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Effect of orientational restriction on monolayers
of hard ellipsoids

Szabolcs Varga,f Yuri Martı́nez-Ratón,a Enrique Velasco,b

Gustavo Bautista-Carbajalcd and Gerardo Odriozola*e

The effect of out-of-plane orientational freedom on the orientational ordering properties of a

monolayer of hard ellipsoids is studied using the Parsons–Lee scaling approach and replica exchange

Monte Carlo computer simulation. Prolate and oblate ellipsoids exhibit very different ordering properties,

namely, the axes of revolution of prolate particles tend to lean out, while those of oblate ones prefer to

lean into the confining plane. The driving mechanism of this is that the particles try to maximize the

available free area on the confining surface, which can be achieved by minimizing the cross section

areas of the particles with the plane. In the lack of out-of-plane orientational freedom the monolayer of

prolate particles is identical to a two-dimensional hard ellipse system, which undergoes an isotropic–

nematic ordering transition with increasing density. With gradually switching on the out-of-plane

orientational freedom the prolate particles lean out from the confining plane and destabilisation of

the in-plane isotropic–nematic phase transition is observed. The system of oblate particles behaves

oppositely to that of prolates. It corresponds to a two-dimensional system of hard disks in the lack of

out-of-plane freedom, while it behaves similar to that of hard ellipses in the freely rotating case. Solid

phases can be realised by lower surface coverage due to the out-of-plane orientation freedom for both

oblate and prolate shapes.

1 Introduction

Phase behavior of non-spherical hard bodies with their centers
of mass confined in planar geometry is receiving considerable
attention due to the recent development of the preparation of
colloidal particles with various shapes and new experimental
techniques. Nowadays it is possible to prepare colloids with
several geometrical shapes such as cubes, polyhedrons, octopods,
ellipsoids and helices.1–6 The anisotropic colloids can be con-
fined at the interfaces,7–11 between two parallel solid walls,12,13

at the bottom of the sample holder,14 at a substrate surface15

and into a lamellar matrix of surfactants.16,17 The confinement
can be so strong that even colloidal monolayers can be realized
experimentally.

Ordering properties of two-dimensional and quasi two-
dimensional (q2D) non-spherical colloids has been the subject
of several experimental and theoretical studies.17–36 The reason
for this is that the nature of two-dimensional (2D) nematic
ordering is quite different from the three-dimensional (3D)
one. It shows only a quasi-long-range orientational order with
algebraically decaying orientational correlations and the ordering
transitions between isotropic and nematic phases are first
order or continuous through a Kosterlitz–Thouless disclination
unbinding type mechanism.18,37

Strictly 2D colloidal systems cannot be examined experimentally,
because the out-of-plane orientational and positional freedoms are
always present to some extent. Therefore it is desirable to extend the
theoretical studies in such directions, where the extra orientational
and positional freedoms are present. Along this line, the ordering
properties of microtubules confined in a thin slit have been
modeled as hard spherocylinders placed between two planar
walls in ref. 28. In agreement with the experiment it has been
found that the isotropic–nematic transition density increases
with the wall separation.28

Ellipsoidal shaped colloidal particles are gaining widespread
applications due to the development of the stretching techniques
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Matemáticas, Escuela Politécnica Superior, Universidad Carlos III de Madrid,

Avenida de la Universidad 30, E-28911, Leganés, Madrid, Spain
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07160, México, D. F., Mexico
e Area de Fı́sica de Procesos Irreversibles, División de Ciencias Básicas e Ingenierı́a,

Universidad Autónoma Metropolitana-Azcapotzalco, Av. San Pablo 180,
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in the preparation of monodisperse prolate and oblate ellipsoids
from spherical latex particles.4,38 They can also be confined into
planar geometry and create a monolayer to study ordering and
glassy behavior of the q2D ellipsoid systems.12,13

In this paper we examine the orientational ordering proper-
ties of q2D hard ellipsoid systems, where particles are allowed
to rotate out from the confining plane to some extent, while it is
assumed in first approximation that the centers of the particles
are always in the same plane. Switching on the out-of-plane
orientational freedom by a gradual increase (decrease) of the
limiting polar angle (yc) for oblate (prolate) shapes, it is possible to
make a link between strictly 2D hard ellipse (hard disk) systems
for prolate (oblate) shapes and q2D freely rotating prolate (oblate)
ellipsoid systems. We show that the additional out-of-plane
orientational freedom changes substantially the orientational
ordering and the transition properties of both oblate and
prolate shaped ellipsoids. To maximize the available free area
on the confining surface, the axis of revolution of the prolate
particle leans out from the plane, while the oblate particle leans
into the plane. As a consequence, the freely rotating prolate
ellipsoids resemble hard disks at high densities, while those of
oblate ellipsoids behave similarly to hard ellipses. The isotropic–
nematic phase transition of hard ellipses corresponds to a planar
nematic–biaxial nematic phase transition of the oblate ellipsoids.
Here we note that our present work can be considered as an
extension of our previous studies done for monolayers of
uniaxial and biaxial hard particles using restricted-orientation
approximation and simulations.35,39,40

The paper is organized as follows. The molecular model and
the details of the confinement are presented in Section II.
Section III is devoted to the Parsons–Lee theory of q2D hard
ellipsoid fluids, where we show how to determine the equili-
brium free energy, surface coverage (2D packing fraction), and
order parameters of the uniaxial and biaxial nematic phases.
Technical details of the replica exchange Monte Carlo simula-
tion method are given in Section IV. The ordering properties,
the equation of state and the phase diagram of confined hard
ellipsoids are presented in Section V. Finally, some conclusions
are drawn in Section VI.

