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Interplay between columnar and smectic stability
in suspensions of polydisperse colloidal platelets

Enrique Velasco*a and Yuri Martı́nez-Ratónb

The phase behavior of a model suspension of colloidal polydisperse platelets is studied using density-

functional theory. Platelets are modelled as parallel rectangular prisms of square section l2 and height h,

with length and height distributions given by different polydispersities dl and dh. The model is intended

to qualitatively represent experimental colloidal platelet suspensions at high densities with a high degree

of orientational ordering. We obtain the phase behavior of the model, including nematic, smectic and

columnar phases and its dependence on the two polydispersities dl and dh. When dl > dh we observe that

the smectic phase stabilises first with respect to the columnar. If dh > dl we observe the opposite

behavior. Other more complicated cases occur, e.g. the smectic stabilises from the nematic first but

then exists a first-order transition to the columnar phase. Our model assumes plate–rod symmetry, but

the regions of stability of smectic and columnar phases are non-symmetric in the dl � dh plane due to

the different dimensionality of ordering in the two phases. Microsegregation effects, i.e. different spatial

distribution for different sizes within the periodic cell, take place in both phases and, in each case, is

more apparent in the variable associated with ordering.

I. Introduction

The issue of polydispersity is crucial to understand the phase
behaviour of colloidal suspensions of anisotropic particles,
since shape and size polydispersities have a profound impact
on the phase behavior of colloidal liquid-crystal suspensions.
Near monodisperse colloids made of rod or plate-shaped
particles present the usual cascade of liquid-crystal phase
transitions as the total volume fraction is increased: isotropic
(I)–nematic (N)–smectic/columnar (S/C)–crystal (K). However,
colloidal particles can never be made truly identical in size and
shape. Polydispersity gives rise to a complex phase behavior,
with the presence of multiple phase coexistence between phases
with different orientational and/or positional ordering.1–6

Coexistence gaps are usually broadened and for high poly-
dispersities, strong demixing and fractionation are usually
observed, with coexisting phases having dissimilar size/shape
distributions. Also new phenomena, such as density inversion,
are exclusive of polydisperse systems. In this case the more
disordered phase (I) becomes denser than the N phase.6

Polydispersity has also a dramatic impact on the kinetic behavior
of colloidal suspensions; a most remarkable effect consists of the
extremely long times necessary for the system to reach thermo-
dynamic equilibrium.5

Models for polydisperse fluids of anisotropic particles
should produce as an output the size or shape density distribu-
tion function r(r,X̂,r), where r and X̂ denote the spatial and
angular particle degrees of freedom, while r refers to the set
of polydisperse variables. The theoretical modelling of poly-
disperse fluids constitutes a complicated task due to the large
number of degrees of freedom involved in the calculations.
This in turn translates into a numerical implementation of the
model which involves the evaluation of multiple integrals in a
high-dimensional space. For this reason, theories of poly-
disperse systems are formulated in terms of simplified models
which postulate that the excess part of the free-energy depends
on a finite set of moments of the density distribution function.7,8

In this way the number of degrees of freedom is conveniently
reduced and the problem becomes tractable. Within these
models, the I–N9–11 or N–N12 equilibria of length-polydisperse
freely-rotating rods were calculated. Also, within the restricted-
orientation approximation, the effect of polydispersity on the
stability of the biaxial nematic phase in a mixture of uniaxial
rods and plates13,14 or in a one-component fluid of biaxial
board-like particles was recently studied.15 The scarce MC
simulation results on polydisperse anisotropic particles confirm
the high fractionation between the coexisting I and N phases of
polydisperse infinitely-thin platelets.16 They also reveal the
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Matemáticas, Escuela Politécnica Superior, Universidad Carlos III de Madrid,

Avenida de la Universidad 30, E-28911, Leganés, Madrid, Spain.

E-mail: yuri@math.uc3m.es

Received 9th August 2013,
Accepted 24th October 2013

DOI: 10.1039/c3cp53065e

www.rsc.org/pccp

PCCP

PAPER

Pu
bl

is
he

d 
on

 2
9 

O
ct

ob
er

 2
01

3.
 D

ow
nl

oa
de

d 
by

 I
m

pe
ri

al
 C

ol
le

ge
 L

on
do

n 
L

ib
ra

ry
 o

n 
26

/1
1/

20
13

 1
1:

24
:2

2.
 

View Article Online
View Journal

http://dx.doi.org/10.1039/c3cp53065e
http://pubs.rsc.org/en/journals/journal/CP


Phys. Chem. Chem. Phys. This journal is© the Owner Societies 2014

existence of a terminal polydispersity beyond which the S phase
of length-polydisperse hard rods becomes unstable with respect
to the C phase.17

Polydispersity in size crucially affects the formation of
phases with spatial order, since it is difficult to accommodate
the unit-cell dimension with the varying particle size. Once
stabilised, colloidal suspensions made of discs or platelets tend
to form a N phase which changes to a C phase as the particle
volume fraction is increased. In the C phase particles stack one
on top of the other to form columns that in turn arrange in a
two-dimensional lattice. An increasing polydispersity in lateral
size (disc diameter) tends to destabilize the C phase with
respect to the N or S phases. In fact, above a certain threshold
value, the C phase turns into a S phase provided the poly-
dispersity in thickness is not too large. A large value of the latter
discourages the formation of the layered S phase. In the case of
suspensions of zirconium-phosphate mineral plate-like particles,18

where the particle thickness is constant but the particle diameter is
polydisperse, the S phase was found to be stable. The effect of
polydispersity on the phase behavior of these suspensions was
recently studied from experimental and theoretical points of
view.19–21 It would be desirable to be able to rationalise the effect
of the different particle polydispersity coefficients on the phase
behaviour, and to know in advance the ranges of values of the
polydispersities where one can expect to find a particular phase.

