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Nonequilibrium transport through a disordered molecular nanowire
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We investigate the nonequilibrium transport properties of a disordered molecular nanowire. The nanowire is
regarded as a quasi-one-dimensional organic crystal composed of self-assembled molecules. One orbital and
a single random energy are assigned to each molecule while the intermolecular coupling does not fluctuate.
Consequently, electronic states are expected to be spatially localized. We consider the regime of strong
localization, namely, the localization length is smaller than the length of the molecular wire. Electron-vibron
interaction, taking place at each single molecule, is also considered. We investigate the interplay between static
disorder and electron-vibron interaction in response to either an applied electric bias or a temperature gradient.
To this end, we calculate the electric and heat currents when the nanowire is connected to leads, using the Keldysh
nonequilibrium Green’s function formalism. At intermediate temperature, scattering by disorder dominates both
charge and heat transport. We find that the electron-vibron interaction enhances the effect of the disorder on the
transport properties due to the decrease of the coherent electron tunneling among molecules.
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I. INTRODUCTION

Anderson localization of the electronic wave function in a
random medium is a major paradigm of quantum coherence
in condensed matter physics: noninteracting electrons in
three dimensions are spatially localized for sufficiently large
disorder [1] and in one-dimension all the states of random
systems become exponentially localized for any amount of
disorder due to coherent backscattering [2]. With a few excep-
tions [3–9], a single-parameter scaling theory [10] generally
provides a very accurate picture of the electronic states in
noninteracting disordered systems. In real solids, however,
electrons interact with each other and with lattice vibrations,
and these interactions may affect the transport properties of
disordered systems. For instance, electron-phonon interaction
can decrease the ability of electrons to form localized states
and hence increase charge mobility [11,12].

The advent of nanotechnology has renewed attention
on Anderson localization because it is enhanced in low-
dimensional systems [10]. Among the large variety of ma-
terials with technological interest in this field, crystalline
molecular systems are gaining relevance as active components
in electronic nanodevices [13]. Unfortunately, the detailed
mechanisms of charge transport in molecular systems driven
out of equilibrium are still controversial, posing a complicated
scenario for the theoretical description of experiments [14].
For example, it has been argued that, depending on the various
energy scales involved (electron bandwidth, zero-point energy
of molecular vibrations, thermal energy), electron-phonon
coupling may not play a significant role on charge transport
even at room temperature, as deduced from inelastic electron
tunneling spectroscopy experiments [15–18]. When the charge
carriers interact with low-energy intermolecular modes, they
move in a slowly changing potential landscape that gives
rise to the so-called transient localization [19]. On the other
hand, intramolecular modes occur at high frequency due to the
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stretching of stiff covalent bonds. Coupling to those modes
may strongly alter charge transport [20] and even lead to the
self-trapping of charge carriers, provided that the relaxation
energy (the energy gained upon the deformation of lattice
around the carrier) largely exceeds the kinetic energy gained
from the carrier tunneling to neighbor molecules [19].

In this work, we aim at exploring the intermediate regime
when the electron-vibron interaction is not strong and the effect
on the transport properties of a long and pristine molecular
nanowire (MNW) are expected to be small. We are particu-
larly interested in the interplay between static disorder and
polaronic effects on the charge and heat transport properties
in this regime. The MNW will be regarded as a quasi-one-
dimensional organic crystal of self-assembled molecules [21].
Specifically, we consider a MNW with the two ends connected
to ideal leads and assume that the electrons interact with
a vibrational degree of freedom localized at each molecule.
Disorder in the electronic environment of each molecule can
originate from interactions with a random environment of
solute molecules and ions surrounding the MNW. Unlike Ref.
[22], we propose a two-probe configuration to diminish the
conductance fluctuations found in four-probe setups. It should
be stressed that we neglect the lateral motion of electrons in the
MNW. Grange has recently established that the current-voltage
characteristics show a transition from wide to narrow wires,
displaying additional peaks due to resonances with optical
phonons [23]. Since we only deal with quasi-one-dimensional
MNWs, this transition is beyond the scope of our work. We will
use the Keldysh nonequilibrium Green’s function formalism
[24] to obtain the spectral function as well as the electric and
heat currents through the MNW, driven out of equilibrium by
either an applied electric bias or temperature gradient.

One of our main findings is the strong effect of disorder
on the electron transport properties of the MNW when
the electron-vibron interaction is taken into account. The
enhancement of the localization effects can be traced back to
the so-called exponential suppression of tunneling [25]. This
amounts to reducing the coherent electron tunneling among
neighbor molecules when the electron-vibron interaction is
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FIG. 1. Schematic diagram of the MNW with intermolecular
hopping parameter J . The MNW is also connected to left and
right leads. We take into account an intramolecular electron-vibron
interaction, λ being the coupling constant and Ti the temperature of
the bath for each molecule. The εi denote the local molecular energies
and μL,R and TL,R are the chemical potentials and the temperatures
in the left and right leads, respectively.

non-negligible. Consequently, the ratio between the magnitude
of disorder, defined as the width of the distribution of site
energies, and the electron hopping parameter among neighbor
molecules becomes larger for higher temperatures. This can
actually be viewed as an effective increase of the disorder.
Notice that, due to the zero-point motion, the hopping param-
eter is already significantly decreased at T = 0, leading to a
stronger effective disorder even in the absence of background
temperature.

II. MODEL AND FORMALISM

We consider a MNW composed of N self-assembled
molecules and connected to left (L) and right (R) leads
by tunneling couplings, as shown schematically in Fig. 1.
The chemical potentials of the leads under a bias voltage
V are given by μL = μ + eV/2 and μR = μ − eV/2, where
μ is the equilibrium chemical potential and e the electron
charge. The lead temperatures are set as TL = T − �T/2
and TR = T + �T/2, where T is a background temperature
and �T is the temperature difference between the hot and the
cold leads.