II. Molecular model

In this work we examine the q2D system of hard ellipsoids,
where the particles are allowed to rotate freely in a restricted
region of the solid angle, while the centers of particles can move
only on a two-dimensional XY plane. The shape of the particles
can be both prolate and oblate, i.e. the aspect ratio or shape
anisotropy (k = sJ/s>, where sJ and s> are the lengths along
and perpendicular to the axis of revolution of the ellipsoid,
respectively) can be either larger than one (k4 1, prolate shape)
or between zero and one (0 o k o 1, oblate shape). The
orientational restriction takes place only in the polar angle (y),
which is measured from the axis of revolution of each particle to
the normal of the confining XY plane. While the particles can
rotate freely in the azimuthal angle (0 o j o 2p), the allowed

range of the polar angle is different for prolate and oblate ellipsoids,
namely, the range of the polar angle is given by yc o yo p� yc for
prolate shapes, while 0 o yo yc and p � yc o y o p intervals are
allowed for oblate ones (see Fig. 1). We can tune yc between
0 and p/2. In the case of prolate ellipsoids (k 4 1) yc = 0
corresponds to the confined system of freely rotating particles,
while yc = p/2 gives the two-dimensional system of hard ellipses.
The situation is different for oblate ellipsoids (0 o k o 1),
because the hard disk limit is given by yc = 0, while the freely
rotating system of confined oblate ellipsoids corresponds to
yc = p/2. The interaction between ellipsoids is purely hard, i.e.
the pair potential between two particles is given by

u r12; ~o12; ~o1; ~o2ð Þ ¼
1 for r12 � s ~o12; ~o1; ~o2ð Þ

0 otherwise

(
; (1)

where r12 is the centre-to-centre distance, ~o12 = (cosj12, sinj12, 0)
is the unit vector connecting the centers of the two ellipsoids,
~oi = (sin yi cosji, sin yi sinji, sinji, cos yi) is the orientational
unit vector of particle i (i = 1, 2) and s(� � �) is the distance of the
closest approach. Note that the third component of ~o12 is
always zero, which ensures that the centers of the particles
are always in the XY plane. The distance of the closest approach
between two ellipsoids (s(� � �)) is approximated in the manner
proposed in our previous reports.41,42

III. Parsons–Lee theory

To describe theoretically the orientational ordering properties
of the monolayer of hard ellipsoids we derive our working
equations from the well-known Parsons–Lee (PL) theory of hard
bodies,43,44 which proved to be very successful in the determi-
nation of the equation of state and the transition properties of
isotropic–nematic (I–N) phase coexistence of non-spherical
hard body fluids both in two23,24 and three dimensions.45–47

Here we present only the important ingredients of the theory,

Fig. 1 Schematic representation of the system of confined hard ellip-
soids: prolate ellipsoids (upper panel) and oblate ellipsoids (lower panel).
The particles are confined both positionally and orientationally. The centre
of mass of the ellipsoid is always in the XY plane, which is denoted by the
dashed line, while the ellipsoid can rotate freely in the azimuthal angle (j)
and is restricted by the polar angle (yc). The arrows indicate the direction of
the main symmetry axis of the ellipsoids.
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specific equations for the ellipsoid monolayer and some tech-
nical details.

It is customary to deal with the free energy of the system,
which is the sum of ideal and excess free energy terms, i.e.
F = Fid + Fex. The ideal term can be determined exactly from

bFid

N
¼ log r� 1þ

ð
dof ðoÞ lnð f ðoÞÞ; (2)

where b = 1/kBT is the inverse temperature, N is the number of
particles, r = N/A, A is the area of the plane, o = (j, y) is the
collection azimuthal and polar angles, do = djdy sin y and
f (o) is the normalized orientational distribution functionÐ
dof ðoÞ ¼ 1

� �
. The ranges of the azimuthal and polar angles

in the integrals have been already given in Section II. The excess
free energy contribution can be obtained approximately with
the mapping procedure from the actual system to a reference
one, where the second virial coefficient and the excess free energy
can be obtained with good accuracy. In our case we choose the
system of 2D hard disks as a reference system, because our
confined ellipsoid system is q2D. The second virial coefficient of
the hard disks is given by BHD

2 = D2p/2, where D is the diameter of
the hard disk. A luckily simple and accurate expression can be
derived for the excess free energy of hard disks, too, using the
scaled particle theory48

bFHD
ex

N
¼ � ln 1� ZHDð Þ þ ZHD

1� ZHD

; (3)

where ZHD = raHD is the packing fraction of the hard disk and
aHD = BHD

2 /2 is the area of the hard disk. To perform the
mapping procedure from the hard ellipsoids into hard disks
we introduce the surface coverage (or 2D packing fraction) of the
hard ellipsoids, because the intersection of the ellipsoid with the
XY plane is an ellipse with characteristic lengths depending on
the orientation of the ellipsoid. These characteristic lengths of the
ellipse can be calculated easily using simple geometry. One can

derive that s>,e = s> and sjj;e ¼ sjjs?

