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Brownian Carnot engine
I. A. Martínez1,2*†, É. Roldán1,3,4*†, L. Dinis4,5, D. Petrov1, J. M. R. Parrondo4,5 and R. A. Rica1*
The Carnot cycle imposes a fundamental upper limit to the
e�ciency of a macroscopic motor operating between two
thermal baths1. However, this bound needs to be reinterpreted
at microscopic scales, where molecular bio-motors2 and
some artificial micro-engines3–5 operate. As described by
stochastic thermodynamics6,7, energy transfers in microscopic
systems are random and thermal fluctuations induce transient
decreases of entropy, allowing for possible violations of the
Carnot limit8. Here we report an experimental realization of a
Carnot enginewith a single optically trapped Brownian particle
as the working substance. We present an exhaustive study of
the energetics of the engine and analyse the fluctuations of the
finite-time e�ciency, showing that the Carnot bound can be
surpassed for a small number of non-equilibrium cycles. As its
macroscopic counterpart, the energetics of our Carnot device
exhibits basic properties that one would expect to observe
in any microscopic energy transducer operating with baths at
di�erent temperatures9–11. Our results characterize the sources
of irreversibility in the engine and the statistical properties of
the e�ciency—an insight that could inspire new strategies in
the design of e�cient nano-motors.

The Carnot cycle consists of two isothermal processes, where
the working substance is respectively in contact with thermal baths
at different temperatures Th and Tc, connected by two adiabatic
processes, where the substance is isolated and heat is not delivered
nor absorbed. An external parameter is changed in such a way that
the whole cycle is carried out reversibly. Following this scheme, one
could devise a progressing miniaturization of a Carnot engine and
eventually reproduce the cycle with a single Brownian particle. In
fact, a variety of thermodynamic processes and even a complete
Stirling cycle have been already implemented in themesoscale using
micro-manipulation techniques3–5,12–14. Interestingly, the exchange
of energy between the particle and its surrounding environment
becomes stochastic at the microscale and yet one can rigorously
define work, heat and efficiency, within the framework of the
recently developed stochastic thermodynamics6,7.

The experimental realization of a Carnot cycle with a single
Brownian particle has remained elusive owing to the difficulties
of implementing an adiabatic process. In particular, it is not clear
how to isolate a particle from the surrounding fluid15. A more
feasible strategy is to simultaneously change the temperature and
the external parameter keeping constant the Shannon entropy of the
particle. However, the necessary fine-tuning of the temperature is
an experimental challenge as well. Here we construct a Brownian
Carnot engine putting forward an experimental technique that
allows precise control of both the effective temperature and the
accessible volume of a single microscopic particle (seeMethods and
refs 16–18). We use a particle with an inherent electric charge and

apply a noisy electrostatic force that mimics a thermal bath. In this
way, we can achieve temperatures ranging from room temperature
(no electrostatic force) up to hundreds or even thousands of kelvins,
far above the boiling point of water.

The working substance of our engine is a single optically trapped
colloidal particle immersed in water14. For small displacements
x from the trap equilibrium position, the optical potential is
harmonic, U (x , t)= κx(t)2/2, with stiffness κ . The Hamiltonian
or total energy of the particle is H = κx2/2 + p2/(2m), with
p=m(dx/dt) being the linear momentum of the particle andm the
mass of the particle. The conjugated force for the external parameter
κ is Fκ(t)≡ ∂H/∂κ = x2(t)/2. As a result, the work necessary to
implement a change dκ in the external parameter, dW (t)=Fκ(t)dκ ,
and the heat or energy transfer from the thermal bath to the particle,
dQ(t)=dH(t)−dW (t), are fluctuating quantities.

