination than in 
coordination. As for the dynamics, when there is a large majority of one of the prefer-
ences in the population, we have observed that, somewhat counterintuitively, the whole 
population anticoordinates, as their local updates do not really allow them to realize 
that they are in fact a majority.

Finally, information is also very important to understand the eect of preference 
in strategic interactions on networks. When players have only information about the 
global composition of the population but not of their immediate partners, both coor-
dination and anticoordination become more dicult, except in the extreme cases of a 
larger majority of one of the preferences or of an evenly split population. Because of the 
dierent mechanisms we have discussed within the text, in wide population ranges there 
are very few frustrated players, and for large reward rations we have even observed 
many satisfactory hybrid equilibria, i.e. with no frustration whatsoever. Interestingly, 
we have also found that connectivity is beneficial in this case, as the actions players 
choose from their knowledge of the global fraction of preferences correspond better to 
a more populated neighborhood (thus mimicking the behavior of a mean-field model).

In closing, we would like to note that our conclusions point to the soundness of 
the predictions made from standard economic theory and, therefore, to the applicabil-
ity of the results we are presenting to real life situations. One particularly appealing 
conclusion is that, as the economic and biological dynamics yield similar results, our 
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findings may have a much wider applicability that purely human societal issues. They 
may be relevant, for instance, when dierent strains of a bacteria need to coordinate in 
producing some chemical. Focusing on the interactions between people, our results are 
par ticularly illuminating for the case of coordination, where we have seen that connec-
tivity is beneficial. This indicates that in social situations where preference gives rise to 
conflict, one possible way to decrease the level of conflict and help people reach consen-
sus is to increase the relations among both communities. Interestingly, recent experi-
ments [39] show that when every player is connected with every other one, even when 
the population is close to a 50–50 composition full coordination is reached (but not 
always, some instances of hybrid equilbria have also been observed occasionally). This 
suggests that in fact the range in which we have found hybrid equilibria may vanish 
both in the very large size limit and when the network is fully connected. It is impor-
tant to stress that, in the discussion of the results in [35], up to four economic-style 
explanations were proposed, only to be discarded because they disagree in one way or 
another with the experimental results. Therefore, we are providing here a starting point 
for another approach that can be more fruitful, although its application to the results 
in [35] in full would require an extension to the case where subjects choose their own 
links. Similar experiments done on the networks we are studying here, which are ame-
nable with similar laboratory setups, should shed light on the accuracy of our results 
and confirm or disprove the validity of the evolutionary approach to an economic-like 
problem. On the other hand, the downside of such a socially ecient outcome is a large 
minority taking an action they do not like (an issue that might not arise if what is 
wanted is anticoordination). In this respect, the only way to nudge the population to a 
better individual situation would be to decrease the saliency of preferences, by making 
the alternative choice more valuable. We hope that our study encourages more work 
both on the understanding of the eects of preference in a highly connected work and 
how to use them to achieve better societal outcomes both at the individual and at the 
global level.
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