Only one energy level in each molecule is assumed
relevant and electron-electron interaction is neglected. On-site
energies are subjected to disorder representing inhomogeneous
broadening. Then, the energy level of the molecule i splits as
εi = ε + �εi , where �εi is a random uncorrelated variable
whose distribution function is P (�εi) = 1/W if |�εi | < W/2
and zero otherwise. W will be referred to as magnitude
of disorder. In addition, the electron interacts with a local
vibration mode at each molecule which we assume of the same
frequency ω0 for simplicity. Besides the different temperature
of the leads, we introduce a temperature gradient in the system
by setting a different temperature Ti of each bath (see Fig. 1).
In this work, we interpolate linearly Ti between TL and TR .

A. The coupled electron-vibron system

The Hamiltonian describing the whole system splits into
three contributions as H = H0 + He−leads + He−vib [26]. The
term H0 describes the dynamics of the noninteracting system

(we set h̄ = 1)

H0 =
N∑

i=1

εic
†
i ci − J

N−1∑
i=1

(c†i ci+1 + c
†
i+1ci)

+ω0

N∑
i=1

a
†
i ai +

∑
αk

εαkd
†
αkdαk . (1)

Here, d
†
αk (dαk) denotes the creation (annihilation) operator

of a conduction electron in the lead α = L,R with crystal
momentum k and energy εαk . Similarly, c

†
i (ci) is the creation

(annihilation) operator of an electron in the molecule i with
energy εi . J indicates the bare intermolecular hopping energy
and is assumed constant and positive. It is worth noticing that
J depends on the particular distance and orientation between
neighboring units and it could change due to molecular
vibrations [27]. However, this issue is beyond our current
study and further works should consider it. Finally, the creation
(annihilation) operator of a vibron in the molecule i with
frequency ω0 is denoted by a

†
i (ai).

The MNW is tunnel-coupled to both leads, as shown
schematically in Fig 1. Therefore the corresponding Hamil-
tonian reads

He−leads =
∑
αki

(Vαkid
†
αkci + V ∗

αkic
†
i dαk) . (2)

Self-trapping has been commonly formulated within the
framework of the small polaron theory based on a local
Holstein-type coupling [28] between the carrier and the
intramolecular modes. Quanta of the intramolecular vibrations
are usually referred to as vibrons. The Holstein-type coupling
between the electron and the vibrons [28] can be written as

He−vib = λ
∑

i

(a†
i + ai)c

†
i ci . (3)

The electron-vibron coupling constant λ is assumed uniform
over the MNW. We now apply the polaron (Lang-Firsov [29])
nonperturbative canonical transformation when the coupling
to the leads is not strong (|Vαki | < λ). In such a case, it
is reasonable to replace the displacement operator Xi =
exp[−(λ/ω0)(a†

i − ai)] that emerges after the transformation
by its thermal expectation value evaluated in equilibrium 〈Xi〉.
Notice that such polaron transformation and the subsequent
replacement turns the original many-body problem into an
effective one-body problem (see Appendix A for details). The
transformed Hamiltonian is approximately given by

H̃ ≈
N∑

i=1

ε̃ic
†
i ci −

N−1∑
i=1

(J̃ic
†
i ci+1 + H.c.) +

N∑
i=1

ω0a
†
i ai

+
∑
αki

(Ṽαkid
†
αkci + H.c.) , (4)

with ε̃i = εi − λ2/ω0 being the renormalized energy level
of the molecule i, J̃i = J exp [−ξi(Ti)/2 − ξi+1(Ti+1)/2] and
Ṽαki = Vαki exp[−ξi(Ti)/2]. Here, H.c. stands for Hermi-
tian conjugate. We have defined ξi(Ti) = g(2ni + 1), ni =
1/[exp (ω0/kBTi) − 1], and g = λ2/ω2

0. Notice that the higher
the temperature, the smaller the dressed couplings among the
molecules J̃i and between them and the leads Ṽαki , as pictured
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FIG. 2. Temperature dependence of the dressed hopping energy
J̃ among the molecules at an electron-vibron coupling strength of
λ = 0.25, in units of the bare hopping energy J . In the absence
of temperature gradient, the dressed hopping energy is independent
of the site index. The observed monotonic decay continues for larger
T values.

in Fig. 2. This will be referred to as exponential suppression of
tunneling [25]. It is worth mentioning that J̃i/J < 1 at T = 0
due to the zero-point motion.

B. Nonequilibrium transport properties

Nonequilibrium transport properties of an interaction re-
gion coupled to two leads can be obtained with the help of
the Keldysh nonequilibrium Green’s function technique [30].
This procedure is detailed in Appendix B.

After transformation into Fourier space, the calculation of
the greater and lesser Green’s functions, G>(ω) and G<(ω),
allows us to obtain the spectral matrix

A(ω) = i[G>(ω) − G<(ω)] , (5)

along with the spectral function A(ω) = Tr [A(ω)]/N . In
addition, we can also calculate the symmetrized electric
current [24]

Je = e

2

∫
dω

2π
Tr [(	L − 	R)iG<(ω)

+ (fL(ω)	L − fR(ω)	R)A(ω)] . (6a)

Here, fα(ω) = 1/{exp [(ω − μα)/kBTα] + 1} is the Fermi-
Dirac distribution function of the lead α. The matrices which
encode the coupling to the leads, 	α , are taken symmetric
with 	L

1,1 = 	R
N,N (	α

ij = 0 otherwise). Notice that we will
neglect their k dependence by relying on the wide-band limit
approximation and take these matrices as energy-independent
magnitudes.