The Carnot cycle is implemented by modifying the stiffness κ
and the environment temperature T (Fig. 1a,b) and consists of two
isothermal processes (T is kept constant and κ changes, blue and
red curves in Fig. 1b) and two adiabatic processes (T and κ change
keeping T 2/κ constant14, green and magenta curves in Fig. 1b).
Wemeasure different thermodynamic quantities (temperature, stiff-
ness, heat, work and Shannon entropy, see Methods) under both
equilibrium and non-equilibrium driving (Fig. 1b–d). The effective
temperature of the particle is obtained from the average potential
energy, Tpart(t)≡ κ(t)〈x(t)2〉/k, and can differ from the environ-
ment temperature T for non-quasistatic protocols. The Tpart − κ

diagram of the engine (Fig. 1b) shows larger fluctuations in the
quasistatic equilibrium protocol, because the average is taken over a
smaller number of cycles. In the non-equilibrium protocol, themost
irreversible steps are the expansions, where the particle remains
colder (that is, more confined19) than the environment. As in a
macroscopic gas, the expansion is dominated by an entropic force,
namely, the tendency of the gas to fill the available space. In the case
of the single Brownian particle, the expansion is driven by thermal
fluctuations that allow the particle to move farther away from the
centre of the trap. On the other hand, the compression is driven
by the trap confining force, which allows the particle to react more
rapidly and to follow the equilibrium temperature even in fast cycles
in the adiabatic compression. In the isothermal compression, how-
ever, we observe a fast initial increase of the temperature of the par-
ticle due to the increase of the stiffness. The Fκ−κ diagram (Fig. 1c)
resembles the Clapeyron pressure versus volume diagram of a
Carnot cycle performed with an ideal gas20. The Tpart−S diagram of
the particle (Fig. 1d) is a rectangle where all of the entropy changes
in the system occur in the two isothermal steps. This diagram also
gives information about the nature of the irreversibility for a fast
driving (open symbols): the effective temperature of the particle in
the isothermal processes suggests the presence of an irreversible flow
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Figure 1 | The Brownian Carnot engine. a, Time evolution of the experimental protocol. b–d, Thermodynamic diagrams of the engine: (1) isothermal
compression (blue); (2) adiabatic compression (magenta); (3) isothermal expansion (red); (4) adiabatic expansion (green). Solid lines are the analytical
values in the quasistatic limit. Filled symbols are obtained from ensemble averages over cycles of duration τ=200 ms; open symbols are obtained for
τ=30 ms. The black arrow indicates the direction of the operation of the engine. b, Tpart−κ diagram. c, Clapeyron diagram. The area within the cycle is
equal to the mean work obtained during the cycle. d, Tpart–S diagram. The entropy changes only in the isothermal steps.

of energy between the reservoir and the particle, resembling the
endo-reversible engine introduced by Curzon and Ahlborn21,22.

During a cycle of duration τ , the working substance of the engine
exchanges heat with the different thermal baths it is put in contact
with, and under appropriate conditions it is able to extract work.
We call Wτ and Qτ the work exerted on the particle and the heat
transferred from the environment to the particle along a cycle,
respectively. The exchanged heat equalsQτ =1Hτ −Wτ . Both work
and heat along the whole cycle (Fig. 2a) converge to their quasistatic
averages 〈·∞〉 following 〈Wτ 〉=〈W∞〉+Σss/τ (ref. 23). Here, 〈W∞〉
is the quasistatic value of thework done per cycle and the termΣss/τ

accounts for the (positive) dissipation, which decays to zero like 1/τ
(ref. 24). In the case of the average heat per cycle, 〈Qτ 〉, we find
that the dissipative term is negative, that is, 〈Qτ 〉= 〈Q∞〉−Σss/τ

withΣss>0.
To quantify the performance of the engine, we analyse its power

output and efficiency. First, we measure the power output as the
mean total work exchanged during a cycle divided by the total
duration of the cycle (Fig. 2b), Pτ =−〈Wτ 〉/τ . For τ=10ms, 〈Wτ 〉