In the present work we study the effect that size polydispersity
has on the relative stability between the liquid-crystal phases
with partial positional ordering, in particular between the S and
C phases. Our goal is not to study the phase behavior of freely-
rotating hard platelets, but only to assess how polydispersity
affects the relative stability between the smectic and columnar
phases of highly oriented polydisperse platelets. We use density-
functional theory to analyse a suspension of colloidal platelets
made from hard square cuboids, i.e. rectangular prisms of
square cross section L2 and thickness H, Fig. 1. The normal axes
of the cuboids are taken to point along a common direction and
rotations about this direction are not allowed, the sides of the
particles being always parallel. This approximation does not
appear to be too unrealistic considering that the orientational
order parameter will be high close to the transition from the
N phase to either the S or the C phase. Thus we assume that
particles have a perfect biaxial nematic ordering and, as a
consequence, phase transitions involving changes in orienta-
tional order are not represented. Therefore, we are focussing on

the stability of nonuniform (S and C) phases as compared to
that of the N phase. As we will show, comparison with experi-
ments on rods and platelet colloidal suspensions demonstrates
that the effect of both polydispersities on the relative stability of
S and C phases is qualitatively reproduced by our model. In real
experimental samples, particles are also polydisperse in shape
(having circular or polygonal square sections) and most of them
exhibit a high degree of orientational order at high packing
fractions, giving rise to S and/or C phases. On the other hand,
computer experiments have shown that, depending on their
aspect ratio, freely rotating board-like particles may form
biaxial nematic, cubatic, C and S phases (the latter with or
without in-plane orientational order).22,23 Unfortunately the
study of the phase behavior of freely-rotating polydisperse
particles becomes a heavy task which is outside the scope of
the present work.

Our particle model can be analysed using a generalisation of
the density-functional theory for hard cubes derived in ref. 24
and used for the first time to calculate the phase diagram of the
one-component and binary mixture fluids.25 In contrast to the
latter work, where bidisperse cubes were considered, here we
introduce a continuous distribution in both L and H, respec-
tively, characterized by the distribution variances dl and dh, with
a view to obtaining phase diagrams involving the N, S and C
phases as a function of the two polydispersities and the particle
volume fraction.

In Section II we review the density-functional theory used
and give some details on the numerical methodology. Results
are presented in Section III, and a short discussion and the
conclusions are given in Section IV.

II. Model and numerical methodology
Density functional

The density-functional theory used is based on the fundamental-
measure formalism for mixtures of parallel hard cubes. This
formalism was derived by Cuesta and Martı́nez-Ratón,13 and
here we generalise it to general polydisperse fluids. The excess
free-energy functional in units of thermal energy kT = b�1 is
bF ex½r� ¼

Ð
VdrFðrÞ, where

F ¼ �n0 log 1� n3ð Þ þ n1 � n2
1� n3

þ n2xn2yn2z

1� n3ð Þ2
; (1)

and where na are average densities,

naðrÞ ¼
ð1
0

dl

ð1
0

dh

ð
V

dr0rðr0; l; hÞoðaÞðr0 � r;L;HÞ: (2)

The index a takes the values {0,1x,1y,1z,2x,2y,2z,3}. o(a) are the
particle geometrical measures.13 r(r;l,h) is the local density of
particles with sizes l and h at point r, where we define l = L/L0

and h = H/H0, with L0 = hLi and H0 = hHi the mean length and
height, respectively. In the following we take L0 as a unit of
length, i.e. L0 = 1. Due to the parallel particle approximation, the
physics of the problem scales in the z direction, so that we
can also take H0 = 1. In fact, the following equivalence takes
place: F½r;L0;H0�v0 � F½r�; 1; 1�, where r*(r,l,h) = r(r,l,h)v0

Fig. 1 Schematic of square cuboids used in this work, with particle size
parameters L (side length) and H (thickness) indicated.
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(with v0 = L0
2H0 the mean volume of particle) is a local packing

fraction (the difference between both free energies, coming from
the ideal part, is proportional to the total number of particles
and does not affect the phase behavior of the system). This
scaling implies that the same functional can be used to describe
a fluid of parallel platelets and a fluid of parallel rods. The
equivalence will later be used to compare with different experi-
mental results on polydisperse fluids of platelets and rods. The
total free energy is then

bF½r�

¼
ð1
0

dl

ð1
0

dh

ð
V

drrðr; l; hÞ log rðr; l; hÞL3ðl; hÞ
� �

� 1
� �

þ bF ex½r�;

(3)

which has to be minimised with respect to r(r;l,h) for each
phase. L(l,h) is the thermal wavelength for particles with size
(l,h), which in principle can be adsorbed into the chemical
potential of that species. Here we consider the N phase, where
r(r;l,h) = r(l,h), the S phase, with r(r;l,h) = r(z;l,h), and the C
phase, where r(r;l,h) = r(r>;l,h), and r> = (x,y). The common
particle axis is taken along ẑ.