Unlike the electric current, the heat current is not necessar-
ily conserved due to the coupling to the heat baths and Joule
heating. We will mainly concentrate on the heat current from
the left lead to the MNW,

JL
Q =

∫
dω

2π
ω Tr [	LiG<(ω) + fL(ω)	LA(ω)] − μL

Je

e
,

(6b)

which is expected to differ from the heat current JR
Q from the

right lead to the MNW. For instance, due to the symmetry
of the system at �T = 0, the heat current JL

Q(−�T ) from
the left lead to the system at −�T is equal to the energy
flux JR

Q (�T ) from the right lead to the system at �T .

FIG. 3. Spectral function A(ω) at kBT = 0.1 for a MNW sym-
metrically coupled to leads (	L = 	R = 0.2) with (a) no disorder
and (b) random on-site energies (W = 0.3), averaged over 100
realizations. The number of molecules is N = 20. Blue and red
solid lines correspond to finite electron-vibron coupling (λ = 0.5)
when ε0 = 0.25 and 0, respectively. Black dashed lines show the
spectral density of the noninteracting wire (λ = 0) when ε0 = 0
(the area under these two curves has been shaded to allow easier
identification). For clarity, the error bars of the averages in panel (b)
are not shown. The arrows point at the first-order side bands of the
interacting systems.

Following the reasoning from Ref. [31], the sum J�E(�T ) ≡
JL

Q(�T ) + JR
Q (�T ) = JL

Q(�T ) + JL
Q(−�T ) equals the rate

of energy generated inside the MNW. In the following sections,
the electric and heat currents will be expressed in units of
eω0/2π and ω2

0/2π , respectively. The superscript L in Eq. (6b)
will be removed unless stated otherwise.

III. SPECTRAL FUNCTION

In this section, we present and discuss the salient features of
the spectral function A(ω). This quantity provides information
of the energy spectrum of the elementary excitations in
the system. For concreteness, we restrict ourselves to the
equilibrium regime by setting μL = μR = 0 and �T = 0
throughout this section. To gain insight into the effect of
the electron-vibron interaction we compare the numerically
calculated spectral density in the noninteracting MNW (λ = 0)
with a wire where the electron-vibron coupling strength
is finite (λ = 0.5). Energies are expressed in units of the
vibron energy ω0 in what follows (recall that we set h̄ = 1).
As already mentioned, the coupling to the leads is taken
as symmetric with 	L

1,1 = 	R
N,N = 0.2 (	α

ij = 0 otherwise),
the bare intermolecular hopping energy is J = 0.1 and
N = 20.

Figure 3(a) shows the spectral density of a uniform MNW
(W = 0) with constant on-site energy ε0 = 0.25 (blue solid
line) and ε0 = 0 (red solid line), which corresponds to
renormalized energies ε̃0 = 0 and ε̃0 = −0.25 when λ = 0.5,
respectively. The temperature of the system is kBT = 0.1. It is
important to stress that we are assuming that the system is gated
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so the energy level ε0 can be set at the chemical potential of the
contacts at equilibrium μ [32]. In addition, the Huang-Rhys
factor g = λ2/ω2

0 turns out to be g = 0.25, which falls in the
typical range of parameters of organic semiconductors [33].
Results are compared to the noninteracting case (λ = 0, black
dashed line) when ε0 = 0, whose spectral density displays the
expected U -shaped profile of width 4J̃ corresponding to a
one-dimensional lattice with dressed intermolecular hopping
energy J̃ . When the electron-vibron interaction is turned
on (red solid line), the zero-vibron band of the spectral
density is red-shifted with regard to the noninteracting case,
according to the renormalization of the on-site energy ε̃0 =
ε0 − λ2 = −0.25 associated to the deformation of the lattice
around the tunneling electron [34]. Furthermore, the finite
electron-vibron interaction leads to the formation of side bands
centered at energies ε̃0 − 1 and ε̃0 + 1, which correspond to
emission or absorption of vibrational energy, respectively.
As the thermal energy is small compared to the vibrational
energy (kBT � ω0), the latter contribution is weak, which
leads to an asymmetric spectral density A(ω) and therefore
to a broken particle-hole symmetry in the case ε̃0 �= 0. For
the case of a renormalized energy of ε̃0 = 0 (blue solid line),
the particle-hole symmetry is established and the side bands are
symmetric. It has to be noted that the sum rule

∫
dωA(ω) = 2π

still holds, so that the additional contribution due to the side
channels are compensated by decreasing the height of the
zero-vibron band with respect to the noninteracting case, as
seen when comparing the blue solid line with the black dashed
line [35].

In summary, the effect of the electron-vibron interaction on
the spectral density of a uniform MNW is similar to the case of
a single molecule [35]. The most significant difference is the
level splitting to form a band due to the intermolecular coupling
and the resulting narrowing arising from the renormalization
of the intermolecular hopping energy J̃ with respect to the
noninteracting case J .