is positive, the particle behaves as a heat pump and the power is
negative. For larger values of τ the power increases, becoming pos-
itive, and eventually reaches a maximum value Pmax=6.34kTc s−1.
Above that maximum, Pτ decreases monotonically when increasing
the cycle length. The data of Pτ versus τ fit well to the expected
law Pτ =−(〈W∞〉+Σss/τ)/τ . The efficiency is given by the ratio
between the extracted work and the input of heat, which is usually
considered as the heat flowing from the hot thermal bath to the
system. In our experiment, however, there is a non-zero fluctuating
heat in the adiabatic steps, which must be taken into account in
the definition of the stochastic efficiency of the engine during a
finite number of cycles. Here we will consider this heat as input
(seeMethods for alternative definitions of the efficiency).We define
W (i)

τ
as the sum of the total work exerted on the particle along

i≥ 1 cycles of duration τ , and Q(i)
α,τ as the sum over i cycles of the

heat transferred to the particle in the αth subprocess (α=1, 2, 3, 4,

see Fig. 1). We therefore introduce the following definition of
stochastic efficiency:

η(i)
τ
=

−W (i)
τ

Q(i)
2,τ +Q

(i)
3,τ +Q

(i)
4,τ

(1)

The long-term efficiency of the motor is given by ητ ≡ η(i)τ with
i→∞. In the quasistatic limit, the average heat in the adiabatic pro-
cesses vanishes yielding η∞=ηC≡1−Tc/Th'0.43 (Fig. 2b). More-
over, the standard efficiency at maximum power, η∗'(0.25±0.05),
is in agreement with the Curzon–Ahlborn expression for finite-time
cycles ηCA=1−

√
Tc/Th'0.25 (refs 21,25).

Very recently, much attention has been drawn to the statistical
properties of the efficiency of stochastic engines. Using fluctuation
theorems, it was shown that the probability density function (PDF)
of the efficiency of an autonomous or symmetrically driven engine
has a local minimum precisely at the Carnot value ηC (ref. 26).
For non-symmetric driving protocols, such as our Carnot cycle,
there are several theoretical predictions concerning the PDF as
well as the large deviation function of the stochastic efficiency10,11.
To test some of these predictions, we measure the PDF ρτ ,i(η)
of the stochastic efficiency η(i)

τ
(Methods). Close to equilibrium,

near the maximum power output of the engine, the distribution
is bimodal when summing over several cycles9,11 (Fig. 3). Indeed,
local maxima of ρτ ,i(η) appear above standard efficiency for large
values of i. Another universal feature tested here is that the tails
of the distribution follow a power law, ρτ ,i(η→±∞)∼ η−2 (inset
of Fig. 3)11,27. In the Supplementary Information, we discuss in
detail and provide further experimental tests of other universal
properties of the PDF and the large deviation function of the
stochastic efficiency.

We have realized the first Brownian Carnot engine with a single
microscopic particle as a working substance that is able to transform
the heat transferred from thermal fluctuations into mechanical
work, characterizing both its mean behaviour and fluctuations. At
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Figure 2 | Energetics of the Brownian Carnot engine. a, Ensemble averages of stochastic work (〈Wτ 〉, blue stars) and heat (〈Qτ 〉, red pluses) transferred in
one cycle as a function of the cycle duration. Green crosses are the average total energy change of the working substance 〈1Hτ 〉. Thin lines are fits to
A+B/τ . b, Power output Pτ =−〈Wτ 〉/τ (black diamonds, left axis) and long-term e�ciency ητ (yellow hexagons, right axis) as a function of the inverse of
the cycle time. The black curve is a fit Pτ =(〈W∞〉+Σss/τ )/τ , yielding 〈W∞〉=(−0.38±0.01)kTc andΣss=(5.7±0.3)kTc ms with a reduced chi-square
of χ2

red= 1.08. The solid yellow line is a fit to ητ =(ηC+τW/τ )/(1+τQ/τ ), which yields η∞=(0.92±0.06)ηC, τW=(−11±2) ms, τQ=(−0.6±6.0) ms with
χ2

