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Abstract. Finding optimal survival strategies of living systems embedded in
fluctuating environments generally involves a balance between phenotypic diver-
sification and sensing. If we neglect sensing mechanisms, it is known that slow,
resp. fast, environmental transitions favor a regime of heterogeneous, resp. homo-
geneous, phenotypic response. We focus here on the simplest non-trivial case, i.e.
two randomly switching phenotypes subjected to two stochastically switching
environments. The optimal asymptotic (long term) growth rate of this model
was studied elsewhere; we further expand these results by discussing finite time
growth rate fluctuations. An exact asymptotic expression for the variance, along-
side with approximations valid in different regimes, are tested numerically in
details. Our simulations of the dynamics suggest a close connection between this
variance and the extinction probability, understood as risk for the population.
Motivated by an earlier trade-off analysis between average capital growth rate
and risk in Kelly’s gambling model, we study the trade-off between the average
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growth rate and the variance in the present model. Despite considerable differ-
ences between the two models, we find similar optimal trade-off curves (Pareto
fronts), suggesting that our conclusions are robust, and broadly applicable in
various fields ranging from biology/ecology to economics.

Keywords: evolution models, evolutionary processes, population dynamics
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1. Introduction

In unpredictably varying environments, it is advantageous for a population to accept a
reduction of its short-term reproductive success in exchange for longer-term risk reduc-
tion. This phenomenon, called bet-hedging, protects individuals from potential damages
associated with environment variations [1, 2]. It is an important topic in biology which
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is associated to a number of phenomena such as species polymorphism, antibiotics resis-
tance of bacteria [3] or the resistance of cancer cells to anti-cancer drugs, and more
generally to the phenomenon of cell variability [4] and adaptation by the immune sys-
tem. In all these examples, a dynamic phenotypic heterogeneity at the single cell level
brings a fitness advantage at the population level when the environment is fluctuating
[5]. Bet-hedging is also a widely studied phenomenon in ecology. For instance, plants
use it to delay germination as a form of insurance policy against potentially damaging
environment fluctuations [6]. It is important both in spatially homogeneous or hetero-
geneous environments. In the latter case, it may correspond to a strategy for a given
population to colonize an heterogeneous environment [7].

In the literature, an important distinction is made between stochastic bet-hedging,
in which the biological system switches stochastically between two phenotypic states
at constant rates independent of the environment, and the case of sensing, where the
biological system adapts the switching rates to the environment, using information
extracted from the environment and relying on a form of memory [8]. The case of
adaptive strategies using memory in temporally correlated environments is challenging
to describe theoretically but there is constant progress even in this difficult case [9–11].
In this context, fluctuation relations have been derived for biological populations, which
can sense and extract information dynamically from fluctuating environments [12, 13].
These works identified a thermodynamic structure in population dynamics and put for-
ward a deep connection between fitness and information, which underlies the universal
adaptation properties of living systems.

Stochastic bet-hedging is perhaps best illustrated theoretically using Kelly’s model,
originally introduced in the context of gambling models such as horse races [14]. Kelly
proposed a criterion to determine how to place optimally the bets of the gambler so as
to maximize the long term growth rate of its capital. The criterion has been used for
gambling and for applications in money investment [15]. Being based on information
theory, the criterion is general and is also broadly applicable to resource allocation
problems in biology, such as the problem of spatial allocation of enzymes within a
cell [16]. In practice, Kelly’s strategy is known to be risky, because it implies wild
fluctuations of the growth rate of the capital, which most gamblers are not comfortable
with. The reason is that Kelly’s model focuses on long term growth but neglects short
term risk, which could be very relevant for gamblers and biological populations [17]. A
more acceptable solution is an optimization of the mean fitness/growth rate combined
with a minimization of the variance, i.e. the risk. In a recent work also inspired by
stochastic thermodynamics, we have revisited the trade-off between mean growth rate
and variance for Kelly’s horse race model, and we have studied the Pareto front formed
by the corresponding optimal strategies [18].

In this paper, we go significantly beyond Kelly’s model, by studying a model of
a biological population in a fluctuating environment. We assume that the fitness of
individuals depends on the environment, and that individuals can switch stochasti-
cally between two phenotypic states, at constant rates independent of the environment
[19, 20], so that there is no sensing and no memory. We explain why despite these simpli-
fying assumptions, this problem is still considerably more difficult to tackle than Kelly’s
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original model. To make progress, we introduce a new measure of risk for the popula-
tion, namely the variance of the finite time growth rate. We first derive an approximate
expression of the variance of the finite time growth rate in the limit in which environ-
ment fluctuations are slow with respect to phenotypic transitions [8]. Then, we study the
general case of arbitrary environment fluctuations and an arbitrary number of discrete
phenotypic states, thanks to results derived by one of us in a companion paper [21]. We
test both expressions of the variance using numerical simulations in the particular case
of two phenotypic states and two environments.

In the literature, many different trade-offs have been considered in this context of
populations growing in varying environments. In a classic representation, the growth rate
is optimized in the space spanned by the different achievable fitnesses for each separate
environment [9, 22]. Another possibility is to look at the distribution of phenotypes in
the optimal strategy [23]. Here, we study instead the Pareto-optimal trade-off in terms
of the average and the variance of the growth rate. This trade-off is essentially the one
between growth rate and risk, which is well documented in economics or in gambling
models [15], and which is also relevant for biological and evolutionary processes [24–27].
Using numerical simulations, we also show that the variance of the growth rate is an
acceptable measure of risk for the population, because strategies with a high growth
rate variance are the ones with a higher probability of extinction.

2. Definition of the model

Let us consider a biological population of individuals which exhibit only two phenotypes
A and B, which can randomly switch between them. To simplify let us also assume that
the environment has only two discrete states 1 and 2 [2, 5]. We denote the population
vector, which describes the number of individuals in each phenotype (A or B) at a given
time t by N(t) = (NA(t),NB(t))

T, where T denotes the transpose. The subpopulation of
individuals with phenotype A grows when placed in the environment i with the growth
rate kAi, while the other subpopulation with phenotype B grows with rate kBi. There
is no population noise, the dynamics of the system is deterministic in each separate
environment and individual growth rates can take positive or negative values [8].