An important aspect of the problem is the polydispersity of
the parent solution. We can write r(r;l,h) = r0 f (r;l,h), where r0 =
N/V is the total mean density, N the total number of particles, V
the volume, and the function f (r;l,h) is the local fraction of
particles of species (l,h). It satisfies:

1

V

ð
V

dr

ð1
0

dl

ð1
0

dhf ðr; l; hÞ ¼ 1: (4)

The global fraction is

xðl; hÞ ¼ 1

V

ð
V

drf ðr; l; hÞ ¼ 1

N

ð
V

drrðr; l; hÞ; (5)

and obviously

ð1
0

dl

ð1
0

dhxðl; hÞ ¼ 1: (6)

We assume that x(l,h), the size distribution of the parent
solution, is fixed and can be factorised (i.e. length and thick-
ness distributions may be assumed to be uncorrelated; in the
real world this may be correct or not depending on the particle
synthesis methodology). Therefore we make the following
assumption:

x(l,h) = f(l)f(h), (7)

where f(s); s = l or h depending on whether one refers to the
length or thickness distribution. We take

f(s) = Dsge�ls
2

(8)

in terms of two parameters g and l. We impose the condition
that the first two moments are equal to unity, which fix the

normalisation and the mean value hsi = 1. Then:

1 ¼
ð1
0

dsfðsÞ ! D ¼ 2lðgþ1Þ=2

G
gþ 1

2

� �;

1 ¼
ð1
0

dssfðsÞ ! l ¼
G

gþ 2

2

� �

G
gþ 1

2

� �
2
664

3
775
2

:

(9)

Then the second moment can be related uniquely to the
polydispersity coefficient:

s2
� 	

¼
ð1
0

dss2fðsÞ ¼
G

gþ 1

2

� �
G

gþ 3

2

� �

G
gþ 2

2

� �2 ; (10)

and the polydispersity coefficient d is:

d2 ¼
s2
� 	

� sh i2

sh i2
¼ s2
� 	

� 1: (11)

From here, the g parameter can be obtained given an input
value for d. The equation must be solved numerically. Note that,
once we fix the values of dl and dh, the values of gl and gh are in
general different.

Using the free-energy functional eqn (3), the equilibrium
condition reads:

bmðl; hÞ ¼ dbF
drðr; l; hÞ ¼ log rðr; l; hÞL3ðl; hÞ

� �
� cð1Þðr; l; hÞ;

! rðr; l; hÞ ¼ ebm
�ðl;hÞec

ð1Þðr;l;hÞ;

(12)

where m(l,h) is the chemical potential of the species (l,h), with

m*(l,h) = m(l,h) � 3 logL(l,h), (13)

and c(1)(r;l,h) the one-body direct correlation function. Integrat-
ing eqn (12) and eliminating m*(l,h), the Euler–Lagrange equa-
tion to be solved is:

f ðr; l; hÞ ¼ xðl; hÞ ec
ð1Þðr;l;hÞ

1

V

Ð
Vdr e

cð1Þðr;l;hÞ
: (14)

We define the moments

mlZðrÞ ¼
ð1
0

dlll
ð1
0

dhhZf ðr; l; hÞ: (15)

Multiplying eqn (14) by llhZ, where l,Z are integers, and
integrating over all possible values of l and h:

mlZðrÞ ¼
ð1
0

dlll
ð1
0

dhhZxðl; hÞ ec
ð1Þðr;l;hÞ

1

V

Ð
V
dr ec

ð1Þðr;l;hÞ

2
64

3
75: (16)

If we can express c(1) in terms of the moments, eqn (16) form a
closed set of equations for the moments.

Since there is no dependence on spatial coordinates in the N
phase, eqn (1)–(3) can be used directly to evaluate the free energy.
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In the case of S and C phases, we will deal with the spatial
dependence by using Fourier representations. Because of the
particular mathematical structure of the density functional, the
one-body direct correlation function can be expressed in terms
of the average densities na(r) only. Therefore it is possible to use
Fourier expansions for these local densities and reconstruct the
local fraction of particles f (r;l,h) using eqn (14) evaluated at the
equilibrium average densities. In the S phase, the unknown
coefficients will be c(k)

a , with

naðzÞ ¼ r0
X1
k¼0

cðkÞa cosðqkzÞ; (17)

and q = 2p/d the wavevector associated with the S period d. In
the C phase, the unknown coefficients will be U (nm)

a , with

na r?ð Þ ¼ r0
X1
n;m¼0

U ðnmÞa cosðqnxÞ cosðqmyÞ; (18)

where q = 2p/a and a the lattice parameter of the square lattice.
The Fourier expansions in eqn (17) and (18) were truncated so
that the absolute value of the highest-order coefficient included
was less than 10�6 for all the densities explored. In each case
the Euler–Lagrange equation is solved by iterations until con-
vergence of the coefficients. Appendix A provides more details
on the numerical methodology.

A first picture of the order in which the different phases
appear is provided by a bifurcation analysis. Here one perturbs
the N phase with a small-amplitude density wave of given
wavevector q and searches for instability with respect to density
and wavelength. Instability is given by the curvature of the
free-energy functional, expressed by the direct correlation func-

tional cð2Þðr; r0; l; l0; h; h0Þ ¼ �bd2F ex½r�=drðr; l; hÞdrðr0; l0; h0Þ. The
bifurcation point (density at which N becomes unstable with
respect to S- or C-like perturbations) coincides with the transi-
tion point whenever the true phase transition is continuous;
otherwise the bifurcation point only provides the spinodal

point and a full treatment based on equality of pressure and
partial chemical potentials is needed. We provide details on the
bifurcation analysis in Appendix B.