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s? 2 sin

2 yþ sjj2 cos2 y
q

,

where y is the polar angle of the ellipsoid. This means that the
monolayer of the hard ellipsoids can be visualized as a multi-
component mixture of hard ellipses on the XY plane. Using the
dimensions of the hard ellipse, the intersected area of the hard
ellipsoid with the XY plane can be obtained from

aðyÞ ¼
ps?2sjj

4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s?2 sin2 yþ sjj2 cos2 y

q : (4)

This polar angle dependent area together with the orienta-
tional distribution function allows us to determine the surface
coverage of the plane by ellipses, which is given by Z = rhai,
where the average area of the intersected ellipse can be deter-
mined from ah i ¼

Ð
doaðyÞ f ðoÞ. Note that the surface coverage

gives back the packing fraction of hard disks in the hard-sphere
limit, because sJ = s> = D and the distribution function is a
constant. In the PL approach the area of hard disks and the
average area of hard ellipses are assumed to be the same
(aHD = hai), which implies also that ZHD = Z due to one-to-one

correspondence between the two systems. Based on the concept
of Parsons and Lee we can now calculate the excess free energy
of the monolayer of hard ellipsoids using the thermodynamic
properties of hard disks as follows

bFex

N
� bFHD

ex

N

BHE
2

BHD
2

; (5)

where the second virial coefficient of hard ellipsoids restricted
to the XY plane is given by

BHE
2 ¼ 1

2

ð
do1f o1ð Þ

ð
do2 f o2ð ÞAexc o1;o2ð Þ (6)

This equation contains the excluded area between two ellip-
soids, which can be obtained from the distance of the closest
approach (s) as follows

Aexc o1;o2ð Þ ¼ 1

2

ð2p
0

dj12s
2 o1;o2;o12ð Þ: (7)

Using eqn (3)–(6) and ZHD = Z condition the excess free energy
of the system becomes

bFex

N
¼ � lnð1� ZÞ þ Z

1� Z

� �Ð
do1 f o1ð Þ

Ð
do2 f o2ð ÞAexc o1;o2ð Þ

4
Ð
doaðyÞ f ðoÞ :

(8)

The sum of eqn (2) and (8) constitutes our density functional
equation to determine the equilibrium orientational distribution
function ( f (o)) and the total free energy density at a given density
(r = N/A). The minimization of the free energy functional with
respect to f (o) gives the Euler–Lagrange equation for the equili-
brium f (o). Note that the minimization must be carried out by
maintaining the normalization condition

Ð
dof ðoÞ ¼ 1

� �
. Although

the minimization procedure is very simple and straightforward, we
do not present the equation of f (o), since the resulting equation is
too long. Once the equilibrium f (o) is determined with a standard
iterative method, the free energy density can be obtained by the
substitution of the resulting f (o) into the free energy functional
(sum of eqn (2) and (8)). We determine the pressure from the free
energy using P = r2q(F/N)/qr and examine the orientational ordering
properties of the monolayer by the standard uniaxial and biaxial
order parameters. These are defined as

S ¼ P2h i ¼
ð
dof ðoÞP2ðcos yÞ; (9)

and

D ¼
ð
dof ðoÞ sin2 y cosð2jÞ; (10)

where P2(x) = 3x2/2 � 1/2 is the second order Legendre poly-
nomial. The uniaxial order parameter (S) is positive for out-of-
plane ordering (0 o S o 1), while it is negative for in-plane
ordering (�1/2 o S o 0). The biaxial order parameter (D) can
be very useful in finding in-plane orientational ordering transi-
tions, because D is zero for in-plane complete disorder, while
it is nonzero for in-plane order. S is practically a three-
dimensional order parameter of bulk ellipsoids, while D is
the corresponding two-dimensional one of bulk ellipses
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when y = p/2. Since our system is q2D, we need both of them.
To see the effect of out-of-plane orientational freedom and to
which extent the particles are tilted off from the confining
plane, we determine the average aspect ratio of the effective
ellipse system, which is defined as keff = hsJ,e/s>,ei. In Section V
we present the density and the pressure in dimensionless units,

which are defined as r� ¼ N

A
s?2 and P� ¼ bPs?2.