When both growth rates take positive values, the evolution of the two subpopulations
is equivalent to that of two species (also called A and B), which grow according to
autocatalytic reactions. The corresponding chemical reactions are

A
kA1→ 2A, (1)

B
kB1→ 2B, (2)

for the growth of the phenotypes (A,B) in environment 1 and similarly,

A
kA2→ 2A, (3)

B
kB2→ 2B, (4)

https://doi.org/10.1088/1742-5468/ac6f50 4
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for the growth in environment 2. Environmental transitions, which are stochastic, can
be described by the reversible reaction:

S1

κ1
�
κ2

S2, (5)

where S1 (resp. S2) represents environment 1 (resp. 2).
For applications, we shall assume in addition that phenotype A is more adapted

to environment 1 than phenotype B, so that kA1 � kB1; while phenotype B is more
adapted to environment 2, so that kA2 � kB2 [19]. Let Qt be the marginal probability of
the environment at time t. Since the evolution of the system and environment states form
a Markov process in continuous time, this probability distribution admits the stationary
measure defined by Q(1) = κ2/(κ1 + κ2), for the probability of the environment to be
in the first state and Q(2) = κ1/(κ1 + κ2) for the other state. The different periods of
environment i, denoted as τ i are assumed to be i.i.d. exponentially distributed random
variables.

Independently of the state of the environment, individuals can switch their phe-
notype. These phenotypic transitions can be described chemically by the reversible
reaction:

A
π1
�
π2

B, (6)

which is always present irrespective of the state of the environment. These rates π1

and π2 represent the strategy of the individual, similar to the betting strategy in Kelly’s
horse races. Note that there is no sensing, which means that these rates are independent
of the state of the environment.

All these reactions can be summarized by the vector equation

d

dt
N(t) = MS(t)N(t), (7)

with matrices

MS1
=

(
kA1 − π1 π2

π1 kB1 − π2

)
and MS2

=

(
−π1 + kA2 π2

π1 kB2 − π2

)
. (8)

The finite time averaged population growth rate is defined as

Λt =
1

t
ln

N(t)

N(0)
, (9)

in terms of the total population N(t) = NA(t) +NB(t), and the long term population
growth rate is

Λ = lim
t→∞

Λt. (10)

When the environment remains constant, i.e. when S(t) = Si for all times, the total
population grows exponentially with a growth exponent equal to the top eigenvalue of
the matrix MSi

, while the distribution of phenotypes is determined by the corresponding
eigenvector, denoted as qi.
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2.1. Main quantities of interest

In the general case of a switching environment, it is more difficult to obtain an analytical
expression of the growth rate, because one needs to evaluate a product of a large number
of random matrices of the type

P (t) =
∏
n

exp(τnMSn
), (11)

where the product is over the various alternating environments of duration τn such that∑
n τn = t. The quantity we are interested in is called the Lyapunov exponent in the

literature, which corresponds precisely to the growth rate defined previously:

Λ = lim
t→∞

1

t
ln ‖P (t)N(0)‖, (12)

an expression which is known to be independent of the choice of norm denoted as ‖ · ‖ for
the matrices and independent ofN(0), an arbitrary vector describing the initial condition
[28]. Another important property of that Lyapunov exponent is that it is a self-averaging
quantity, therefore there is no need to average over the ensemble of random matrices:
Λ = 〈Λ〉. Although there is no simple method to compute that Lyapunov exponent
exactly in the general case where the matrices do not commute (except in the case of
2 × 2 matrices as done in [19]), there are a number of useful approximations, which
generalize to arbitrary dimensions.

For real application, demographic fluctuations are important because in the end, one
is always interested in finite populations in a finite time [17, 24]. These effects cannot be
predicted from Λ alone; one should consider instead the finite time growth rate Λt and its
fluctuations characterized by the variance Var(Λt). To evaluate this variance numerically,
one needs to carry out a sufficiently large number of independent simulations, all starting
with the same initial conditions. A quantity similar to the variance Var(Λt) (and higher
moments too) has been considered in the mathematical literature on large products of
random matrices [28, 29].

Another important quantity in this context is the instantaneous growth rate μ(s),
defined as

μ(s) =
d

ds
(ln N(s)), (13)

so that Λt reads:

Λt =
1

t

∫ t

0

μ(s)ds. (14)

Since instantaneous growth rates decorrelate exponentially fast, the central limit
theorem imposes a scaling of Var(Λt) in 1/t as t→∞. Therefore, our main focus is
the evaluation of limt→∞ tVar(Λt), a self-averaging quantity, which we denote (by abuse
of notation)

Var(Λ) = lim
t→∞

tVar(Λt). (15)
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3. Kussel–Leibler approximation

In the so-called adiabatic approximation, one assumes that environment periods are
long enough so that the population has time to reach an equilibrium distribution (given
by the top eigenvector in that environment) before the environment switches again.
Such an approximation was introduced by Kussel–Leibler (KL) to evaluate the long
term population growth rate in a fluctuating environment and the optimal phenotypic
strategy, in terms of the characteristic switching dynamics of the environment [8].

3.1. Mean growth rate

Their general expression of this long-term growth rate in the particular case of two
environment states and two phenotypic states takes the form:

ΛKL =
∑
i=1,2

Q(i)λi + 2κ log qT
1 · q2, (16)

where λi is the top eigenvalue of the matrix MSi
, qi the corresponding top eigenvector;

κi = 1/〈τ i〉, i = 1, 2 are the inverse of the average periods of each environment; and
κ = κ1κ2/(κ1 + κ2) =

1
2
T−1
env, where Tenv =

1
2
(〈τ1〉+ 〈τ2〉) is the average time span of an

environment.
The first term in the rhs of equation (16) corresponds to the average growth rate,

where the average is taken with respect to the stationary measure Q, which is equivalent
to an average over the fractions of times spent in each of the two states, in the limit
where these times become infinite. The second term in the rhs of equation (16), which
is negative, is a penalty due to transitions between the two environments. This term
features the overlap between the two dominant eigenvectors, which arises due to the
change of base in going from the top eigenvector of one environment to the top eigen-
vector of the other. For this reason, this term depends on q = qT

1 · q2; it would vanish
if the two matrices MS1

and MS2
commuted. In practice however, this is never the case,

and this contribution due to the change of basis is the main reason for the difficulty in
obtaining an exact expression of the grow rate.