III. Results

To explore the overall structure of phase behaviour, we have
first computed the bifurcation densities, i.e. the densities at
which the Euler–Lagrange equations have a spatially inhomo-
geneous solution (bifurcation from the N to the S or C phases).
In the following we will use the packing fraction Z, defined by
Z = r0hL2ihHi = r0(1 + dl

2), as the relevant density parameter.
Fig. 2 shows the bifurcation packing fractions Z for the S and C
phases as a function of one of the polydispersities when the
other polydispersity is set to zero.

In the case of bifurcation to the S phase, panel (a), we
see that, when dl = 0 (dashed curve) and the thickness poly-
dispersity dh increases, the packing fraction also does due to
the increasing difficulty to create uniform layers in the system.
The decrease in Z at large values of dh is a microsegregation
effect. Here the thickness distribution of particles is different in
the layers and in between the layers (interstitials); in the former,
the thickness distribution is peaked about a larger value of
thickness than in the interstitials. We will comment on this
effect later. The opposite case is when dh = 0 (continuous curve).
Here, as dl increases, the S bifurcates at lower packing fractions
since platelets can better pack in the (quasi two-dimensional)
layers when their side-length distribution is wider.

The bifurcation to the C phase, Fig. 2(b), is relatively similar
to the S case, except that the roles of l and h are interchanged.
The most notable difference is that the maximum in Z does not
exist, although there could also be a microsegregation effect
where small platelets are expelled from the nodes of the
columns to the interstitial space, as discussed later.

The overall effect of polydispersities can be visualised in the
plot of Fig. 3, where the difference in bifurcation packing

Fig. 2 Packing fractions Z at which the N phase bifurcates into the (a) S, (b) C phases, as a function of one of the polydispersities dx (x = l, h) when the
other polydispersity is set to zero. In both panels the continuous curve corresponds to the case dh = 0, while the dashed curve pertains to the case dl = 0.
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fractions DZ = Zs � Zc for the S, Zs, and C, Zc, phases is shown as
a function of the polydispersity coefficients dl and dh. The curve
DZ = 0 indicates a situation where both phases bifurcate at the
same packing fraction (projected black dashed curve in the
figure). We see that, for large values of dl and dh, this curve does
not correspond or is close to the bisectrice dl = dh (the dotted
black curve). This means that the C phase stands a higher value
for its associated polydispersity coefficient (dl) than does the
S (dh) up to dh E 0.6; for higher values, the scenario is the
opposite.

A more detailed treatment of the problem requires a full
analysis beyond linear bifurcation theory, i.e. a full solution to
the Euler–Lagrange equation (14). This allows us to obtain the
free energy and the local density distribution of the different
phases. Fig. 4 shows some representative cases. In this series of
graphs we are following the line dl + dh = 0.4 in the dl� dh plane.
The reference case is a completely monodisperse solution,
(dl,dh) = (0.0,0.0), for which S and C phases bifurcate at the
same density, but the C phase is always more stable. Panel (a)
refers to the case (dl,dh) = (0.15,0.25). Here the C phase
bifurcates before the S, and is much more stable than the S;
this is because the thickness polydispersity is relatively high
and prevents the formation of regular layers. As dl increases and
dh decreases, the stability gap between the two phases
decreases, panels (b) and (c), and for the case (0.25,0.15)
the S phase is already more stable and bifurcates before the
C phase. All of these results corroborate the results of the
bifurcation analysis presented before, in the sense that a high
polydispersity in one parameter (dl or dh) inhibits the formation
of the corresponding phase (C or S, respectively). They also
point to the fact that the dl and dh parameters do not play a

symmetric role: the C phase stands a higher value of poly-
dispersity in its associated polydispersity than the S, and when
dl = dh the C phase is more stable than the S phase.

Note that there are some cases where the S phase bifurcates
before and remains more stable than the C phase but only
below some density [this occurs for values between those of
panels (b) and (c)]; at higher densities the two branches should
cross each other and the C phase becomes more stable (the
phase transition between the two phases is of first order
although no attempt has been made to calculate the properties
of the coexisting phases).

The structure of the S and C phases is also interesting to
investigate due to the fact that we expect strong microsegrega-
tion effects in these phases caused by the spatial ordering. By
this we mean that the particle size distribution will depend on
the location within the periodic unit cell. To better visualise the
microsegregation effect occurring at the scale of the periodic
unit cell in the S phase, we define the functions

hhðz; hÞ ¼
Ð1
0 dl f ðz; l; hÞÐ1

0 dl
Ð1
0 dh f ðz; l; hÞ

;

hlðz; lÞ ¼
Ð1
0 dh f ðz; l; hÞÐ1

0
dl
Ð1
0
dh f ðz; l; hÞ

:

(19)

hh(z,h) and hl(z,l) give, respectively, the particle thickness h
distribution at point z irrespective of the side-length l and the
particle side-length distribution at the same point irrespective
of the thickness h. These functions for the case dl = 0.20, dh =
0.20 at the points located at the smectic layers (L in the figure)
and at the interstitial point (I, midway between two consecutive
layers) are plotted in Fig. 5(a) and (b). We can see that the first
is mostly populated by the thickest particles, while the inter-
stitial (where anyway the density of particles is much lower)
mostly contains the thinner ones and the distribution is a bit
broader. The effect is more important in the function asso-
ciated with the ordering, i.e. in hh(z,h), than in the function
perpendicular to it, hl(z,l). Also plotted in both figures is the
global size distribution function (continuous line in grey);
departure of the local functions from the global distribution
gives a measure of the microsegregation effect.