IV. Replica exchange Monte Carlo
simulation

As for the 2D hard ellipse study,35 we are implementing the
replica exchange Monte Carlo technique.49–51 This is done to
avoid, as far as possible, the inherent hysteresis associated with
transitions.52 This method is based on the definition of an

extended ensemble with partition function Qext ¼
Qnr
i¼1

Qi, where

Qi is the partition function of ensemble i. nr ensembles are
considered, and nr replicas are employed to sample the
extended ensemble, each one at each ensemble. Defining Qext

allows introducing swap trial moves between any two replicas,
whenever the detailed balance condition is satisfied. In our case
it is convenient to expand isobaric–isothermal ensembles in
pressure.53 This is so since we are studying hard particles. Hence,
the partition function of the extended ensemble reads53,54

Qext ¼
Ynr
i¼1

QNTPi
; (11)

where QNTPi is the partition function of the isobaric–isothermal
ensemble of the system at pressure Pi and temperature T.
N particles are taken into account at each ensemble. A standard
implementation is used to sample the NTPi ensembles. This
implies independent trial 2D displacements, 3D rotations of
single ellipsoids, and area changes of the simulation cell. In the
case of having confining planes, 3D rotations of single ellip-
soids are constrained by their presence. We are also accounting
for non-orthogonal parallelogram cells and so, additional trial
changes of the angles and relative length sides of the cell lattice
vectors are included. The following acceptance rule is set53

Prm,acc = min(1,exp{b(Pi � Pj)(Ai � Aj)}) (12)

where Ai � Aj is the area difference between replicas i and j.
Adjacent pressures must be close to provide swap acceptance
rates over 0.1. Simulations are started from a packed triangular
arrangement of spheres which are elongated in the direction
normal to the plane by a factor k. In the case of oblates, a
stretching factor k is also applied in a certain in-plane direc-
tion. Conversely to the stretching of spheres in a 3D cell, this
procedure leads to the largest packed arrangement of spheroids
in a plane.55 A stationary state is reached faster by decompressing
packed cells than by compressing lose random configurations.52

We perform the necessary trial moves to observe a stationary
state. At this stage we adjust maximum displacements to produce
acceptance rates close to 0.3. We also relocate all pressures,

initially set by following a geometric progression with the replica
index, to obtain similar swap acceptance rates for all pairs of
adjacent ensembles. Next, we perform 4 � 1012 sampling trials
for fixed maximum particle displacements, maximum rotational
displacements, maximum area changes, and maximum changes
of the lattice vectors. Verlet neighbor lists56 are used to improve
performance. We set N B 400 ellipsoids and nr as a function of
the pressure range to be covered. N B 400 is sufficiently large
to access the properties we are showing in this study in view of
Xu et al. analysis of system size effects.33 However, much larger
system sizes are needed to precisely determine the nature of
transitions.57 More details on the employed methods are given
in our previous work.52

V. Results and discussion

In this section we present our theoretical and simulation
results for hard ellipses, orientationally restricted and freely
rotating monolayers of hard ellipsoids. The equation of state,
the surface coverage, the in-plane (D) and out-of-plane (S) order
parameters and the I–N transition densities are determined for
various values of shape anisotropy. We start with the system of
hard ellipses, which is obtained by setting the polar angles of
all ellipsoidal particles (y) to be p/2. This condition is accom-
panied by f (o) = f (j) and that the uniaxial order parameter (S)
is always �1/2 and the biaxial order parameter can be obtained

from D ¼
Ð 2p
0 djf ðjÞ cosð2jÞ. Note that D now serves as a 2D

orientational order parameter. The theoretical calculations and
simulations can also be carried out with both oblate-shaped
(0 o k o 1) and prolate-shaped hard ellipsoids (k 4 1), where
y = p/2 for all particles. Here we perform the hard ellipse study
using oblate-shaped ellipsoids. Fig. 2 shows the pressure and
the 2D order parameter (D) as a function of density for k�1 = 3,
4, 5, 10 and 20. One can see that more particles on the surface
(higher densities) are required to maintain the same value of
the pressure with increasing shape anisotropy. This is due to the
fact that the XY plane becomes more spacious with increasing
k�1, as sJ must be decreased at fixed s>. It can also be seen in
Fig. 2 that the simulation data are well reproduced by the
approximate PL theory except the values of the order parameters
of the N phases corresponding to extremely anisotropic particles
(k�1 = 10 and 20). These data well agree with those given in
ref. 33. The order parameter curves reveal for the occurrence of
an isotropic–nematic phase transition, because the phase is
isotropic at low densities (D = 0), while it is nematic at high ones
(D 4 0). The phase transition is of second order in the theory,
while the histograms built from simulations in the vicinity of the
phase transition suggest a continuous transition (probably a
Kosterlitz–Thouless type). Both the theory and the simulation
show the same tendencies for I–N transition densities and
packing fractions (see Fig. 3). Making the ellipsoids more aniso-
tropic one can see that the I–N transition density increases, while
the I–N packing fraction decreases. This apparent contradiction
is due to the fact that the increasing shape anisotropy makes the
system more spacious (s> is constant, while sJ is decreasing),
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which requires more particles for the initiation of the phase
transition, while the XY plane can be less occupied at the

same time. It can also be seen that the theory underestimates
the I–N transition densities and packing fractions to a higher
extent with increasing shape anisotropy, which is due to the
fact that the contribution of higher order virial coefficients is
not negligible with increasing k�1.