We now introduce strong static disorder with magnitude
W = 0.3, which is of the order of the MNW bandwidth. This
value is similar to those considered by Ciuchi and Fratini
to discuss the temperature dependence of the mobility in
rubrene organic field-effect transistors [36]. It implies that the
localization length in the noninteracting lattice is smaller than
the system size (strong disorder limit) since it is determined
from the ratio between the magnitude of disorder and the
bandwidth. In other words, this is a key parameter to elucidate
the importance of disorder because the larger the ratio W/J ,
the smaller the localization length [37]. When W/J is of
the order of unity, the electron becomes mainly localized at
a single molecule. Figure 3(b) shows the resulting spectral
function when the other parameters are the same as in Fig. 3(a).
The displayed values were calculated by averaging over
100 realizations. As expected, the obtained spectral densities
show a much more complicated structure but the sum-rule∫

A(ω)dω = 2π remains valid, as the distribution of levels
becomes random after introducing disorder. The effect of
the electron-vibron interaction on the spectral function does
not seem to differ much from the case without disorder.
In particular, no midgap channels induced by disorder were
found, in contrast to short molecular systems with a single
defect [38].

FIG. 4. Differential electric conductance G(V,�T = 0) =
dJe/dV |�T =0 as a function of eV for a MNW without disorder at
(a) kBT = 0.01 and (b) kBT = 0.2. Blue and red solid lines corre-
spond to finite electron-vibron coupling (λ = 0.5) when ε0 = 0.25
and 0. Black dashed lines show the results for the noninteracting
MNW (λ = 0) when ε0 = 0. The insets show the corresponding
electric currents Je(eV,�T = 0).

IV. VOLTAGE-DRIVEN ELECTRIC TRANSPORT

We now turn to the impact of the electron-vibron interaction
on the electric response of the MNW out of equilibrium. To
this end, we calculate the nonlinear dependence of the electric
current given by Eq. (6a) on the source-drain voltage V . As
the charge transport across the wire is strongly dominated
by resonant tunneling processes, the electric current and
the differential conductance G(V,�T = 0) = dJe/dV |�T =0

give a good insight into the complex nonlinear transmission
function of the system. We also calculate the heat current JQ

from Eq. (6b). We first discuss the simpler case of the MNW
without disorder (W = 0) and later compare it to the electric
response of the system subjected to disorder (W = 0.3). In
both cases, the electric response is computed for a MNW with
(λ = 0.5) and without (λ = 0) electron-vibron interaction. The
rest of parameters is the same as in Fig. 3.

A. Uniform molecular nanowires

Figure 4 shows the nonlinear conductance at (a) a low
temperature of kBT = 0.01 and (b) an intermediate temper-
ature of kBT = 0.2 as a function of eV for a MNW without
disorder. The overall shape of the low temperature conductance
of the different cases in Fig. 4 follows the general trends of
the spectral function shown in Fig. 3(a). This can be easily
explained by the close relation between the conductance and
the electronic transmission properties through the chain, with
peaks corresponding to the resonant transmission channels
shown by the spectral function. Notice the smearing out
of the conductance due to the finite temperature and the
symmetry ofG(V,�T = 0) and Je(eV,�T = 0) against ±eV .
This is related to the upward and downward shift of the
chemical potential of the left (+eV/2) and right (−eV/2)
leads produced by the applied bias. Thus a finite contribution of
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G(V,�T = 0) will correspond to energies ω = ±eV/2 where
the spectral density is nonzero.

In the case without electron-vibron interaction shown
in Fig. 4(a) (black dashed line), the conductance in the
uniform MNW only exhibits finite values within the band, as
expected. For systems with finite electron-vibron interaction
(λ = 0.5), the differential electric conductance of a MNW
with a renormalized on-site energy ε̃0 = 0 (blue solid line)
resembles the case without interaction, with a maximum at
eV = 0 corresponding to the zero-vibron peak. The width
of the peak is narrower due to the reduced hopping energy
J̃ < J . Additionally, the differential conductance also shows
side peaks at about eV = ±2, i.e., ω = ±1, which match the
transmission channels created by the absorption and emission
of vibrons. When the renormalized on-site energy is nonzero
(see red solid line, corresponding to ε̃0 = −0.25), the central
maximum disappears and two zero-vibron peaks at eV = ±0.5
arise instead. This is due to the fact that transmission channels
are open only for either holes or electrons but not for both
simultaneously. In addition, the red solid line shows two
more side peaks at eV = ±1.5 and eV = ±2.5, the former
matching the transmission channel at ε̃0 + 1 = 0.75 and the
latter ε̃0 − 1 = −1.25. Interestingly, the weight of the local
maxima at eV = ±1.5 is very large in comparison to the
spectral function depicted in Fig. 3. The inset in Fig. 4(a)
shows the electric current Je(V,�T = 0) corresponding to
the conductance of the main panel. Je(V,�T = 0) clearly
displays the same saturation value independent of λ, which
indicates that we do not induce any real scattering with
the electron-vibron interaction and which corresponds to the
conservation of the spectral sum-rule discussed in Sec. III.
Figure 4(b) displays the conductance at a higher temperature
kBT = 0.2. The different local maxima seen in Fig. 4(a) reduce
to a single wide peak due to the thermal smearing out of the
Fermi-Dirac distribution in the leads. Also here the saturation
values of the electric current with and without electron-vibron
interaction are the same.

The MNW presents metallic or semiconducting transport
properties, shown in Fig. 4, according to the alignment of
the states with respect to the chemical potential. When the
center of the band of states matches the chemical potential
in equilibrium μ = 0, the MNW is metallic and the current-
voltage characteristics is linear around eV = 0. This is the
case of the noninteracting MNW when ε0 = 0 [black dashed
line in Figs. 3 and 4(a)], as seen in Fig. 5(a). The occurrence
of a finite electron-vibron interaction shifts the band of states
and opens a gap, as depicted in Fig. 5(b). Consequently, the
MNW becomes semiconducting. This is in agreement with
the observation of a zero differential electric conductance at
eV = 0 shown in Fig. 4(a) (red solid line). The small gap is
not observed at high temperature, as expected [see Fig. 4(b)].
Similar comments can be done regarding the side bands of the
spectral function that also reveal themselves in the differential
electric conductance curves (not shown in Fig. 5 for the sake
of clarity).