As for the columnar phase, to quantify the microsegregation
effect occurring at the scale of the periodic unit cell, we define
the functions

hl r?; lð Þ ¼
Ð1
0 dh f r?; l; hð ÞÐ1

0 dl
Ð1
0 dh f r?; l; hð Þ

;

hh r?; hð Þ ¼
Ð1
0
dl f r?; l; hð ÞÐ1

0
dl
Ð1
0
dh f r?; l; hð Þ

;

(20)

which again give the particle distributions at point r> in each
polydispersity variable. In Fig. 5(c) and (d) we illustrate the
microsegregation effect by plotting the distributions hl(r>,l)
and hh(r>,h) at three points of the square-lattice unit cell: P, at
the nodes; R, at the interstitials; and Q, midway between two
nearest-neighbour nodes. The curves indicate that particles
with a larger side-length tend to occupy the nodes, while small

Fig. 3 Difference DZ = Zs� Zc between the packing fractions of the bifurcated
S and C phases as a function of polydispersity coefficients dl and dh, on a gray
scale. The dashed line corresponds to the curve DZ = 0 where the S and C
phases bifurcate at the same value of packing fraction. The S (C) label indicates
the region where the S (C) phase bifurcates from the N first. Dotted line is the
bisectrice dl = dh. Open squares, open circles and black filled circles correspond
to experimental values of polydispersities where C, S and C + S were found.
In the case of black circles and the open square with a down arrow, poly-
dispersities correspond to those of the parent phase.
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particles are more probable in the interstitials (where anyway
the local density of particles is small). Again the microsegrega-
tion effect is more pronounced in the function associated with
the ordering, in this case hl(r>,l), while the functions in h show
a minor departure from the global distribution.

Up to now there have appeared in the literature a number of
well-controlled experiments on suspensions of colloidal plate-
lets. There are two problems when comparing the theory with
the experiment. One is that polydispersities are difficult to
measure with precision, especially the polydispersity in thick-
ness. Normally one assumes that dh is some positive and
constant value (particle synthesis normally involves exfoliation
and the thickness usually consists of one or a few sheets of the
original layered material), subject to large error, while dl is
measured much more accurately and can be finely tuned more
easily. The other is that suspensions are subject to gravity and
the effect of sedimentation and the phase profile is crucial to
understand the true phase behaviour of the suspension.26

Usually this effect is not properly taken into account.
A number of groups have obtained suspensions made of

particles with interactions that can be approximated as hard
interactions. The Dutch group have been profusely investigating

suspensions of gibbsite particles with different polydispersities dl.
Their dh is quite large and somewhat uncontrolled, so that their
suspensions usually exhibit a N-to-C transition. On the other hand,
the A&M Texas group has been synthesising mineral platelets with
dh = 0 (although the interactions may not always be considered as
hard); in these systems the tendency to form S phases is quite
strong. In a recent paper, the latter group has provided quantitative
data for polydispersity in dl for their samples.18

In Fig. 3 some of the above experimental results on colloidal
suspensions of mineral particles have been added, specially
those that are relevant to elucidate the relative stability of the C
and S phases. Whenever available, we plot the polydispersity
coefficients (dh,dl) as measured in the fractionated coexisting
phases; note that in some experiments the (in general different)
polydispersities of the two coexisting phases are not measured,
but only the parent or global polydispersities. In the figure,
open squares show the values of the coefficients corresponding
to experiments on gibbsite platelet suspensions where stable
C,1 hexatic C30 and hexagonal C31 phases were found. The
arrow pointing down in one of the open squares means that the
values of (dh,dl) correspond to the parent phase. We expect that,
after fractionation, dl will decrease. Black points correspond to

Fig. 4 Free-energy density per unit of thermal energy, bF=V , as a function of platelet packing fraction Z, for different values of the polydispersities (dl,dh).
A term �8Z has been added in all cases to better compare the different curves. (a) (0.15, 0.25), (b) (0.20, 0.20), (c) (0.25, 0.15) and (d) (0.30, 0.10). Free-
energy branches for N, S and C phases are represented by dotted, dashed and continuous curves, respectively, and labelled by the corresponding symbol.

Paper PCCP

Pu
bl

is
he

d 
on

 2
9 

O
ct

ob
er

 2
01

3.
 D

ow
nl

oa
de

d 
by

 I
m

pe
ri

al
 C

ol
le

ge
 L

on
do

n 
L

ib
ra

ry
 o

n 
26

/1
1/

20
13

 1
1:

24
:2

2.
 

View Article Online

http://dx.doi.org/10.1039/c3cp53065e


This journal is© the Owner Societies 2014 Phys. Chem. Chem. Phys.

polydispersities of the parent distribution for suspensions of
goethite nanorods,29,32 which phase separate into C and S phases.
Finally, open circles with dh a 0 represent values for which stable
S29 or smectic B33 phases were found in suspensions of goethite
nanorods29 or of charged colloidal gibbsite platelets.33 The open
circle with dh = 0 is a result from recent experiments on zirconium-
phosphate mineral platelet suspensions of constant thickness but
polydisperse in diameter.18 As can be seen, the values of (dh,dl)
corresponding to colloidal suspensions where the C or S phases
were found to be stable are approximately located in their regions
predicted by our stability calculations.