The monolayer of freely rotating hard ellipsoids can be
achieved by using yc = p/2 and yc = 0 limiting angles for oblate
and prolate shapes, respectively. The resulting surface coverage
(2D packing fraction), effective aspect ratio, pressure and
order parameters are shown for prolate and oblate shaped
ellipsoids in Fig. 4 and 5, respectively. The effective aspect
ratio of the corresponding hard ellipse system is given by

keff ¼ sjj;e=s? ;e
� 	

¼ k
. ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sin2 yþ k2 cos2 y
pD E

, which is the aver-

age aspect ratio of the ellipses obtained by intersecting the
ellipsoids with the XY plane. In turn, the surface coverage can
be obtained with the help of keff as follows: Z ¼ r�pkeff=4.
Starting with prolate ellipsoids, one can see that the particles
do not form an isotropic phase (S 4 0), but they align along the
normal of the XY plane (see the simulation snapshot of Fig. 4)

Fig. 2 Orientational ordering of the system of hard ellipses: the equation
of state (upper panel) and the two-dimensional order parameter vs. density
(lower panel). The curves correspond to k�1 = 3, 4, 5, 10 and 20 from left to
right. The curves are the results of PL theory, while the diamond symbols
correspond to MC simulation results. The hard ellipse system is obtained
from oblate ellipsoids by tilting their orientations into the XY plane.

Fig. 3 Shape dependence of the isotropic–nematic (I–N) transition of
hard ellipses: reduced density vs. aspect ratio. The curves are the results
of PL theory, while the diamond symbols correspond to MC simulation
results. The inset shows the packing fraction of the I–N transition as a
function of aspect ratio, where Z = rpsJs>/4.

Fig. 4 Monolayer of freely rotating hard prolate ellipsoids: surface cover-
age (packing fraction) vs. reduced density (upper panel) and the equation of
state (lower panel) at k = 10. The effective aspect ratio of the corresponding
hard ellipse system keff ¼ sjj;e=s? ;e

� 	
¼ k

. ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin2 yþ k2 cos2 y

pD E
 �
is shown

in the inset of the upper panel, while the out-of-plane order parameter (S) is
presented in the inset of the lower panel. The curves are the results of PL
theory, while the diamond symbols correspond to MC simulation results. The
snapshot is the result of replica exchange Monte Carlo simulation method.
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even at very low densities. In fact, an isotropic phase would
appear only at the limit of infinite dilution, where S converges
to zero (see the inset of Fig. 4). The reason for this is that some
configurations are always present with distances between
neighboring particles less than sJ. These configurations con-
tribute with positive values to the order parameter. The density
dependence of the surface coverage and the effective aspect
ratio show that the particles have less and less chance to lie into
the XY surface with increasing density because of packing effects.
The intersection of the ellipsoid with the XY surface is practically
a hard disk for r* 4 0.6, where the effective ellipse aspect ratio is
almost one. This makes the monolayer of hard ellipsoids very
similar to the system of hard disks at high densities despite the
presence of orientational fluctuations. The in-plane order para-
meter (eqn (10)) is always zero, while the out-of-plane order
parameter (eqn (9)) is positive. This shows that the out-of-plane
orientational ordering is uniaxial with the nematic director
parallel to the layer normal. It can also be seen that S is very
close to its maximum value (Smax = 1) at r* 4 0.7, which
corresponds to the case where all prolate ellipsoids are parallel
and align along the layer normal. The reason why prolate
ellipsoids prefer the out-of-plane ordering is that they can

maximize the free area available on the surface with the penalty
of orientational entropy loss. Moreover the close packing
structure of prolate ellipsoids is identical to that of 2D hard
disks. One can also see that the theory reproduces quite well
the simulation data for all properties except the equation of
state at high densities.

The principle of minimizing the intersected area with the XY
plane applies also for oblate ellipsoids (see Fig. 5). The minimal
intersected area, which is actually an ellipse with sJ,e = sJ and
s>,e = s> dimensions, can be achieved with ordering into the
XY plane, while the out-plane ordering results in a higher
intersected area, because sJ o s> for oblate ellipsoids. The
resulting in-plane ordering can be seen in the simulation
snapshot and from the high density behavior of the effective
aspect ratio (keff - k = sJ/s>). The out of plane order parameter
goes to �1/2, which corresponds to complete in-plane ordering.
Moreover, the in-plane order is isotropic at low densities (D = 0),
while it is nematic at high densities (D 4 0). This means that
the system undergoes a phase transition from a planar uniaxial
nematic order (S o 0, D = 0) to a biaxial nematic one (S o 0,
D a 0), which can be considered as a 2D I–N phase transition.
The order of the uniaxial nematic–biaxial nematic (N–BN) phase
transition is proved to be second order in the approximate PL
theory, while the transition is of higher order and continuous in
the simulation. This transition is the result of the competition
between in-plane orientational entropy (favoring disorder) and
the in-plane packing entropy (favoring order). The high density
structure of the hard ellipsoid monolayer resembles the nematic
phase of the 2D hard ellipses, while at low densities the structure
more or less corresponds to an isotropic phase of a polydisperse
mixture of hard ellipses. One can also see that the agreement
between the theory and the simulation is quite good for oblate
ellipsoids, which is especially true for the equation of state. An
interesting feature is that the theory overestimates the out-of-
plane ordering. This could stem from the effect of higher virial
coefficients, which are not included in the theory. Fig. 6 shows

Fig. 5 Monolayer of freely rotating hard oblate ellipsoids: surface coverage
(packing fraction) vs. reduced density (upper panel) and the equation of state
(lower panel) at k = 1/10. The effective aspect ratio of the corresponding
hard ellipse is shown in the inset of the upper panel, while the out-of-plane
(S) and the in-plane (D) order parameters are presented in the inset of the
lower panel. The curves are the results of PL theory, while the diamond
symbols correspond to MC simulation results. The snapshot is the result of
the replica exchange Monte Carlo simulation method.