Simple explicit formulas follow from a Taylor expansion in the case where the switch-
ing rates πi are small compared to the differential growth rates |kAi − kBi|. Assuming
that the growth matrix is diagonal, i.e. that only one phenotype grows in one envi-
ronment but not in the other, in other words when kA1 = k1 > 0, kB1 = 0, kA2 = 0 and
kB2 = k2 > 0, the top eigenvalues for the two environments i = 1, 2 are λi � ki − πi to
first order in πi/ki, and q � π1π2/k

2, where k = k1k2/(k1 + k2). Therefore, when ki 	 πi,
the above expression simplifies into:

ΛKL =
∑
i=1,2

(
Q(i)(ki − πi) + κ log

(πi

k

))
. (17)

In addition to the condition ki 	 πi, the KL approximation requires that the second
term in equation (16) be small with respect to the first term, which leads to the condition
log(k/πi) 
 k/κ. In the case where kB1 and kA2 are not zero, this criterion is still
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approximately correct provided one uses for k1, resp. k2, the relative growth rate kA1 −
kB1, resp. kA2 − kB2.

By optimizing ΛKL with respect to πi, one finds

πi =
κ

Q(i)
= κi. (18)

Thus, the optimal strategy corresponds to switching rates that match the environment
rates. By reporting these optimal transition rates in equation (17), one finds that the
optimal growth rate is

Λmax,KL =
∑
i=1,2

(
Q(i)ki + κ log

(κi

k

)
− 1

)
. (19)

It is easy to see that this growth rate is maximum [8], because

Λmax,KL − ΛKL = κ
∑
i=1,2

(
πi

κi
− 1− log

(
πi

κi

))
� 0. (20)

This condition of optimality πi = κi is very similar to Kelly’s criterion [14], which leads
to the maximum of the capital growth rate in the betting game. As shown by KL, this
condition remains true in the general case where all the growth rates take non-zero
values.

3.2. Variance of the growth rate

The work of KL focuses on the long term average population growth rate in a fluctuating
environment [8], but does not consider any effect due the fluctuations. In this section,
we build on the method they have introduced to evaluate the fluctuations, using the
variance of the growth rate.

In the limit of a large number of environmental epochs, the growth rate only depends
on the fraction of time spent in the first environment r and on the total number of
transitions 2N between the two states. The joint distribution of r and N , namely f(r,N)
is easily expressed in terms of the product of two Poisson distributions of parameters
κ1rt and κ2(1− r)t. One can check that this distribution is maximum when N � κt
and r � Q(1). Then, we rely on a Gaussian approximation of that distribution close to
the maximum to evaluate the variance, which becomes more and more accurate as N
becomes large. Details of this calculation are provided in appendix A. We find that for
large t, under the same approximations leading to (17):

VarKL(Λ) �
κ1κ2

(κ1 + κ2)3
[
2(δλ)2 + (κ2

1 + κ2
2) ln (q)

2 + 2(κ1 − κ2)δλ ln(q)
]
,

(21)

where δλ = λ1 − λ2.
In the section on numerical results (section 6.1), this expression will be tested and

compared with other expressions of the variance of the growth rate.
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4. Hufton–Lin–Galla approach for systems in switching environments

4.1. Average growth rate

The approach developed by Hufton et al consists in considering the time evolution of
the coupled system (population, environment) in the limit of a large population [19, 20].
To leading order (i.e. dismissing lower-order population fluctuations in the form of a
Brownian noise contribution), the outcome takes the form of a piecewise deterministic
Markov process (PDMP) after performing a so called Kramers Moyal expansion in
terms of the total population size N . The relative population fluctuations are of order
1/

√
N and can be neglected for large populations. For small populations, the Hufton

et al approach still describes the average behavior, although particular realizations may
evolve differently.

We will use the framework of PDMP in the case of only two environmental states
and two phenotypic states. Inside a given environmental epoch, populations change,
but the relative fraction of phenotype A in the population, φ = NA/(NA +NB), does
not; therefore, the variable φ(t) evolves deterministically within an epoch. Taking into
account environmental changes, one gets the system of differential equations:

dN(t) = N(t)μ(σ,φ)dt, (22)

dφ(t) = [Δσφ(t)(1− φ(t))− π1φ(t) + π2(1− φ(t))]dt, (23)

where σ = σ(t) is the environmental trajectory (taking discrete values 1 or 2),
Δσ = kAσ − kBσ, and μ(σ,φ) denotes the instantaneous growth rate given σ and φ [19]:

μ(σ,φ) := kAσφ+ kBσ(1− φ) = Δσφ+ kBσ. (24)

An analysis of equation (23), show that there are two fixed points for each environ-
mental state: φ±

1 in the first environment and similarly φ±
2 in the second one; explicitly,

φ±
σ =

Δσ − π1 − π2 ±
√

(Δσ − π1 − π2)2 + 4π2Δσ

2Δσ

, (25)

where the + superscript indicates the solution which is a stable fixed point, while the −
superscript denotes the unstable one. As discussed in the introduction, we assume that
phenotype A is more adapted to environment 1 than phenotype B, so that kA1 � kB1;
while phenotype B is more adapted to environment 2, so that kA2 � kB2; this means
that Δ1 � 0 and Δ2 � 0 [19].

The decoupling of φt from the evolution of the total population N in equations (22)
and (23) allows an analytic solution for the stationary probability density distribution
Pσ(φ) of the Markov process describing the evolution of the relative fraction φ in a
stochastically switching environment based on the method of characteristics. The solu-
tion has support on [φ+

2 ,φ
+
1 ]; it depends on the two switching rates κσ and on the fixed

points φ±
σ . With these notations, the stationary probability distributions read:

P1(φ) =
N
Δ1

(φ+
1 − φ)

g−1 · (φ− φ−
1 )

−g−1
(φ− φ+

2 )
h · (φ−

2 − φ)
−h
, (26)

https://doi.org/10.1088/1742-5468/ac6f50 9

https://doi.org/10.1088/1742-5468/ac6f50


J.S
tat.