IV. Conclusions

In this paper we have investigated the effect of the thickness
and width polydispersities on the relative stability between the

S and C phases in a system of aligned board-like uniaxial
particles, using a density-functional theory for hard cubes
extended to a polydisperse mixture. An understanding of the
effect of polydispersity begins with the phase behaviour of the
corresponding one-component (monodisperse) system. At high
densities, the system is in a K phase but the free-energy
difference with the C phase is very small.27,28 The S phase is
much less stable. All phases bifurcate from the same point (the
corresponding packing fraction being Z = 0.3143). Upon inclu-
sion of polydispersity in both particle thickness and width, the K
phase is expected to destabilise more strongly because the three-
dimensional periodic arrangement of particles in the unit cell is
very sensitive to the increase of polydispersity as compared to the
higher-symmetry C and S phases. This is the reason why we have
not included the K phase in the present study.

We have modelled the polydispersities in a symmetric way:
the mean thickness and side length are fixed to unity, and the

Fig. 5 The functions defined in eqn (19) and (20) for smectic and columnar phases, respectively. In all cases dl = 0.20, dh = 0.20 and Z = 0.40. (a) and (b)
smectic phase. (c) and (d) columnar phase. The smectic period d and columnar lattice parameter a correspond to the equilibrium configuration. The
functions are evaluated at special points in the periodic unit cell: L (layer, z = 0) and I (interstitial, z = d/2, i.e. half smectic period) for the smectic phase and
P (lattice site), Q (midway between nearest-neighbour sites) and R (interstitial site); schematic of the location of these points is included as an inset in
panels (b) and (d). For reference, the global size distribution x(l,h) is plotted as a continuous grey curve.
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global size distribution is a product of two independent func-
tions which have the same functional form in their respective
size variable. Therefore the mean particle geometry is cubic and
the addition of both polydispersities deforms the original
geometry to be prolate or oblate as the side length and thick-
ness polydispersity coefficients dl and dh become nonzero. We
have made a bifurcation analysis to study the effect of poly-
dispersity on the S and C bifurcation from the N phase. The
difference DZ = Zs � Zc between bifurcation packing fractions
allowed us to conclude that, in a first approximation, for
relatively low values of dl and dh and for dl > dh the S phase
destabilizes with respect to the N phase first, while the C phase
destabilizes first when dl o dh. The curve DZ = 0 in the dl � dh

plane is located close to the bisectrice for dh o 0.6 (but slightly
favouring the stability of the C phase), a result due to the
symmetric way in which particle polydispersities are included.
However, for dh > 0.6, the curve DZ deviates from the bisectrice
and favours the S phase. A possible explanation for this lies in
the microfractionation mechanism: for large polydispersities
larger particles tend to occupy the sites of the periodic lattice
(whether one dimensional in the case of the S phase or two-
dimensional for the C phase) and small particles tend to occupy
the lattice interstitials; this mechanism may be more effective
in the S phase than in the C phase. In fact, experiments show1

that the C phase accepts a polydispersity of at least dl = 0.25,
but recent studies on length-polydisperse rods of goethite29

indicate that the S phase is stable for polydispersities as large as
dh = 0.55 (with due allowance for macrofractionation mechanisms
which reduce the polydispersity of the parent sample).

The bifurcation analysis does not give the final answer to the
question of relative phase behavior. To have a more profound
understanding of the phase diagram of the present system and
investigate the microsegregation effects, we have performed
numerical minimizations of the free-energy density functional
of our polydisperse fluid, fixing the probability size distribution
of the parent phase x(l,h) (which coincides with the unit-cell
distribution in a periodic phase). We have found that, in
general, the bifurcation analysis gives the correct relative
stability of the C and S phases. However, there are some values
of polydispersities around the dl = dh bisectrice for which the
S phase bifurcates from the N before the C phase, but at some
value of packing fraction the C and S free-energy branches
cross, the C phase becoming energetically favoured at higher
packing fractions.

This behaviour is a clear indication that the system should
exhibit a first order S–C transition. To correctly predict the
particle composition of the coexisting phases, cloud-shadow
coexistence calculations should be performed in which the coex-
istence size distributions xc,s(l,h) are calculated from equations
expressing the equality of chemical potentials of all species and the
pressures, together with the level rule (conservation of the number
of particles).8 These calculations imply a heavy numerical task since
the moments of the coexisting distributions involve the evaluation
of multiple integrals and many non-linear integral equations have
to be solved. Therefore, in the present paper we restricted our effort
to the calculation of free-energy branches.

Finally, to confirm the microsegregation scenario, we examined
the actual structure of the phases and the spatial distribution of
species with different sizes. In effect, the layers or sites are
preferentially populated by big particles, while the interstitials have
a higher proportion of small particles. Particles with intermediate
sizes have a similar composition in both locations, indicating their
relatively high diffusivity. In both phases the microsegregation
effect is more apparent in the polydispersity variable associated
with ordering (l in the columnar phase and h in the smectic phase).
For high polydispersities, the two degrees of freedom associated
with size conspire with the different dimensionality of ordering in
the two phases (one or two in the S and C phases, respectively) to
give a non-symmetric stability map in a fluid of our otherwise
perfectly symmetric particles.