Fig. 6 Shape dependence of the uniaxial nematic–biaxial nematic (N–BN)
transition of freely rotating hard oblate monolayer: reduced density vs. aspect
ratio. The curves are the results of PL theory, while the diamond symbols
correspond to MC simulation results. The inset shows the packing fraction of
the N–BN transition as a function of aspect ratio.
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the in-plane isotropic–nematic (or N–BN) transition densities
as a function of aspect ratio resulting from the PL theory and
simulation. One can see that the N–NB transition density
increases with increasing shape anisotropy, while the packing
fraction decreases. This is due to the fact that we go to the
‘‘volumeless’’ hard needle limit with decreasing k, where the
transition density saturates at a finite value, while the packing

fraction vanishes (note that keff - 0 and Z ¼ r�
p
4
keff ). The

agreement for the transition densities is again very good
between the theory and simulation. To see the effect of out-
of-plane orientational freedom it is worth plotting the I–N
densities of the 2D hard ellipse system and those of the freely
rotating hard oblate monolayer together (see Fig. 7). It can be
seen that the simulation does not show a substantial difference
between the two systems, while the theory predicts that the out-
of-plane freedom destabilizes the nematic order, i.e. the I–N
density curve is shifted into the direction of higher densities. In
the simulation the nematic phase evolves from a very ordered
planar phase (isotropic in the XY plane), where the effective
aspect ratio is almost identical with the aspect ratio of the
ellipsoids (see Fig. 5), i.e. the corresponding hard ellipse system
is almost monodisperse. This is not the case in the theory,
where the transition occurs at such densities, where the corres-
ponding hard ellipse system is still polydisperse with a larger
aspect ratio (keff) than k. As a result the effect of out-of-plane
orientational freedom is more pronounced in the theory than
in the simulation. This shows that the theory exaggerates the
effect of out-of-plane orientational freedom on the N–BN phase
transition.

Now we show how the I–N transition properties change with
switching on the out of plane orientational freedom through
the varying limiting polar angle (yc), which is between 0 and p/2
for both prolate and oblate shapes. If yc = p/2 (cos yc = 0) the
prolate ellipsoids on the XY plane behave like the system of

hard ellipses, i.e. they undergo a 2D I–N phase transition with
increasing density (see Fig. 8). However this phase transition is
destabilized with decreasing the limiting angle (yc), which
corresponds to increasing cos yc. As the orientational window
is widened (decreasing yc), the prolate ellipsoids tend to mini-
mize their occupied area on the XY surface, which results in
less anisotropic in-plane ellipses and higher transition densi-
ties for all studied aspect ratios. In addition to this, the in-plane
order transforms continuously into the out-of-plane order, i.e.
S becomes positive with cos yc (see the inset of Fig. 8). Hence,
the 2D I–N transitions turn into N–BN transitions for confined
prolates which are lost for the free rotating case. The surface
coverage curves show very clearly that the occupied area on the
XY surface increases enormously upon decreasing the polar
angle restriction at the transition, i.e. the 2D I–N phase transi-
tion is destabilized with decreasing yc. The value of yc where the
orientational ordering transition is preempted by the positional
one (freezing transition) cannot be determined with the present
PL theory. Interestingly, MC simulation shows that the I–N
density is practically not affected by the value of limiting polar
angle, but the transition disappears at values of yc close to zero.

Fig. 7 Comparison of the transition densities of freely rotating hard
ellipses and confined hard oblates in the reduced density-aspect ratio plane.
The continuous (ellipsoids) and dashed (ellipses) curves are the results of PL
theory, while the open and filled diamond symbols correspond to MC
simulation results for hard ellipses and hard ellipsoids, respectively. The
inset shows the packing fractions of I–N and N–BN transitions as a function
of the aspect ratio.

Fig. 8 Monolayers of orientationally restricted hard ellipsoids: uniaxial
nematic–biaxial nematic (N–BN) transition density vs. cos yc. The upper
panel is for prolate shapes while the lower one for oblate shapes. Insets
show the cos yc dependence of the surface coverage and the out-of-plane
order parameter at the N–BN ordering transition. The curves are the
results of PL theory.