Figure 6 shows the heat current JQ(V ) as a function
of eV at low and intermediate temperatures as in Fig. 4.
Unlike the electric current, the heat current does not satu-
rate at high eV due to Joule heating. The observed linear
behavior of JQ(V,�T = 0) at high voltage manifests itself

FIG. 5. Level alignment around the chemical potential μ when
the MNW is subject to an applied voltage. (a) When the band of states
is located symmetrically about μ the MNW presents metallic behavior
[solid blue and black dashed lines in Figs. 3 and 4(a)]. (b) A finite
and large value of the electron-vibron interaction shifts downward
the band of states and a gap opens [red solid line in Fig. 4(a)].

in the saturation of the differential electrothermal conduc-
tance M(V,�T = 0) = dJQ/dV |�T =0 (shown in the insets).
The electron transmission properties can be depicted in
the nonlinear progression of the differential electrothermal
conductance M, where we see strong deviations compared to
the differential electric conductance G due to the Joule heating
μLJe/e and the weighting by the tunneling electron energy
ω in Eq. (6b). One should note the strong resemblance of
the JQ(V,�T = 0) curves without electron-vibron interaction
(black dashed lines) and the corresponding curve with the

FIG. 6. Heat current JQ(V,�T = 0) as a function of eV for
MNWs without disorder as in the case of Fig. 4 at (a) kBT = 0.01
and (b) kBT = 0.2. Blue and red solid lines correspond to finite
electron-vibron coupling (λ = 0.5) when ε0 = 0.25 and 0. Black
dashed lines show the results for the noninteracting wire (λ = 0)
when ε0 = 0. The insets display the corresponding differential
electrothermal conductance M(V,�T = 0) = dJQ/dV |�T =0.
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FIG. 7. Differential electric conductance G(V,�T = 0) =
dJe/dV |�T =0 at kBT = 0.01 as a function of eV of MNWs of length
(a) N = 20 and (b) 40 subjected to disorder (W = 0.3). Results were
averaged over 100 realizations. The other parameters are the same as
in Fig. 4. Blue and red solid lines correspond to finite electron-vibron
coupling (λ = 0.5) when ε0 = 0.25 and 0. Black dashed lines show
the results for the noninteracting wire (λ = 0) when ε0 = 0. The inset
shows the corresponding electric current Je(eV,�T = 0).

coupling switched on for the same bare on-site energy ε0 = 0
(red solid lines) for eV > 0. This can be explained by the small
contribution of thermally generated vibrons at low background
temperatures, so that the total energy is nearly conserved when
switching on the electron-vibron interaction. Therefore, when
the electric bias is high enough and all vibronic side bands
are open for transmission, the total energy transferred to the
system is approximately conserved after switching on the
interaction. On the contrary, this conservation does not hold
for an electric bias such eV < 0 due to the breaking of the
electron-hole symmetry (asymmetry of the transmission about
ω = 0) by switching on the interaction, as discussed in the
previous section. Unlike the symmetric electric current Je(V ),
this asymmetry transmission can be seen in the heat current
from the left lead to the MNW (6b). On the other hand, the
blue solid lines, which correspond to a renormalized on-site
energy ε̃0 = 0 and therefore a symmetric transmission, also
shows a heat current symmetric about eV = 0.

B. Disordered molecular nanowires

Figure 7(a) shows the differential electric conductance
G(V,�T = 0) of disordered MNWs with W = 0.3 at kBT =
0.01, averaged over 100 realizations, and the other parameters
as in Fig. 4. The main features of the curves resemble those
without disorder, the main difference being the occurrence
of sharper peaks and a strong reduction of the maximum
differential electric conductance. The conductance is reduced
by a factor of ∼8 for the chain without electron-vibron
interaction, and up to ∼15 for the interacting case. When
temperature is increased to kBT = 0.2 the peaks of the
differential conductance become broader and even merge into

FIG. 8. Heat current JQ(V,�T = 0) as a function of eV of
MNWs with disorder (W = 0.3) averaged over 100 realisations at
(a) kBT = 0.01 and (b) kBT = 0.2. The other parameters are the
same as in Fig. 6. Blue and red solid lines correspond to finite
electron-vibron coupling (λ = 0.5) when ε0 = 0.25 and 0. Black
dashed lines show the results for the noninteracting wire (λ = 0) when
ε0 = 0. The insets show the corresponding differential electrothermal
conductance M(V,�T = 0) = dJQ/dV |�T =0.

a single one in the case λ = 0.5 and ε0 = 0 (not shown) as for
the ordered MNW in Fig. 4(b).

In addition, the differential electric conductance is further
decreased if the length of the MNW increases from N = 20
to 40, as displayed in Fig. 7(b). This behavior is in contrast
to the uniform MNW, where the conductance is preserved
against the system length. It is worth noting the stronger
reduction in the MNW with finite electron-vibron interaction
when doubling the length, compared to the case without
interaction. Such a reduction can be traced back to the
Anderson localization of electron states [1,2,10]. In general,
the magnitude of disorder has to be compared with the hopping
energy or, in other words, with the bandwidth of the uniform
system. The larger the ratio between them, the smaller the
localization length. From this reasoning, the effects of disorder
should be more important on increasing temperature when
the electron-vibron coupling is finite since the exponential
suppression of tunneling reduces the dressed intermolecular
hopping energy J̃ . The expected reduction of the localization
length is hinted from the comparison of Figs. 4 and 7.