red=0.76. Yellow dash–dot line is the Curzon–Ahlborn e�ciency ηCA= 1−
√
Tc/Th=0.25=0.57ηC, which is in excellent agreement with the location of

the maximum power (vertical black dashed line). Ensemble averages are done over 50 s and error bars are obtained with a statistical significance of 90%.
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Figure 3 | E�ciency fluctuations at maximum power. Contour plot of the
PDF of the e�ciency ρτ=40ms,i(η) computed summing over i= 1 to 400
cycles (left axis). The long-term e�ciency (averaged over τexp=50 s) is
shown with a vertical blue dashed line. Super Carnot e�ciencies appear
even far from quasistatic driving. Inset: tails of the distribution for
ρτ=40ms,10(η) (blue pluses, positive tail; red stars, negative tail). The green
line is a fit to a power law to all the data shown, whose exponent is
γ =(−1.9±0.3).

slow driving, our engine attains the fundamental limit of Carnot
efficiency. The maximum power performed by our engine is ∼250
larger than that of previous micro-engines3 and only one order of
magnitude below the power developed by some biologicalmolecular
motors such as myosin2. Our results could be exploited in the
design of new biologically inspired nano-engines28 or artificial
nanorobots29. In vacuum, trapping techniques could benefit from
our study of the efficiency fluctuations to build engines capable of
outperforming Carnot efficiency30–32.

Methods
Methods and any associated references are available in the online
version of the paper.
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Methods
Experimental set-up. Polystyrene microspheres of diameter 1 µm
(G. Kisker-Products for Biotechnology) are diluted in deionized and filtered water
to a final concentration of a few spheres per millilitre. The spheres are inserted into
a custom-made electrophoretic fluid chamber with two electrodes. A Gaussian
white noise signal is generated with an independent generator (Tabor electronics,
WW1071). The external noise is modulated by a custom-made voltage multiplier
(100 kHz bandwidth) with a signal (VT) generated by a dual generator (Tabor
electronics, dual channel WW5062). The output signal of the multiplier is
amplified 1,000 times with a high-voltage power amplifier (TREK, 623B) before
being applied to the electrodes.

The optical potential is generated by a 980 nm laser beam which is inserted
through an oil immersion objective (Nikon, CFI PL FL×100 NA 1.30) into
the fluid chamber. The detection of the motion of the particle is achieved
by an additional 532 nm laser beam that is passed through the trapping
objective. The forward scattered light is collected by an additional microscope
objective (×10, NA=0.10), and its back focal-plane field distribution is analysed
by a quadrant position detector (New Focus 2911) at an acquisition rate
of 2 kHz.

A laser controller (Arroyo Instruments 4210) allows the management of the
optical power at a maximum rate of 250 kHz using an external voltage Vκ . The trap
stiffness depends linearly on the optical power and can be controlled at the same
rate as it. The signal sent to the laser controller (Vκ ) is also generated by the dual
generator, and is hence synchronized with VT.

Experimental protocol. The electronic control of the protocol allows us to
implement it at different cycle times without loss of resolution, ranging from
τ=10ms to τ=200ms, during τexp=50 s. For simplicity, we impose a
time-symmetric protocol for the stiffness, {κ(t)}τt=0 with κ(t)=κ(τ− t).
The stiffness increases quadratically with time from t=0 to t=τ/2 and
decreases at the same rate from τ/2 to τ . We fix the minimum and
maximum values of the stiffness, κI=κ(0)=(2.0±0.2) pN µm−1 and
κIII=κ(τ/2)=(20.0±0.2) pN µm−1 respectively. For convenience, we define
κII=κ(τ/4)=(6.5±0.2) pN µm−1. The geometry of the Carnot cycle imposes the
value of κIV=(κIII/κII)κI=κ(τ ∗)=(6.2±0.2) pN µm−1, where τ ∗ yields
τ ∗=τ−(τ/2)

√
(κIII/κII)−1/(κIII/κI)−1'0.76τ . The temperature of the particle

remains constant at the isothermal steps: TI=TII=Tc=300K during t ∈[0,τ/2]
and TIII=TIV=Th=525K during t ∈[τ/2,τ ∗]. Along the adiabatic steps, the
temperature changes smoothly while T 2(t)/κ(t) remains constant to ensure that
the total Shannon entropy of the system is conserved14,33.