PCCP Paper

Pu
bl

is
he

d 
on

 2
1 

Ja
nu

ar
y 

20
16

. D
ow

nl
oa

de
d 

by
 U

ni
ve

rs
id

ad
 A

ut
on

om
a 

de
 M

ad
ri

d 
on

 2
1/

01
/2

01
6 

18
:4

4:
20

. 
View Article Online

http://dx.doi.org/10.1039/C5CP05702G


Phys. Chem. Chem. Phys. This journal is© the Owner Societies 2016

Note that the I–N transition density and surface coverage curves
move into the direction of lower densities with increasing shape
anisotropy because the occupied area of the ellipsoids becomes
larger with increasing k as sJ > s>. The case of oblate ellipsoids is
different because yc = p/2 corresponds to the freely rotating limit,
while yc = 0 is the hard disk limit. Starting from the freely rotating
case one can see that the I–N transition density shows a maximum
at an intermediate value of yc, which can be attributed to the
combined effect of decreasing in-plane shape anisotropy and the
increasing intersected area of the ellipsoids with decreasing yc.
The N–BN transition packing fraction behaves simply since it is
always an increasing function of cosyc, i.e. the nematic phase is
destabilized with stronger orientational restriction. This means
that the N–NB curve and the nematic-solid curves must cross each
other at a threshold value of cosyc making the biaxial nematic
order metastable and producing a plastic solid (an orientationally
disordered solid). This plastic solid would eventually turn into
an orientationally ordered solid at higher densities. Finally, the
S order parameter shows that the system undergoes a structural
change from the in-plane order into the out-of-plane order with
a narrowing orientational window.

Finally, it is interesting to compare the global phase diagram of
freely rotating ellipsoids with that of 2D hard ellipses,35 which are
shown together in Fig. 9. To build the global phase diagram, which
includes plastic and oriented solid phases too, we have followed the
procedure given in ref. 35. This involves determining the frequency-
density histograms, the compressibility from density fluctuations
and the appropriate global order parameters to detect the transi-
tions between differently ordered phases. These functions give, in
addition, some hints on the nature of the phase transitions. The
way a 2D solid melts into fluid involves a subtle continuous
transition to produce a hexatic phase first, which then undergoes
a first order transition to yield the fluid.57 All these happen in a
relatively small packing fraction window. The hexatic phase is

characterized by quasi-long-range bond orientational correlations
instead of the preserved long range bond orientational correlations
of the solid phase (the 2D solid phase does not preserve positional
correlations, though).58,59 Thus, a precise determination of the
hexatic boundaries requires long-scale computer simulations.57

This is out of the scope of this work and we are not including
the hexatic phase in Fig. 9. The hexatic phase is located somewhere
between the solid and the fluid phases where we are simply
reporting a solid–fluid coexistence. In this figure, one can see that
the phase diagram of freely rotating oblate ellipsoids is similar to
that of 2D ellipses when considering the effect of the out-of-plane
orientational freedom. This supports the idea that the 2D hard
ellipse system can be considered as a fairly good approximation of
the freely rotating ellipsoids, because the uniaxial nematic, biaxial
nematic and solid phases of oblates correspond to the isotropic,
nematic and solid phases of 2D ellipses. One can also see that the
prolate ellipsoids undergo a nematic–plastic solid phase transition
similar to the freezing of 2D hard disks, i.e. the observed uniaxial
nematic and plastic solid phases can be identified with the fluid
and solid phases of the hard disks. The reason why we are labeling
as ‘‘plastic’’ the prolate solid phase is that it shows uniaxial
orientational ordering only and the projections of the symmetry
axes on the plane are not aligned (resembling a 2D plastic phase).
However, the solid phase of oblates can be both uniaxially (plastic)
and biaxially oriented in the case of weak and strong shape
anisotropies, respectively. As a result, uniaxial nematic–oriented
solid, biaxial nematic–oriented solid, uniaxial nematic–plastic solid
and plastic solid–oriented solid phase transitions can be observed
by varying the aspect ratio of the ellipsoid. Practically, the out-of-
plane orientational freedom does not shift the I–N and plastic
solid–oriented solid phase boundaries of the 2D ellipses. However,
the fluid–solid transition of the disks and the nematic–oriented
solid transition of the ellipses can be affected strongly by the out-of-
plane orientational freedom as the packing fractions of the co-
existing phases drop with increasing shape anisotropy. This can be
seen more clearly on the prolate side of Fig. 9. The reason why the
freezing takes place at lower surface coverage is that the ellipsoids
can collide with their out-of-plane parts, too. For large anisotropies
the effective collision diameter of an ellipsoid is bigger than that of
the hard disk due to the presence of out-of-plane excluded volume
interactions. The difference between the two diameters increases
with making the prolate (oblate) ellipsoid more elongated (flat),
while the intersected area of the ellipsoid with the XY plane does
not change practically. Therefore, the increasing collision diameter
and the constant intersected area produce together lower 2D
packing fractions for both prolate and oblate shaped ellipsoids.
The out-of-plane collisions do not practically occur for quasi-
spherical ellipsoids explaining why the phase diagram of ellipsoids
is very similar to that of the 2D ellipse case and almost symmetric
around k = 1.