For completeness, Fig. 8 shows the much reduced heat
current JQ(V,�T ) in disordered MNWs with W = 0.3 as
compared to Fig. 6. The influence of disorder agrees well
with the observed electric current, supporting the idea of an
increased localization in the case of finite electron-vibron
interaction that influences both charge and heat transport alike.

V. TEMPERATURE-DRIVEN ELECTRIC TRANSPORT

We now investigate the electric transport through MNWs in
response to a temperature difference �T only. We are assum-
ing a symmetrically biased system with TL = T − �T/2 and
TR = T + �T/2, therefore keeping the average temperature
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FIG. 9. Temperature-driven (a) electric current Je and (b) heat
current JQ as a function of the temperature difference �T for
MNWs without disorder (W = 0) at kBT = 0.2. Blue and red solid
lines correspond to finite electron-vibron coupling (λ = 0.5) when
ε0 = 0.25 and ε0 = 0. Black dashed (superimposed on the blue
solid line) and dotted lines show the results for the noninteracting
wire (λ = 0) when ε0 = 0 and 0.25, respectively. Inset represents
fL(ω) − fR(ω) as a function of the frequency ω together with a
colored area representing the frequency region where the spectral
density is finite for every parameter set.

(TL + TR)/2 at a defined value T . In order to ensure that
each site-dependent Ti > 0, the maximum �Tmax is fixed at
�Tmax = ±T/2 so that the leads do not deviate more then 25%
from their initial temperature. In this section, the bias voltage
is absent (V = 0) and charge flows through the MNW only due
to the temperature difference between the leads. As in Sec. IV,
we first discuss the electric and heat currents in uniform MNWs
(W = 0) and later we consider random on-site energies with
W = 0.3. The other parameters of the system are taken the
same as in Sec. IV, with the additional case of a noninteracting
MNW with on-site energy ε0 = 0.25.

A. Uniform molecular nanowires

Figure 9(a) shows the electric current Je(V = 0,�T ) at
kBT = 0.2 as a function of �T for a MNW without disorder.
The blue solid line (λ = 0.5 and ε̃0 = 0) and the black
dashed line (λ = 0 and ε0 = 0), which represent systems
with symmetric transmission around the Fermi energy μL =
μR = 0, do not exhibit any thermoelectric current at all. This
is due to the fact that, when a thermal bias is present, all
electrons tunneling from the hot lead to the unoccupied states
of the cold lead are compensated by holes tunneling from the
unoccupied states to the still occupied state of the cold lead due
to the electron-hole symmetry. If this symmetry is broken, as
in the case of the red solid line (λ = 0.5 and ε̃0 = −0.25) and
the blue dotted line (λ = 0 and ε0 = 0.25), the system exhibits
a finite thermally-driven electron or hole current. The inset
of Fig. 9(a) links these results to those related to the spectral
density in Sec. III. According to Eq. (6a) the most relevant
contribution to Je can be approximated by the frequency
integration of the magnitude [fL(ω) − fR(ω)]A(ω). The inset
plots the odd function fL(ω) − fR(ω) together with colored

areas representing the frequency range where the spectral
densities are relevant. As seen in Fig. 3(a), the spectral density
is centered at ω = 0 when ε̃0 = 0.0 (blue area) and it is shifted
to lower (higher) frequencies when ε̃0 < 0.0 (̃ε0 > 0.0) (red
and grey areas). Thus, it is clear that the signs and symmetries
of both factors justify the values of Je presented in the main
plot. Unlike the voltage-driven case, this current is nearly linear
since the temperature difference is not high enough to reach a
nonlinear regime.

Figure 9(b) displays the heat current JQ(V = 0,�T ) at
kBT = 0.2 as a function of �T . Unlike the electric current
Je(V = 0,�T ), also the blue solid line (λ = 0.5 and ε̃0 = 0)
and the black dashed line (λ = 0 and ε0 = 0) exhibit finite
values due to weighting of the tunneling particles with their
respective energies and the asymmetry of the heat currents
from the left and the right leads (JL

Q �= JR
Q ). As the majority of

the carriers are transmitted through the zero-vibron channel,
the transmitted energy and therefore the heat current is rather
low compared to the other two cases, whose main transmission
channels are centered at a finite energy. A small influence
of the electron-vibron interaction can be seen as a slight
asymmetry of the absolute value of the thermal current
|JQ(�T )| �= |JQ(−�T )| for the cases with finite λ. Such an
effect can also be depicted for disordered MNWs in the next
section and it shall be discussed on that behalf.

B. Disordered molecular nanowires

Figure 10(a) shows the average temperature-driven Je(V =
0,�T ) as a function of �T for the same systems shown in
Fig. 9 but with disorder W = 0.3. As in the case of voltage-
driven transport discussed in Sec. IV, disorder strongly alters
the electric response of the MNW. We observe that it affects the
interacting MNW more significantly than the noninteracting
one. This can be explained by the same reasoning introduced
in Sec. IV.