M
ech.

(2022)
053503

Pareto-optimal trade-off for phenotypic switching of populations in a stochastic environment

and

P2(φ) =
N
|Δ2|

(φ+
1 − φ)

g · (φ− φ−
1 )

−g · (φ− φ+
2 )

h−1 · (φ−
2 − φ)

−h−1
, (27)

where g and h are positive exponents given by

g =
κ1

Δ1 (φ
+
1 − φ−

1 )
, (28)

and

h =
κ2

Δ2 (φ
+
2 − φ−

2 )
. (29)

The integration constant N is fixed by the normalization condition

∫ φ+
1

φ+
2

[P1(φ) + P2(φ)] dφ = 1. (30)

Once that value of N has been determined, one obtains the two separate relations

∫ φ+
1

φ+
2

Pσ(φ)dφ = Q(σ), (31)

for σ = 1, 2, which may be view as the marginal distribution in σ of the joint distribution
Pσ(φ) over φ.

Note that P 1 contains a singularity at φ = φ+
1 , and similarly for P 2 at φ = φ+

2 . As a
result, integrals involving P 1 and P 2 can be difficult to evaluate numerically. Fortunately,
that difficulty can be overcome by using a change of variable, t = (φ+

1 − φ)g with integrals
involving P 1 and t = (φ− φ+

2 )
h for those involving P 2. For instance, the integral of

equation (31) for σ = 1 is turned with this change of variable into the following integral
free of singularity:

N
∫ t1

0

dt

gΔ1

(
φ+
1 − t1/g − φ−

1

)−g−1(
φ+
1 − t1/g − φ+

2

)h(
φ−
2 − φ+

1 + t1/g
)−h

= Q(1),

(32)

where t1 = (φ+
1 − φ+

2 )
g.

This trick is useful to evaluate the normalization constant N but also the following
two integrals K1 and K2, from which the average growth rate Λ can be obtained. The
two integrals are

Kσ =

∫ φ+
1

φ+
2

Pσ(φ)φ dφ, (33)

for σ = 1, 2.
Hufton et al mention that it is possible to obtain an exact expression of the station-

ary distribution of the instantaneous growth rate μ = μ(σ,φ), but they do not give it
explicitly. Here is how we obtain it. Let P(μ, σ) be the stationary distribution of the
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instantaneous growth rate μ in the environment σ. This distribution can be obtained
from that of Pσ by changing variables from φ to μ at fixed value of the environment σ.
One obtains P(μ, σ) = Pσ(φ

∗(μ))|dφ∗/dμ|, where φ∗(μ) = (μ− kBσ)/Δσ is the function
that inverts equation (24). Thus, we obtain

P(μ, σ) =
Pσ(φ

∗(μ))

|Δσ|
, (34)

with support μ ∈ [μ+
2 ,μ

+
1 ], where μ+

σ = Δσφ
+
σ + kBσ. The distribution of μ can then be

obtained by marginalizing over σ:

P(μ) =
∑
σ=1,2

P(μ, σ). (35)

This distribution is smooth when the environment changes quickly, but contains
singularities in the general case as shown in figure 3 of [19].

The average growth rate of equation (37) is obtained from the first moment of that
distribution Λ = 〈μ〉, because of the following equalities:

〈μ〉 =
∫

P(μ)μ dμ =

∫ ∑
σ=1,2

P(μ, σ)μdμ =

∫ ∑
σ=1,2

μ(σ,φ)Pσ(φ)dφ = Λ, (36)

where μ(σ,φ) is the function defined in equation (24). The average growth rate can then
be written explicitly in terms of the integrals introduced above as

Λ = kA1K1 + kB1(Q(1)−K1) + kA2K2 + kB2(Q(2)−K2). (37)

4.2. Variance of the instantaneous growth rate

The second moment of that distribution P(μ) represents the variance of the instanta-
neous growth rate, which can be easily obtained in this framework:

Var(μ) =

∫
P(μ)(μ− 〈μ〉)2 dμ =

∫ ∑
σ=1,2

(μ(φ)− 〈μ〉)2Pσ(φ)dφ, (38)

Explicitly, we have

Var(μ) =
∑
σ=1,2

[
k2
AσJσ + k2

Bσ (Q(σ)− 2Kσ + Jσ) + 2kAσkBσ (Kσ − Jσ)
]
− Λ2,

(39)

which depends on additional integrals of the form

Jσ =

∫ φ+
1

φ+
2

Pσ(φ)φ
2 dφ. (40)

All these integrals can be written in a closed form, free of divergences, by using the same
trick introduced above.
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4.3. Practical significance of the instantaneous growth rate

The instantaneous growth rate is an easier concept than the long term growth rate,
because the former can be evaluated at any point in a time series while the later either
requires an average over many independent realizations or very long time series. Experi-
mentally, it is clearly easier to acquire many measurements in time in a given experiment
rather than having to wait for a very long time or having to perform many independent
experiments.

As a result, the variance of the instantaneous growth rate, Var(μ), is immediately
accessible while the finite time variance of the growth rate, Var(Λt), is not and is difficult
to evaluate both analytically and numerically. Indeed, as explained in section 2.1, the
numerical evaluation of Var(Λt) requires to perform an average over a large number of
independent realizations.

To appreciate the difference between the finite time growth rate variance Var(Λt)

and Var(μ), let us recall that from equation (22), we have Λt =
∫ t

0 dt1 μ(φt1), where φt1

is the fraction of phenotype A in the population at time t1. It then follows that

Var(Λt) = 2

∫ t

0

dt1

∫ t1

0

dt2〈δμ(φt1)δμ(φt2)〉, (41)

with δμ = μ− 〈μ〉 and the function μ(φ) is defined in (24). This expression makes clear
that time correlations of the instantaneous growth rate contribute to Var(Λt), but do
not to Var(μ). This is also the reason why in practice the instantaneous growth rate
distribution P(μ) is found to be in general different from the distribution of Λt [19].

In the regime of fast environmental fluctuations however, these correlations vanish
quickly and as a result Var(Λt) and Var(μ) coincide. This will be illustrated in the
section on numerical results.