VI. Conclusions

We have examined the orientational ordering properties of
the monolayer of hard ellipsoids using the replica exchange

Fig. 9 Global phase diagram of freely rotating ellipsoids (diamond sym-
bols) and that of hard ellipses (dashed curves35) in the packing fraction-
aspect ratio plane. Labels N, BN, PS and OS denote uniaxial nematic, biaxial
nematic, plastic solid and oriented solid phases, respectively. The vertical
dashed line signals the spherical case and splits the chart into the oblate
(left) and prolate (right) regions. The dashed curves correspond to 2D hard
ellipses for ko1 and 2D hard disks for k41.
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Monte Carlo simulation method and the Parsons–Lee density
functional theory. We have found that both the shape aniso-
tropy and the orientational restriction affect substantially the
orientational order on the plane. The subtle interplay between
orientational and packing entropies results in different structures
and phase behaviors for prolate and oblate shaped ellipsoids.
The main driving force of the ordering behavior is to minimize
the intersected area between the particle and the surface to
achieve the close packing structure with increasing surface
density. The minimal intersected area is a disk for prolate, while
it is an ellipse for oblate ellipsoids. Highly packed structures can
be achieved with only out-of-plane (in-plane) ordering for prolate
(oblate) ellipsoids, i.e. prolate ellipsoids prefer to order along
the normal of the plane, while oblate ellipsoids like to order in
the plane.

The monolayer of prolate ellipsoids with very small out-of-
plane orientational freedom behaves almost identically to the
system of 2D hard ellipses, i.e. it forms 2D isotropic and nematic
phases. The gradual rise of the out-of-plane freedom, through
decreasing yc, allows the ellipsoid particle to lean out from the
plane and to decrease the intersected area with the confining
plane. This involves less anisotropic shape in the interactions
and destabilization of the biaxial nematic phase (2D nematic)
with respect to uniaxial nematic one (2D isotropic). At full
orientational freedom (0 o y o p) prolate ellipsoids do not
form an isotropic phase, but they are ordered along the normal
of the confining plane even at very low densities and behave
similarly to the 2D system of hard disks at higher densities. The
freezing transition of the freely rotating ellipsoids occurs at lower
surface coverage than that of hard disks due to the presence of
out of plane excluded volume interactions.

The monolayer of oblate ellipsoids without out-of-plane
freedom is identical to the 2D system of hard disks. The
gradually increasing freedom in the polar angle (y) allows the
oblate ellipsoid to decrease its intersected area with the con-
fining plane through leaning out from the plane. This makes
the ordering planar for the main symmetry axis of the ellipsoid.
However the anisotropic interactions between the tilted ellipsoids
give rise to an additional in-plane order, i.e. the phase is biaxial
nematic, which is due to the excluded area gain coming from the
in-plane ordering of elliptical intersections. In the freely rotating
case the oblate ellipsoids form a planar nematic phase at low
densities and a biaxial nematic one at high densities. Interest-
ingly, the I–N density of 2D ellipses is almost identical to that of
freely rotating ellipsoids confined to a plane. However, the out-of-
plane excluded volume interactions shift the freezing transitions
into the direction of lower surface coverage.

In summary the out-of-plane orientational freedom stabi-
lizes the in-plane nematic ordering in the monolayer of oblate
ellipsoids, while the opposite occurs in the monolayer of
prolate ellipsoids. This is congruent with the 2D ellipse and
2D disk phase diagrams, which are obtained as limiting cases
in this study. In our simple model we have neglected the effect
of out-of-plane positional freedom which we expect to have a
relatively small effect on the system behavior. On the other
hand, not including a soft wall–particle interaction may lead to

deviations from experimental set-ups where capillary phenom-
ena are frequently important. No doubt, the inclusion of this
interaction would substantially increase the computation burden
of the problem. We leave this issue for future studies.

Acknowledgements

SV acknowledges the financial support from the Hungarian
State and the European Union under the TAMOP-4.2.2.A-11/1/
KONV-2012-0071. Grant FIS2013-47350-C5-1-R from Ministerio
de Educación y Ciencia of Spain is also acknowledged.

References

1 S. Sacanna, D. J. Pine and G.-R. Yi, Soft Matter, 2013, 9, 8096.
2 W. Qi, J. de Graaf, F. Qiao, S. Marras, L. Manna and

M. Dijkstra, Nano Lett., 2012, 12, 5299.
3 K. J. Lee, J. Yoon and J. Lahann, Curr. Opin. Colloid Interface

Sci., 2011, 16, 195.
4 D. Florea and H. M. Wyss, J. Colloid Interface Sci., 2014,

416, 30.
5 N. F. Bouxsein, C. Leal, C. S. McAllister, K. K. Ewert, Y. Li,

C. E. Samuel and C. R. Safinya, J. Am. Chem. Soc., 2011,
133, 7585.

6 R. K. Pujala, N. Joshi and H. B. Bohidar, Colloid Polym. Sci.,
2015, 3651, DOI: 10.1007/s00396-015-3651-3.

7 T. E. Herod and R. S. Duran, Langmuir, 1998, 14, 6606.
8 F. Kim, S. Kwan, J. Akana and P. D. Yang, J. Am. Chem. Soc.,

2001, 123, 4360.
9 H. Razafindralambo, A. Richel, M. Paquot, L. Lins and

C. Blecker, J. Phys. Chem. B, 2012, 116, 3998.
10 G. B. Davies, T. Krüger, P. V. Coveney, J. Harting and

F. Bremse, Adv. Mater., 2014, 26, 6715.
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