Figure 10(b) displays the temperature-driven JQ(V =
0,�T ) for the same parameters as in Fig. 10(a). One can see
a strong nonlinear curve progression for MNWs with finite
coupling. More importantly, the interacting system (blue solid
line) actually exhibits a stronger heat current in comparison
with the non-interacting one (black dashed line) for �T < 0.
As can be concluded from the effect of disorder seen in
the electric current in Fig. 10(a), this can not be related to
the electric response of the system. Therefore it must arise
from the heat transport properties. Due to the symmetry of
the system at �T = 0, JL

Q(−�T ) = JR
Q (�T ), the rate of

energy generation inside the system is J�E(�T ) ≡ JL
Q(�T ) +

JL
Q(−�T ). Thus the asymmetry between the JL

Q(−�T ) and
JL

Q(�T ) must be explained by a heat generation process inside
the system. As this process is only noticeable in interacting
MNWs, it is reasonable to assume that it is due to the thermal
generation of vibrons. At kBT = 0.2 the amount of thermally
generated vibrons is very small, which is why the asymmetry is
much less visible in case of no disorder in Fig. 9(b). However,
when actually calculating the heat generation rate J�E , as
depicted in Fig. 10(c) for the case of ε0 = 0, in good approx-
imation, one gets the same values for the ordered (magenta
curve) and the disordered MNW (red curve). This justifies the
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FIG. 10. Temperature-driven (a) electric current Je and (b) heat
current JQ as a function of the temperature difference �T for
MNWs with disorder (W = 0.3) at kBT = 0.2. Blue and red solid
lines correspond to finite electron-vibron coupling (λ = 0.5) when
ε0 = 0.25 and 0. Black dashed and dotted lines show the results for the
noninteracting wire (λ = 0) when ε0 = 0 and 0.25, respectively. (c)
displays the heat generation inside the MNW J�E as a function of �T

at kBT = 0.2 for an ε0 = 0.25 in the case without disorder (magenta
solid line) and with disorder (orange solid line) calculated from
Fig. 9(b) and 10(b), respectively. The green dashed line represents
the occupation number of thermally generated vibrons times the
thermoelectric current χ (�T ) in arbitrary units as a function of �T .

explanation of an effect governed by the vibronic subsystem. In
addition, the effect of heat generation gets further support when
looking at the green curve in Fig. 10(c) that shows the magni-
tude χ (�T ) = Je(V = 0,�T )

∑N
i=1 ni(Ti). It represents the

occupation number of thermally generated vibrons inside the
system times the electric current and, consequently, it provides
a rough estimation of the number of electrons to which the
vibrons can couple. As the green curve clearly is proportional
to the heat generation rate J�E , one can safely conclude
that the additional heat is transferred from the heat baths to
the MNW.

VI. CONCLUSIONS

In conclusion, we have studied the nonequilibrium transport
properties of a disordered MNW. The wire is regarded as a
quasi-one-dimensional organic crystal of random single-level
molecules, connected in series to two leads. We have also
assumed that the electron interacts with local vibrational
modes in the molecules and investigated the effects of the
interaction on the electric and heat currents in response
to either an applied electric bias or temperature gradient
established in the system. The original many-body problem
has been turned into an effective one-body problem by the
polaron (Lang-Firsov) transformation.

We have considered the regime of strong disorder, for which
the localization length in the noninteracting MNW (λ = 0)
is smaller than the system size. In addition, we have taken
kBT � ω0 in our simulations and consequently the scattering
is mainly dominated by the interaction with the disordered
lattice. This is supported by the fact that the voltage-driven
electric current Je in uniform MNWs (W = 0) is independent
of the system length and its saturation value is the same for both
noninteracting and interacting cases. In general, voltage- and
temperature-driven electric currents present a similar decrease
due to disorder or electron-vibron coupling. Remarkably, we
have found that the electron-vibron interaction enhances the
effects of the disorder on the electric and heat currents.
This important result can be understood as follows. The
intermolecular hopping energy J̃i in the interacting MNW is
smaller than the bare J due to the occurrence of the exponential
suppression of tunneling [25]. Therefore disorder is effectively
stronger when the interaction is switched on because the
ratio between the magnitude of disorder and the bandwidth
increases.

Regarding the temperature-driven transport, we have nu-
merically found an almost linear dependence of the electric
and heat currents on the temperature difference. In MNWs
with preserved electron-hole symmetry, the electric current
vanishes even if the electron-vibron interaction is taken into
account. On the contrary, the heat current is always nonzero
and enhanced due to the interaction, although to a small
extent. Most importantly, the effects of disorder are more
pronounced in the interacting MNW. Disorder reveals itself
by a slight deviation of the temperature-driven heat current
curves from linearity. In addition, the temperature-driven heat
current is less sensitive to the increase of the magnitude
of disorder or the electron-vibron coupling than the electric
current.

In order to get a clear connection with experiments, a look
at the magnitudes of interest in physical units is in order.
Our energy unit thus far has been the vibron frequency ω0 so
the following numbers strongly depend on the details of our
molecular bridge (see Ref. [39] for a review on this topic). By
taking a reference value of ω0 = 150 meV, our study focuses
on a physical scenario where the conducting molecular level
is ε0 ∼ 40–80 meV and the electron coupling with the vibrons
and the leads are λ = 10 fs and 	L/R = 30 meV, respectively.
These parameters are consistent with those found by experi-
ments [32] with charge and heat currents of the order of Je ∼
10–100 nA and JQ ∼ 1–10 nW at achievable temperatures of
T ∼ 15–350 K.