5. Exact solution for the variance of the finite time growth rate

Given the practical difficulty of evaluating Var(Λt) numerically, it is helpful to have an
exact expression for the asymptotic behavior of Var(Λt). Such a formula has been derived
by one of us in a companion paper [21], from which the approximations introduced
above can be recovered as particular cases. The basic idea of this work is as follows: the
evolution of the system is expressed as the time-exponential of the Markov generator
of the process. Integrating in time equation (41), one gets an expression for Var(Λt) in
terms of the inverse of the Markov generator [30]. Fortunately, the evaluation of the
inverse can be replaced by a simpler expression involving the Markov generator itself
using a Legendre transform. One obtains the following final result: given

I(φ) :=

∫ φ

φ+
2

dφ′ (P1(φ
′)δμ(1,φ′) + P2(φ

′)δμ(2,φ′)) , (42)
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and

z(φ) :=
(v1P1)

2(φ)

κ1P1(φ) + κ2P2(φ)
, (43)

where v1(φ) = Δ1φ(1− φ)− π1φ+ π2(1− φ), the asymptotic behavior of the finite time
growth-rate variance tVar(Λt) at large times t is

Var(Λ) = lim
t→∞

tVar(Λt) =

∫ φ+
1

φ+
2

dφ z−1(φ)I2(φ). (44)

This expression is tested in the next section with numerical simulations. It is impor-
tant to appreciate that this result does not rely on an approximation of fast or slow
environmental variations, as it is completely general.

6. Numerical results

In this section, we present numerical results to test and illustrate our theoretical results.
In the first subsection, we study the growth rate in the space of the phenotypic switching
rates for three possible switching rates of the environment. In the second subsection, we
test the various approximations for the average and for the variance of the growth rate.
Then, in the last subsection, we study the Pareto diagram that describes the trade-off
between the mean growth rate and its fluctuations.

6.1. Growth rate as a function of the rate of change of the environment

In figure 1, we show as a heatmap, the average growth rate for different switching
rates of the environment. We used the set of parameter values kA1 = 2, kB1 = 0.2,
kA2 = −2, kB2 = −0.2, which correspond to the ones used by Hufton and Lin in their
figure 4 [19].

Three different switching rates have been used for environmental fluctuations, for
case (a): κ1 = 0.01, κ2 = 0.03, for case (b): κ1 = 0.1, κ2 = 0.3, for case (c): κ1 = 1,
κ2 = 3.3. In each case, about 50 simulations of duration 100/κ1 have been performed.
In the case of figures 1(a) and (b), for a slow switching rate, the maximum value of
the growth rate is reached on isolated points in this diagram, i.e. for specific values of
π1 and π2. These values correspond well to the condition πi = κi predicted by the KL
approximation, where the phenotypic switching rates match that of the environment,
which is represented by a black dot on the figure.

Since the fastest growth rate is kA1, one could expect that the highest growth rate
should be obtained when the system spends most of the time with the phenotype A,
and the lowest growth rate when it stays with the phenotype B. The latter hypothesis is
confirmed by figure 1(a), because the smallest value of the growth rate is indeed obtained
in the top left part of the figure, i.e. when π1 is large and π2 is small, which corresponds
to conditions where the subpopulation with phenotype A turns instantaneously into
the phenotype B. The former hypothesis however is not confirmed, because the fastest
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Figure 1. Heatmap plot of the average long term growth rates for dif-
ferent values of the phenotypic switching rates π1 and π2. (a) κ1 = 0.01,
κ2 = 0.03, (b) κ1 = 0.1,κ2 = 0.3, (c) κ1 = 1,κ2 = 3.3. The black dots in (a) and
(b) indicate the point where the average growth rate takes its maximum value
according to the KL approximation.

growth rate is not obtained for large π2 and finite π1, in that particular case, it is
obtained when both π1 and π2 are small, i.e. in the KL regime.

When the environment switches very fast, there is no isolated maximum in these
heatmap plots as shown in figure 1(c), in that case the optimum growth rate is reached
on the boundaries of the simplex in which π1 and π2 take their values. Thus, phenotypic
heterogeneity presents a fitness advantage only for slow environments (cases (a) and
(b)), which are accessible to the KL approximation. In contrast, when the variations
of the environment are fast (case (c)), phenotypic homogeneity is favored, which is a
regime beyond the validity of the KL approximation [19].

6.2. Validity of the various approximations

To check the various approximations more precisely, we compare in table 1 the average
and the variance of the growth rate obtained from simulations with their estimations
based on various approximation schemes. We used the same values of kA1, kB1, kA2, kB2

as above, together with four new sets of environmental and phenotypic transition rates,
which we call (d)–(g). The parameters are, for case (d): κ1 = κ2 = 0.1 and π1 = π2 =
0.064, case (e): κ1 = κ2 = 1 and π1 = π2 = 0.24 and case (f): κ1 = κ2 = 10 and π1 =
π2 = 0.4, case (g): κ1 = κ2 = 0.01 and π1 = π2 = 0.064.

The average growth rate Λ has been measured using numerical simulations, which
have been found to agree with equation (37). This confirms that correlations of the
instantaneous growth rate do not matter for the average growth rate. The KL approx-
imation is found to provide a good estimate of the average and variance of the growth
rate when π1, π2, and κ are small compared to the growth rates of the phenotypes in
their respective environments, conditions which are satisfied for case (d) and (g) only.
In contrast for cases (e) and (f), the KL approximation breaks down and fails to provide
estimates for the average and variance of the growth rate.
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Table 1. Comparison between different estimations of the average and variance
of the growth rate for four data sets. The star indicates results which are not
meaningful because the assumptions needed for the approximation are not met. In
this table, ΛKL corresponds to the theoretical growth rate evaluated from equation
(16), Var(Λ) has been evaluated from equation (44), Λ is obtained from equation
(37), Var(μ) from equation (39) and finally VarKL(Λ) from equation (21).

Data Case (d) Case (e) Case (f) Case (g)

Λ 0.638 0.238 0.037 0.81
Var(Λ) 12.5 1.3 1.28 120.4
Var(μ) 1.4 1.37 1.24 1.24
ΛKL 0.57 ∗ ∗ 0.81
VarKL(Λ) 12.27 ∗ ∗ 121.07

In the regime of fast environment changes for cases (e) and (f), the variance of the
finite time growth rate agrees well with the variance of the instantaneous growth rate,
which is to be expected since the environment time correlations are very short compared
to other time scales.