Data analysis. For each cycle of duration τ , we sample the position of the bead
with respect to the centre along the x axis set by the direction of the external field.
In all cases, we measure trajectories of the position {xt }τt=0 with sampling rate 2 kHz
(1t=5ms) along τexp=50 s. The stochastic work exerted to the particle in the
interval of time [t , t+1t] in a single realization is given by

dWt = Fκ (xt, t)◦dκt (2)

=
Fκ (xt, t)+Fκ (xt+1t , t+1t)

2
· [κt+1t−κt]

where ◦ denotes the Stratonovich product (ref. 6) and
Fκ (xt, t)=∂U (xt, t)/∂κt=x2

t /2 is the generalized force conjugated to the control
parameter κ . The stochastic heat transferred in [t , t+1t] from the effective
thermal bath to the particle is calculated using the first law
of thermodynamics:

dQt=dHt−dWt=dUt+dEkin,t−dWt (3)

where dUt=(1/2)(κt+1tx2
t+1t−κtx2

t ) is the change in potential energy,
dEkin,t=(m/2)(v2

t+1t−v2
t ) is the kinetic energy change, and dWt is given by

equation (2). Equation (3) equals Sekimoto’s celebrated expression for microscopic
heat6. Both work and heat along the elementary processes in the cycle are
calculated by summing the contributions of equations (2) and (3) from the
beginning to the end of the process.

The kinetic energy of the particle (of massm and friction coefficient γ ) at time
t , vt, is calculated from the time-averaged velocity at time t , v t=(xt+1t−xt)/1t :

v2
t =Ltv2

t (4)

where Lt is a correction factor that depends on the acquisition frequency f =1/1t
and on the physical parameters of the system at time t :

Lt=
1
2f 2

[
1
f 20
+

e−
fp
2f

f1

(
e−f1/f

fp+2f1
−

ef1/f

fp−2f1

)]−1
(5)

where fp=γ /m, fκ=κt/2πγ , f0=
√

fpfκ and f1=
√

f 2p /4− f 20 (refs 13,14).

The Shannon entropy of the particle at time t , St, is measured as the sum of the
positional and kinetic entropy, St=Sx ,t+Sv,t. Here, Sx ,t=−k

∫
dxt ρ(xt, t) lnρ(xt, t),

where ρ(xt, t) is the PDF to observe trajectories that pass through xt at time t along
the experiment. The distribution ρ(xt, t) is estimated from the histogram of xt
using a regular binning of 25 bins in the interval [−3σ(xt), 3σ(xt)], with σ(xt)
being the standard deviation of the position at time t . The same procedure is
applied to determine Sv,t=−k

∫
dvt ρ(vt, t) lnρ(vt, t), binning in the interval

[−3σ(vt), 3σ(vt)] in this case, with vt being determined using equations (4) and (5).
For a given cycle of duration τ , we first calculate the distribution of η(i)

τ

for i=[1,2,3, . . . , 400] cycles. For each value of i, the PDF ρ(η(i)) is estimated as
follows: we first compute the values of η(i)

τ
(equation (1) in the main text) along the

experiment as the ratio of the work summed over i consecutive cycles over the heat
summed over the same i cycles. This procedure is repeated along all of the cycles of
the experiment. The distributions shown in Fig. 3 are calculated using a kernel
density routine in MATLAB R2013a by partitioning the data in regular bins
ranging from−5ηC to 5ηC of width 0.02ηC. The tails of the distribution (inset of
Fig. 3) are sampled using a binning of width 0.4ηC.