The present idealized model have been used as a tool to
qualitatively study the effect of size polydispersity on the
stabilization of phases with partial spatial ordering (specifi-
cally the S and C phases), once the degree of orientation order
is saturated at high densities. It would be interesting to study
the effect of both polydispersities on the phase transitions
between phases with different orientational symmetries such
as isotropic, nematic, biaxial nematic and cubatic phases,
which have been found in recent simulation work on board-
like particles.22,23 By construction our model cannot be
applied for this purpose. We leave this study as a future line
of research.

Appendix A: numerical details

Here we give more details about the way we performed the
numerical calculations.

Smectic phase

The Euler–Lagrange equation for the local fraction of
particles is

f ðz; l; hÞ ¼ xðl; hÞeDcð1Þðz;l;hÞ
1

d

Ð d
0dz

0eDcð1Þðz0;l;hÞ
; (A1)

where d is the S period, and Dc(1)(z;l,h) = c(1)(z;l,h) � c0
(1)(l,h),

with c0
(1)(l,h) the excess part of the chemical potential (in

thermal units KT) or bulk one-body direct correlation function
(this is done to improve numerical accuracy). Now we expand in
Fourier space:

f ðz; l; hÞ ¼
X1
k¼0

fkðl; hÞ cosðkqzÞ; (A2)

where q = 2p/d and f0(l,h) = 1. Multiplying eqn (A1) by a cosine
function and integrating over one period, we obtain

fkðl; hÞ ¼ 2xðl; hÞ
Ð d
0dz e

Dcð1Þðz;l;hÞ cosðkqzÞÐ d
0
dz eDc

ð1Þðz;l;hÞ
; (A3)
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with k > 0. Now using the definitions

cðkÞrs �
ð1
0

dllr
ð1
0

dhhsfkðl; hÞ cos
kqh

2

� �
;

sðkÞrs �
2

kq

ð1
0

dllr
ð1
0

dhhsfkðl; hÞ sin
kqh

2

� �
;

(A4)

with r,s = 0,1,. . ., the corresponding projections of the Euler–
Lagrange equations, given by eqn (A3), can be rewritten solely
in terms of the {c(k)

rs ,s(k)
rs } coefficients. This is because, as can be

easily shown, the average functions na depend on these
coefficients only:

naðzÞ ¼ r0
X1
k¼0

dðkÞa cosðqkzÞ; (25)

where, for each value of k > 0,

da = {c00, c10, c10, s00, s10, s10, c20, s20} (A6)

for a = {0,1x,1y,1z,2x,2y,2z,3} respectively. This means that the
c(1) correlation function can be uniquely expressed in terms of
these coefficients and, consequently, eqn (A3) and (A4) form a
closed set of equations in these coefficients. To solve these
equations we use an iterative method with a mixing parameter
of 0.5. The solution is obtained after typically 30 iterations, and
starting values for the coefficients were chosen from the values
obtained for a previous density.

Columnar phase

In this case the Euler–Lagrange equation reads

f r?; l; hð Þ ¼ xðl; hÞeDcð1Þðr? ;l;hÞ

1

ac

Ð
ac
dr?eDc

ð1Þðr? ;l;hÞ
; (A7)

where ac = a2 is the area of the unit cell of the square lattice, and
a the lattice parameter, and Dc(1)(r>;l,h) = c(1)(r>;l,h) � c0

(1)(l,h).
Expanding in a Fourier series,

f r?; l; hð Þ ¼
X1
n;m¼0

fnmðl; hÞ cosðqnxÞ cosðqmyÞ; (A8)

with f00(l,h) = 1, and q = 2p/a. Multiplying eqn (A8) by cosine
functions in x and y and integrating over the unit cell, we
obtain:

fnmðl; hÞ ¼
4xðl; hÞ

ð1þ dn0Þð1þ dm0Þ

Ð
ac
dr?e

Dcð1Þ r? ;l;hð Þ cosðqnxÞ cosðqmyÞÐ
ac
dr?eDc

ð1Þ r? ;l;hð Þ
:

(A9)

Using the definition

U ðnmÞrs;uv �
ð1
0

dllu
ð1
0

dhhvfnmðl; hÞXr
nql

2

� �
Xs

mql

2

� �
; (A10)

with r,s = 0,1, u,v = 0,1,. . ., and X0(x) = cos x, X1(x) = sin x/x,
eqn (A7) can be written as a transcendental set of equations
in {U (nm)

rs,uv}, which form a closed set of equations because

the average densities can be written in terms of solely these
coefficients,

na r?ð Þ ¼ r0
X1
n;m¼0

eðnmÞa cosðqnxÞ cosðqmxÞ; (A11)

with

ea = {U00,00,U10,10,U01,10,U00,01,U01,11,U10,11,U11,20,U11,21}, (A12)

for a = {0,1x,1y,1z,2x,2y,2z,3}, respectively, and for each value of
n,m. An iterative method was used to solve the equations with a
mixing parameter of 0.5 and typically 100 iterations were
necessary to reach convergence. Starting values for a given
density were obtained from the solution of a previous density.