For the general case, we have also checked that the theoretical expression of the vari-
ance of equation (44) gives correct results in all cases (d)–(g). To illustrate this point
further, we provide an additional figure. Figure 2 corresponds to the specific parameters
of case (e). In that figure, we compare the analytical expression with numerical simula-
tions for various duration times t. In practice the average of the variance is evaluated
from a number of independent simulations, whose number is also proportional to t. As
shown in the figure, there is a very good agreement provided the time t is sufficiently
long. The duration of that initial transient depends on the number of simulations as
expected.

6.3. Pareto fronts

We now analyze the relation between mean growth rate Λ and the asymptotic behavior
of the finite time growth rate variance, which we denoted as Var(Λ). As stated before,
higher growth rate can lead to higher fluctuations (or risk) and therefore a suitable
balance between average growth rate and variance may be advantageous. As in previous
sections, the values of (π1, π2) constitute the strategy of the individuals (or colonies)
for given environmental parameters. The optimal trade-off is given by the maximum
growth attainable for a fixed level of fluctuations, or conversely, by the minimum variance
possible for a fixed mean growth rate. The (π∗

1, π
∗
2) that optimize the trade-off can be

found by minimizing the following objective function, which is a linear combination of
both quantities

J(π1, π2) = −αΛ + (1− α)
√

Var(Λ). (45)

In this objective function, the standard deviation is used as a measure of risk instead of
the variance in order to keep the risk tolerance parameter α dimensionless. Note that
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Figure 2. Growth rate variance as function of simulation time t for parameter set
(e), with symbols corresponding to the numerical simulation and the dotted line
corresponding to the asymptotic theoretical prediction of equation (44).

the Pareto front and the trade-off are not affected by this choice, which means that
these features should be similar across different systems.

Minimization of function J for different α has been performed by a simulated anneal-
ing algorithm. Starting from initial values for (π1, π2) a random move in this 2D space
is either accepted if it decreases the objective function J , or accepted with an exponen-
tially decaying probability if it increases J . The exponential probability is controlled
by an effective temperature parameter that is progressively decreased (hence annealing)
making it harder and harder to accept an increasing move. These upward moves allow
the algorithm to escape local minima initially and proceed to the global minimum.

Once the optimal values (π∗
1, π

∗
2) are obtained, one can compute the values of Λ and√

Var(Λ) to which they correspond, thus building the efficient border or Pareto front,
represented in figure 3(a). Any strategy on that front cannot be improved in terms
of one property (average or variance) while keeping the other constant, and therefore
represents the optimal trade-off. Some of these strategies are represented as colored dots
in the figure.

Environmental and phenotypic changes are associated with two characteristic time
scales T env and T . The first time scale Tenv =

1
2
(1/κ1 + 1/κ2) has been introduced in

section 3 and represents the average time span of an environment, while the second
time scale T = 1

2
(1/π1 + 1/π2) characterizes phenotypic changes. We conjecture that

the ratio of these two time scales is a key parameter for the study of the growth rate,
and that optimal average growth rates are found when this ratio is close to one. Indeed,
the KL optimum (18) is obtained when the two time scales are of comparable order of
magnitude: T env ∼ T . This hypothesis is confirmed by plotting curves of constant ratio
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Figure 3. Mean-variance trade-off for the long term growth rate Λ (in (a)) or for the
instantaneous growth rate (in (b)) using parameters as in set (e) except for (π1,π2)
which are varied. In figure (a), filled (blue or other color) circles represent points
in the Pareto front computed by minimizing the objective function J(π1,π2 ; α).
The dashed blue line interpolates the front between the computed points. For four
highlighted points in the Pareto front, marked with green, red, magenta and maroon
filled circles, we provide their coordinates in table 2. Solid thin lines: constant T
lines, from left to right T = 0.5 (orange), T = 1 (yellow), T = 2 (violet) and optimal
T = 3.33 (green). Colored dots are obtained by scanning (π1,π2), and the colors
are chosen according to the corresponding T value. Black dots have T < 0.5, orange
dots have 0.5 < T < 1, yellow dots have a 1 < T < 2 and so on.

T/T env in the plane of the mean growth rate and the standard deviation as shown in
figure 3(a). We then observe that all the curves converge to the right as this ratio goes
to 3.3, eventually reaching the Pareto front when the ratio approaches 3.3.

In figure 3(b), we build a similar diagram for the instantaneous growth rate instead
of the long term growth rate. We observe that the right border of the cloud of points,
which forms the Pareto front has a similar shape as before. Indeed, with the chosen
parameters,

√
Var(Λ) is numerically close to

√
Var(μ), although this is of course not

always the case as shown in table 1.
In both Pareto fronts, fluctuations of the growth rate become small when the average

of the growth rate also becomes small, similarly to what happens on the tradeoff branch
in Kelly’s model [18]. In that model, the origin of the diagram corresponds to a ‘null
strategy’ where both the mean and the variance vanish. Here the origin does not belong
to the front, but in fact it does not matter because the absolute value of the mean
growth rate is not meaningful, only differences of the growth rate with respect to some
reference are significant.

Further, near the point of maximum growth rate, which is similar to Kelly’s point,
the slope of the front appears nearly vertical similarly to what we found in our previous
study of Kelly’s gambling [18]. This means that, by moving slightly along the front
away from this point, fluctuations can be decreased significantly without a large loss of
average growth rate loss. We address the significance of this statement by considering
the risk of extinction in the following section.
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Table 2. Some points in the Pareto front. Colored circles correspond to the symbols
used in figure 3 to indicate specific points.