Efficiency fluctuations in the quasistatic limit. The traditional definition
of efficiency for a heat engine operating between two thermal baths is the
ratio between work extracted in the cycle and heat absorbed during the
hot isothermal,

η1,(i)
τ
=
−W (i)

τ

Q(i)
3,τ

If heat is exchanged during other steps different from isothermals, even if only
because of fluctuations, it may be relevant to reflect this in the efficiency. Thus,
these two other definitions for the efficiency are possible:

η2,(i)
τ
=
−W (i)

τ

Q(i)
2,τ +Q

(i)
3,τ

, η3,(i)
τ
=

−W (i)
τ

Q(i)
2,τ +Q

(i)
3,τ +Q

(i)
4,τ

For example, η2,(i)
τ

is the type of efficiency usually considered when the heat in step
2 (the step just before the hot isothermal expansion) is exchanged with the hot
bath, as in the microscopic Stirling motor3 (with step 2 corresponding to the
isochoric heating in this case).

The corresponding long-term efficiencies are obtained with the limits i→∞
and τ→∞:

η1=
−W∞
Q3,∞

η2=
−W∞

Q2,∞+Q3,∞

η3=
−W∞

Q2,∞+Q3,∞+Q4,∞

whereW∞= limi→∞(W (i)
∞
/i), and the same for the heat.

Theoretically, these three definitions of long-term efficiency converge to Carnot
efficiency, as heat exchanges in the adiabatic steps vanish on average. However, the
experimental long-term efficiencies do not coincide for large τ (data not shown).
Carnot efficiency is approached best by η3 in the quasistatic limit. This can be
understood by noting that η3 is the quantity with the smallest fluctuations around
ηC of the three in this limit. Thus, when averaging over a finite number of cycles
this approaches Carnot efficiency faster.

We can analyse the fluctuations of η3 in the quasistatic limit by noting that the
work is delta distributed. Then, the denominator in η3 can be expressed using the
first law applied to the process 2→3→4, as

Q2+Q3+Q4=HI−HII−W+W1

whereW is the total work in the cycle andW1 is work in the cold isothermal, both
deterministic quantities. Here I and II refer to the initial and final state of the
system during the subprocess 1. This yields

η3=
−W

−W+W1+HI−HII

where HII–HI is the total energy difference between the initial and final state in the
cold isothermal and is the only fluctuating quantity in the expression. The
quasistatic averages of the work in the cold isothermal and in the cycle are
equal to

W=
k
2
(Tc−Th) log

κII

κI

W1=
kTc

2
log

κII

κI
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and then

η3=
ηC

1+ 2(HI−HII)
kTh log

κII
κI

The distribution of the internal energy change is given by

ρ(HI−HII)=βc e−βc |HI−HII |

with βc=1/kTc. From this, we can compute the variance of HI−HII, which reads

1(HI−HII)=
√
2kTc

This gives a variance for η3 of

1η3=ηC

∣∣∣∣∣ 2
kTh log κII

κI

∣∣∣∣∣1(HI−HII)

and for the relative fluctuation

1η3

ηC
=

∣∣∣∣∣ 2
√
2

kTh log κII
κI

∣∣∣∣∣kTc

Equivalently, the variance of η1 in the quasistatic limit reads

1η1

ηC
=

∣∣∣∣∣ 2
√
2

kTh log κII
κI

∣∣∣∣∣kTh

Fluctuations on η1 are a factor Th/Tc stronger than those of η3 and values for η1
computed from averages of a small finite number of cycles will in general be less
reliable than those of η3. When considering the intermediate case of η2, the
variance can be shown to be equal to

1η2

ηC
=

∣∣∣∣∣ 2
√
2

kTh log κII
κI

∣∣∣∣∣ k2
√

T 2
h +T 2

c

Our theoretical results predict that the width of the long-term efficiencies
satisfy1η3.1η2�1η1, which indicates than when estimating efficiencies η3 is
expected to have the least experimental error associated with fluctuations.
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