Appendix B: bifurcation analysis

In this section we give details on the bifurcation analysis from
the N phase with respect to the S or C phases of the poly-
disperse mixture. Eqn (12) can be rewritten as

r(r;l,h) = r0x(l,h)eDc(1)(r;l,h), (B1)

The nonuniform phase bifurcates from the parent phase
and, near the bifurcation point, we can assume that r(r;l,h) E
r0x(l,h) + e(r;l,h) where e(r;l,h) is a small perturbation. Inserting
this into eqn (B1) and functionally expanding the exponential
up to first order in e(r;l,h), we arrive at

eðr; l; hÞ ¼ r0xðl; hÞ
ð1
0

dl0
ð1
0

dh0
ð
dr0cð2Þ r� r0; l; h; l0; h0ð Þe r0; l0; h0ð Þ:

(B2)

with c(2)(r � r0; l, h, l0, h0) the direct correlation function:

cð2Þðr� r0; l; h; l0; h0Þ ¼ dcð1Þðr; l; hÞ
drðr0; l0; h0Þ






rðr;l;hÞ¼r0xðl;hÞ

: (B3)

In Fourier space, eqn (B2) becomes

êðq; l; hÞ ¼ r0xðl; hÞ
ð1
0

dl0
ð1
0

dh0ĉð2Þðq; l; h; l0; h0Þêðq; l0; h0Þ: (B4)

where, as usual, f̂ ðqÞ ¼
Ð
dr eiq�rf ðrÞ. The Fourier transform of

the direct correlation function can be written as

�ĉð2Þðq; l; h; l0; h0Þ ¼
X
a;b

Fab r0ð ÞôðaÞðq; l; hÞôðbÞðq; l0; h0Þ: (B5)

where the coefficients Fab ¼
@2F

@na@nb
are evaluated at r(r;l,h) =

r0x(l,h). Therefore these coefficients are functions of r0 and dl

since, in the uniform limit, the weighted densities na(r) are n0 =
n1x = n1y = n1z = n2x = n2y = r0 and n2z = n3 = r0(1 + dl

2). ô(a)(q;l,h)
are the Fourier transforms of the weights o(a)(r;l,h). Substitu-
tion of eqn (B5) into eqn (B4) gives

êðq; l; hÞ ¼ �r0xðl; hÞ
X
a;b

ôðaÞðq; l; hÞFab r0ð ÞsbðqÞ; (B6)
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where we have defined

sbðqÞ ¼
ð1
0

dl

ð1
0

dhôðbÞðq; l; hÞêðq; l; hÞ: (B7)

Multiplying (B6) by ô(t)(q;l,h) and integrating over l and h,
we find

s(q) = �r0[T̂(q)�F̂(r0)]s(q), (B8)

where s(q) is a column vector of dimension eight with coordi-
nates sb(q) (b = 0,2,1x,1y,1z,2z,2y,2z), F̂ (r0) is the matrix with
elements Fab(r0), and T̂(q) is the 8 � 8 matrix with elements

TabðqÞ ¼
ð1
0

dl

ð1
0

dhxðl; hÞôðaÞðq; l; hÞôðbÞðq; l; hÞ: (B9)

Defining the matrix

Ĥ(r0,q) = I + r0T̂(q)�F̂(r0), (B10)

with I the 8 � 8 identity matrix, eqn (B8) can be rewritten as

Ĥ(r0,q)s(q) = 0. (B11)

Thus, a nontrivial solution of (B11) can be calculated from

Hðr0; qÞ ¼ 0; rqHðr0; qÞ ¼ 0; (B12)

i.e. by searching for the equality to zero of the global minimum
ofHðr0; qÞ ¼ det Ĥðr0; qÞ

� �
. The bifurcation to the S or C phases

can be obtained using q = (0,0,q) or q = (q,0,0), respectively, and
the solutions of eqn (B12) furnish the values of density and
wavevector, r0* and q*, at bifurcation. Now taking into account
the factorised form of the weighting functions,

ô(a)(q;l,h) = ô(a)
x (qx;l)ô(a)

y (qy;l)ô(a)
z (qz;h), (B13)

and of the parent size probability distribution x(l,h) = f(l)f(h),
the coefficients (B9) can be written as a product of two one-
dimensional integrals:

TabðqÞ ¼
ð1
0

dlfðlÞ
Y
t¼a;b

ôðtÞx qx; lð ÞôðtÞy qy; l
� �" #

�
ð1
0

dhfðhÞ
Y
t¼a;b

ôðtÞz qz; hð Þ
" #

:

(B14)

Finally, substituting the values qx = qy = 0, qz = q or qx = q, qy = qz

= 0 in these integrals, we find that they can be expressed as a
function of the following integrals:

SnðqÞ ¼
ð1
0

dsfðsÞsn sinðqsÞ;

CnðqÞ ¼
ð1
0

dsfðsÞsn cosðqsÞ;
(B15)

where s = {l,h}. In turn, these integrals can efficiently be
calculated as

SnðqÞ ¼ q snþ1
� 	

exp �q
2

4l

� �
M �ðgþ n� 1Þ

2
;
3

2
;
q2

4l


 �
;

CnðqÞ ¼ snh i exp �q
2

4l

� �
M �ðgþ nÞ

2
;
1

2
;
q2

4l


 �
;

(B16)

where M[a,b,x] is the Confluent Hypergeometric function of real
arguments (the so-called Kummer function34), while the general
expression for the n-th moment of the distribution function
f(s) is

snh i ¼
G

gþ nþ 1

2


 �
Gn�1 gþ 1

2


 �

Gn gþ 2

2


 � : (B17)
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