Point Color (π1,π2) Λ
√
Var(Λ) α

Optimal Green (0.263, 0.246) 2.39 × 10−1 1.13 0.96
Suboptimal Red (0.346, 0.255) 2.35 × 10−1 1.07 0.92
Middle Magenta (0.569, 0.207) 2.1 × 10−1 0.91 0.82
Null Maroon (6.894, 0.001) 7.2 × 10−5 0.20 0.5

6.4. Extinction

As an illustration of the mean-variance trade-off, we now include extinction in our model
and check whether larger fluctuations may indeed increase the probability of extinction
as implied in previous sections. We compare the mean growth rate and its standard
deviation, at Kelly’s point (giving optimal average growth rate, in green in figure 3) and
at other suboptimal points along the Pareto front listed in table 2. The actual predicted
values computed with the theoretical expressions are given in table 2:

Points only differ in the corresponding π values, the rest of the parameters are equal
kA1 = 2, kB2 = −0.2, kA2 = −2, kB1 = 0.2 and κ1 = κ2 = 1.0. We run 8000 simulations of
evolution equation (7) with each set of parameters for a moderate time Tmax = 500/κ1

(trajectories not shown).
In principle, we could use N(t) = 1 as the condition for extinction of a population.

However, extinction does not need to correspond exactly to that condition, since there
are many ecological reasons why a population can collapse when the population size is
small due to inbreeding or due to various environmental stresses. In many cases, there is
a critical size of the population below which the population is not viable and this critical
size does not need to be a single individual. Furthermore, in Hufton–Lin–Galla approach,
the condition N(t) = 1 has no special meaning because the dynamics generated by
equation (7) is invariant under the multiplication of N(t) by a constant factor.

For all these reasons, we prefer to introduce a threshold for extinction E < 0 defined
in terms of the logarithm of the ratio of the population at time t to its initial value
N(t)/N(0). If the trajectory of log(N(t)/N(0)) goes below this threshold at any time
t during simulation, the population is considered extinct. Therefore, we are considering
extinct a population which has decreased by a given factor. By computing the fraction
of realizations that become extinct, we estimate the probability of extinction for several
parameter sets as shown in figure 4.

The initial population can be assumed to be arbitrarily large so that the
Hufton–Lin–Galla approach remains accurate. To study the extinction problem for small
populations, a fully stochastic approach would be necessary. However, we find that our
main results, in particular the non-monotonic behaviour of the extinction probability,
do not depend significantly on the precise value of the threshold considered.

As expected, the lower the threshold E, the lower the extinction probability. More
importantly, we observe that the probability of extinction is higher for the optimal
case than for the sub-optimal one. The probability of extinction is even lower for the
magenta point, further down the Pareto front. It is worth noting that this is the case
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Figure 4. Probability of extinction as a function of threshold E for extinction for
parameters corresponding to points in table 2: optimal set of parameters (green),
sub-optimal (red), middle (magenta) and null (maroon). (Inset) Probability of
extinction for E = −1 as a function of α (along the Pareto front). Table 2 points
are also marked in the inset with their corresponding colors, the rest of the points
in the computed Pareto front are marked as blue circles. The gray solid line is a
smoothed data as a guide to the eye.

irrespective of the values of the threshold in figure 4. In the presence of extinction, a
colony with smaller growth rate could achieve higher fitness as measured by a lower
extinction probability due to its lower variance [31]. In this case, the successful colony
trades some growth rate for less risky fluctuations.

However, going further away from the optimum on the lower branch of the Pareto
front, the probability of extinction raises again, as shown by the maroon line (corre-
sponding to nearly zero growth rate) in figure 4. This non-monotonic behaviour of the
probability of extinction along the Pareto front has been further checked in the inset of
figure 4 where this probability is depicted as a function of α. The Pareto front can be
scanned using parameter α from α = 0.5 in the maroon point (lowest left corner of the
front) to α � 1 corresponding to the green point (rightmost top point in the front). As
shown in the inset, there is an optimal value of α ≈ 0.8 giving the lowest probability of
extinction. This confirms the existence of a trade-off between the growth rate and the
variability.
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7. Conclusion

Kelly’s original paper contained two insights, the idea of the optimization of the long
term growth rate and its information theoretic interpretation. Despite its remarkable
successes in fields ranging from gambling to biology, Kelly’s model is limited because it
focuses on the long term growth rate and misses the short term risk, which is relevant
to gambling where it can cause ruin of the gambler and to biological populations where
it can lead to extinction.

To address this issue, we have studied the variance of the finite time growth rate,
which needs to be distinguished from the instantaneous growth rate. While the later is
less relevant to predict the evolution of biological systems than the long term growth
rate, it is also easier to compute and quite relevant in the limit of high frequency of
environmental fluctuations. In the case of two environments and two phenotypes, we
have derived various approximations for this quantity and tested with simulations an
exact, albeit complicated, expression valid for arbitrary durations of the environment
fluctuations.

Using this variance, we have built the corresponding Pareto front which characterizes
the trade-off between the average growth rate and the risk. We found that this trade-off
has similarities with the one we had analyzed previously in our work on Kelly’s model
[18], suggesting a form of universality for this trade-off. We have also shown that the
risk measured from the variance is indeed linked to the extinction probability of the
population.

While it is clear that given two colonies with the same average growth rate, the colony
with higher variance or fluctuations will have a greater probability of extinction, this
is not the result developed in the paper. In fact, neither the variability alone nor the
growth rate alone govern the probability of extinction, which intrinsically depends on
both quantities. For instance, for the same variance, a greater growth rate improves sur-
vival, keeping the colony away from extinction. Our results show that a greater growth
rate (favoring survival) is inevitably accompanied by higher fluctuations (promoting
extinction) in the region of large growth rate. The optimal situation in terms of extinc-
tion probability thus arises from a proper balance between variance and growth rate. For
instance, a colony A with a lower variance than colony B may have greater extinction
probability due to a much lower growth rate. And conversely, a colony with a very high
growth rate may also have a greater extinction probability due to the corresponding
increase in fluctuations that accompany higher growth rate. The known experimental
observation that bacterial populations faced with stressful conditions maintain a fraction
the population with a reduced growth as a form of ‘insurance policy’ to avoid extinction
[3] could be seen as a manifestation of the trade-off between average growth and risk
studied in this paper. Another potential experimental evidence for this trade-off is the
observation that for fission yeast, the death rate of cells increases with the cell division
rate in the regime of fast growth [32].