Although this work is focused on the study to MNWs,
our results can be extended to arrays of quantum dots
as well. These arrays can be realized in electron gases
with superposed mesh gates. Beside their interest in funda-
mental research, they are regarded as good candidates for
building quantum simulators [40–42]. Unavoidable imperfec-
tions introduced during the fabrication process might have
an impact on charge and energy transport when electrons
are coupled to bosonic degrees of freedom. Our results
shed light on the influence of disorder on the perfor-
mance of quantum simulators based on arrays of quantum
dots.
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APPENDIX A: LANG-FIRSOV POLARON
TRANSFORMATION

Starting from Eqs. (1)–(3), we apply the polaron
(Lang-Firsov [29]) nonperturbative canonical transformation
H̃ = eSHe−S , where the operator S is defined as S =
(λ/ω0)

∑
i(a

†
i − ai)c

†
i ci [29]. This transformation yields the

following transformed Hamiltonian:

H̃ =
N∑

i=1

ε̃ic
†
i ci − J

N−1∑
i=1

(X†
i Xi+1c

†
i ci+1 + H.c)

+ω0

N∑
i=1

a
†
i ai +

∑
αki

(VαkiXid
†
αkci + H.c) , (A1)

where ε̃i = εi − λ2/ω0 is the renormalized energy level of
the molecule i. After the transformation, a new operator
arises, Xi = exp[−(λ/ω0)(a†

i − ai)], named the displacement
operator. The canonical transformation is exact but it does not
diagonalize the Hamiltonian. In other words, H̃ still contains
products of boson and fermion operators. When the coupling
to the leads is weak (|Vαki | < λ), it is reasonable to replace
the displacement operator Xi by its thermal expectation value
evaluated in equilibrium 〈Xi〉 = exp [−ξi(Ti)/2] [35,43],
where ξi(Ti) = g(2ni + 1), ni = 1/[exp (ω0/kBTi) − 1] and
the Huang-Rhys factor is g = λ2/ω2

0. By way of this procedure
one can deal with an effective one-body problem according to
Eq. (4).

APPENDIX B: NONEQUILIBRIUM GREEN’S FUNCTIONS

The various Green’s functions of the system described by
Eq. (4) are lengthy but straightforward to calculate numerically
with the help of the Keldysh nonequilibrium Green’s function
formalism [30,39]. First, since we replaced the displacement
operator Xi by its thermal expectation value, the Green’s
functions are then factored out. The greater Green’s function
can be cast in the form

G>
ij (t) = G̃>

ij (t)〈Xi(t)X
†
j (0)〉 , (B1)

where G̃>
ij (t) denotes the so-called dressed greater Green’s

function. iG̃>
ij (t) is the correlation function of a hole

dressed by vibrons. Concerning the vibron part, we may
encounter two different cases. If i �= j then 〈Xi(t)X

†
j (0)〉 =

exp [−ξi(Ti)/2 − ξj (Tj )/2]. When i = j the calculation of the
correlation function is more involved but can be performed
analytically. The details are presented in Ref. [44] and the

final result is

〈Xi(t)X
†
i (0)〉 =

∞∑
n=−∞

Li
n(Ti)e

inω0t , (B2)

where at finite temperature

Li
n(Ti) = e−ξi (Ti )+nω0/2kBTi In(

√
ξ 2
i (Ti) − g2 ) , (B3)

with In(z) the modified Bessel function of integer order, and
at Ti = 0,

Li
n(0) =

{
e−ggn/n! if n � 0 ,

0 if n < 0 .
(B4)

Using the vibron mean values given above, the elements
of the greater Green’s functions, G>(ω), are given in Fourier
space as [35]

G>
ii (ω) =

∞∑
n=−∞

Li
n(Ti)G̃

>
ii (ω − ω0n) , (B5a)

G>
ij (ω) = 〈Xi〉〈Xj 〉G̃>

ij (ω) , i �= j , (B5b)

and similarly for the lesser Green’s function, G<(ω), but
replacing ω − ω0n by ω + ω0n in the summation. The dressed
lesser and greater Green’s functions can be calculated from the
Keldysh equation G̃<(>)(ω) = G̃r(ω)�̃<(>)(ω)G̃a(ω), where
the self-energies are given by

�̃<(ω) = i
[
f

(e)
L (ω)	̃L + f

(e)
R (ω)	̃R

]
, (B6a)

�̃>(ω) = −i
[
f

(h)
L (ω)	̃L + f

(h)
R (ω)	̃R

]
, (B6b)

with f (e)
α (ω) = fα(ω) and f (h)

α (ω) = 1 − fα(ω). Here fα(ω) =
1/{exp [(ω − μα)/kBTα] + 1} is the Fermi-Dirac distribution
function of the lead α. The matrix elements of 	̃α in (B6b) are
given as 	̃α

ij = 2πραṼαki Ṽ
∗
αkj , where ρα is the density of states

of the corresponding lead. Notice that we will neglect their k

dependence by relying on the wide-band limit approximation
and take 	̃α matrices as energy-independent magnitudes.

In order to calculate the dressed retarded Green’s function
G̃r(ω), the equation-of-motion method is used. We start by
calculating the time-derivative of its formal definition G̃r

ij (t) =
−iθ (t)〈{ci(t),c

†
j (0)}〉, where t → t + i0+, keeping in mind that

iδtci(t) = [ci(t),H̃ ] where H̃ is given by Eq. (4) and θ (t) the
Heaviside step function. After Fourier transform, one can write
the following system of linear equations to be solved:

(ω − ε̃i)G̃
r
ij (ω) = δij − J̃iG̃

r
i+1,j (ω) − J̃i−1G̃

r
i−1,j (ω)

+
N∑

l=1

�̃r
ilG̃

r
lj (ω) , (B7)

where

�̃r
il =

∑
αk

Ṽ ∗
αki Ṽαkl

ω − εα,k + i0+ (B8a)

is the retarded self-energy. Within the wide-band approxima-
tion this term is written as

�̃r
il(ω) = i

2
〈Xi〉〈Xl〉

(
	L

il + 	R
il

)
. (B8b)
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Similarly, to calculate the dressed advanced Green’s function
G̃a

ij (ω), one can use Eq. (B7) by substituting �̃r
il(ω) by the

following advanced self-energy:

�̃a
il(ω) = − i

2
〈Xi〉〈Xl〉(	L

il + 	R
il ) . (B8c)
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