It would be interesting to explore further extensions of our framework to cases where
sensing is present and where more phenotypic states are available. As a first step towards
including sensing, one of us recently studied adaptive strategies in Kelly’s model [33]. If
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these ideas can be extended to the problem of populations facing unpredictable environ-
ments, they could allow an understanding of the adaptation process at the information
level, comparable to what has already been achieved for gambling models. In practice,
another complication arises in biological populations, namely that diversification occurs
both at the cellular level and at the population level; taking both features into account
in the same model will require further extensions of the present framework.

We hope that in the future, quantitative predictions of our model could be tested
experimentally. Experiments on growing colonies with bacteria [34] or with yeasts [35]
hold great potential for this kind of tests, because on one hand, cell populations can be
monitored continuously on long times, and on the other hand, a fluctuating environment
(either periodic or stochastic) can be imposed externally on the system in a controlled
way.

Acknowledgments

We acknowledge many fruitful discussions with O Rivoire and N Desprat, and A Despons
for a careful reading of the manuscript. L D acknowledges financial support from Span-
ish Ministerio de Ciencia e Innovación through Grant PID2020-113455GB-I00. D L
acknowledges support from (ANR-11-LABX-0038, ANR-10-IDEX-0001-02).

Appendix A. Variance in the KL approximation

A.1. Details on the derivation

Here, we provide a derivation of the formula of equation (21) for the variance in the
KL approximation. In the limit of a large time t, the two unknowns in this problem are
the number of transitions 2N , and the fraction of time spent in the environment state
S1, which we denote r. Since 0 < r < 1, P[τ1 + τ2 + · · ·+ τ2N = t, τ1 + τ3 + · · ·+ τ2N−1 =
rt] ≈ f(r,N), where

f(r,N) := e−κ1rt
(κ1rt)

N

N !
× e−κ2(1−r)t (κ2(1− r)t)N

N !
, (A.1)

corresponding to the product of two Poisson distributions of parameters κ1rt and κ2(1−
r)t. When t is large, we have asymptotically in terms of the top eigenvalues λi of matrices
MSi

:

tΛ ≈ λ1 · rt+ λ2 · (1− r)t+N log(q). (A.2)

(a) Let us first check that f(r,N) is maximum when r = r0 :=Q(1) andN :=N 0 ∼ κT .

Note that (N !)2 ≈ (2N)!
4N

, and the function N �→ a2N

(2N)!
is maximum, equal to ≈e2N for

a ∼ 2N , and thus f(r,N) is maximum for N ≈ N0(r) := t
√

r(1− r)κ1κ2. Then, one
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finds that f(r,N 0(r)) ≈ exp(Th(r)), with h(r) = 2
√

r(1− r)κ1κ2 − κ1r − κ2(1−
r), function which is maximum for 1− 2r = κ1−κ2√

κ1κ2

√
r(1− r). Then, noting that√

r0(1− r0) =
√
κ1κ2

κ1+κ2
and 1− 2r0 =

κ1−κ2
κ1+κ2

, we obtain r = r0. After replacing r by r0,

we find as expected N 0 = N 0(r0) ∼ κt.

(b) Let us now carry out an expansion about that point in terms of x and y variables
such that r

r0
= 1 + x and N

N0
= 1 + y. At first order in x, y when x, y → 0,

Λ ∼ 〈Λ〉+ (δλr0κ log(q))

(
x
y

)
, (A.3)

with δλ = λ1 − λ2. Let us write f(r,N) = P (x, y) with z =

(
x
y

)
. In the next

point (c), we show that P is Gaussian with P (x, y) ∼ Cst×e−
1
2 (Σ

−1z,z) for a certain
covariance matrix Σ. As a result:

Var(Λ) = (δλr0κ log(q)) Σ

(
δλr0

κ log(q)

)
. (A.4)

In the next point, we determine the matrix Σ.

(c) Let us perform an expansion to second order near z = 0,

e−κ1rt = e−κ1r0t × e−κ1r0tx, (A.5)

and similarly,

e−κ2(1−r)t = e−κ2(1−r0)t × e+κ2r0tx. (A.6)

Then,

(rκ1t)
N = (r0κ1t)

N0 × exp {N0(1 + y)(log(r0κ1t) + log(1 + x))−N0 log(r0κ1t)}

≈ (r0κ1t)
N0 × eN0(y log(r0κ1t)+x) × exp

{
N0x

(
−x

2
+ y

)}
, (A.7)

and similarly

((1− r)κ2t)
N = ((1− r0)κ2t)

N0 × exp

{
N0(1 + y)

(
log((1− r0)κ2t)

+ log

(
1− r0

1− r0
x

))
−N0 log((1− r0)κ2t)

}

≈ ((1− r0)κ2t)
N0 × eN0(y log((1−r0)κ2t)− r0

1−r0
x)

× exp

{
−N0

r0
1− r0

x

(
1

2

r0
1− r0

x+ y

)}

Then,
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N !

N0!
≈ eN0(1+y)(log(N0(1+y))−1)−N0(log(N0)−1)

≈ e−N0y eN0{(1+y)(log(N0)+log(1+y))−log(N0)}

≈ eN0 ln(N0)y × exp

{
1

2
N0y

2

}
. (A.8)

Taking the ratio (A.5)×(A.6)×(A.7)×(A.8)
(A.8)2

, one checks immediately that the terms of

first order in x, y cancel, and we get

P (x, y) ∼ Cst× eN0x(− x
2+y)e−N0

r0
1−r0

x( 1
2

r0
1−r0

x+y)e−N0y
2

(A.9)

whence (using r0
1−r0

= κ2
κ1
)

Σ−1 = N0

⎡
⎢⎣1 +

(
κ2

κ1

)2
κ2

κ1

− 1

κ2

κ1

− 1 2

⎤
⎥⎦ . (A.10)

It is simple to show that det(Σ−1/N0) = (1 + κ2
κ1
)2, then

Σ = N−1
0

(
1 +

κ2

κ1

)−2

⎡
⎢⎣

2 1− κ2

κ1

1− κ2

κ1
1 +

(
κ2

κ1

)2

⎤
⎥⎦ . (A.11)

After evaluating (A.4) with this covariance matrix and replacing r0 by κ2
κ1+κ2

, one

finally obtains the result equation (21) for the variance in the KL approximation.
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