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Role of nonlinearities and initial prepatterned surfaces in nanobead formation
by ion-beam bombardment of Au(001): Experiments and theory
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Au(001) surfaces that have been prepatterned into a rippled morphology develop one-dimensional nanodot
arrays (nanobeads) selectively along the ripples when bombarded with energetic ions at an angle that is normal to
the average surface orientation. By quantifying the shape and morphology of these arrays, we show experimentally
and by numerical simulations of an extended Kuramoto-Sivashinsky equation that the degree of one-dimensional
order of the nanobeads can be optimized by considering initial rippled surfaces with various wavelength and
roughness values. Our simulations employ physical units and use the experimental topographies as initial
conditions. Such nonideal shapes are key to elucidating the influence of nonlinear effects (like conformal interface
motion and local redeposition) since the early stages of the dynamics for these prepatterned systems. In spite of
the fact that the evolution of the surface morphology becomes far from trivial under these circumstances, our
continuum model is able to reproduce the experimental results quantitatively, in contrast to relevant alternative
models in the context of surface nanopatterning by ion-beam bombardment.
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I. INTRODUCTION

For the last few decades, ion-beam sputtering (IBS) has
proven to be a promising tool to fabricate highly ordered,
nanoscale patterns on the surfaces of diverse materials via
self-organization.1–3 Under oblique incidence of the ion beam,
for example, IBS fabricates periodic ripple patterns,4 while
under normal incidence it can generate hexagonal5,6 or square-
symmetric7,8 patterns of dots or holes.

Development of such ordered patterns has been explained
theoretically by a number of models. Bradley and Harper
(BH) proposed a linear evolution equation for the height of
the eroded target in which pattern formation by IBS results
from counteracting processes such as roughening due to
erosion by the ion beam and smoothening by diffusion of
thus-created adatoms and vacancies.9 This model reproduces
some features of the ripple pattern,2 although a number
of nonlinear continuum equations were later introduced to
improve upon its limitations.7,10–12 Moreover, the interplay
between sputtering and surface diffusion has been recently
challenged experimentally as the main physical mechanism
for pattern formation in targets such as semiconductors
that become amorphous under irradiation.13 Still, the BH
mechanism is expected to dominate for metallic targets in
the so-called erosive regime in which it is the ion beam, rather
than crystalline anisotropies in surface diffusion, that controls
the pattern formation process.1,2

Recently, multiple-ion-beam sputtering, in which two or
more beams are projected onto the target surface, has been
theoretically proposed to fabricate more sophisticated patterns
via superposition of those produced by each ion beam.14,15

Dual-ion-beam sputtering, the simultaneous projection of
two ion beams at a grazing angle, but perpendicular to
each other in azimuth, has been experimentally shown to
generate square-symmetric patterns of nanodots/holes.16 Also
sequential ion-beam sputtering (SIBS) has been reported,
in which the direction of an ion beam with respect to the

surface is changed sequentially. Two types of SIBS have
been examined; after forming an initial ripple pattern in one
direction by sputtering at an oblique angle, the rippled surface
is subsequently sputtered after changing the azimuthal angle
by 90◦,17–19 or normal to the surface.20 The patterns generated
experimentally by SIBS disprove theoretical predictions15

on the mere superposition of the patterns formed by each
beam, although the latter has been observed in Monte Carlo
simulations of discrete models of SIBS for an admittedly short
simulation time window.21

Most of the experimental SIBS patterns17–19 are similar to
those that can be produced by a single beam. However, SIBS
as in Ref. 20 does produce a novel nanostructure, such as a
nanobead pattern, that is a highly ordered one-dimensional
array of nanodots, formed along each initial ripple when these
are subject to irradiation at normal incidence.20 The nanobead
morphology thus demonstrates the capability of SIBS to
fabricate elaborate nanostructures via the sequential formation
of basic patterns, in a form of hierarchical self-assembly.22 This
complex pattern formation process is driven by the competition
of two length scales, namely, the wavelength of the initial ripple
and the nanobead size. In particular, it provides a touchstone
against which models of IBS nanopatterning can be examined.
The extended Kuramoto-Sivashinsky (eKS) model7,12 has
been found to reproduce most of the observed experimental
results, such as formation of the nanobead structure and its
preservation during SIBS, in contrast to other models, such as
the KS and BH equations.20 Hence, the additional nonlinear
effects present in the eKS model are found to be essential
in order to explain the evolution of nanobead morphologies
during SIBS.

In this work, we study experimentally and theoretically
how the shape of the initial ripple pattern affects the formation
and dynamics of the nanobead structure by IBS normal to
the initial rippled surface. While in Ref. 20 a single rippled
condition was explored, here we address the interplay between
the two relevant length scales by performing experiments on
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several different initial conditions. The degree of ordering, and
thus the quality, of the nanobead structure is seen to depend
on the properties of the initial surface. Nevertheless, for large
enough ion doses, the morphologies become similar, largely
independent of those features. An additional difference of the
present work with respect to Ref. 20 is to perform simulations
of the eKS model employing physical units and for a range
of different nonflat initial conditions. This enables successful
quantitative comparison with experiments and allows us to
develop a unified picture of the process that self-consistently
elucidates the observed temporal evolution of the nanobead
patterns.

II. EXPERIMENTS

All our ion-beam-sputtering experiments have been carried
out in a custom-built ultrahigh vacuum chamber with base
pressure of about 5 × 10−10 Torr. For the fabrication of the
initial ripple patterns, IBS was performed along the densely
packed [110] direction of the Au(001) targets at a polar
incidence angle of 72◦ with respect to the surface normal.
The ion energy ε and partial pressure of Ar+ PAr were 2 keV
and 1.2 × 10−4 Torr, respectively, generating an ion flux f �
0.3 ions nm−2 s−1. The largest ion fluence achieved, defined as
the ion flux multiplied by the total sputter time, was 4500 ions
nm−2. In order to vary the mean wavelength and roughness of
the initial ripple pattern, we sputtered substrates at different
temperatures (Table I), while keeping other conditions fixed.
For higher substrate temperatures, the mean wavelength of
the initial ripple pattern becomes larger. The temperature was
measured by a K-type thermocouple slightly away from the
sample and can be a little lower than the real one. In situ x-ray
photoelectron spectroscopy (XPS) of sputtered Au samples
reveals no traceable amount of contaminants, implying little
unintended deposition of impurities by sputtering (figures not
shown). The initial ripple patterns were then analyzed ex situ
by an atomic force microscope (AFM) in the contact mode.

Table I summarizes the features of the rippled surfaces
thus generated, such as the mean ripple wavelength λi

R and
the global surface roughness or surface width Wi . Here, the
superscript i refers to initial and the subscript R refers to
the ripple pattern. The roughness W (t) is defined as W (t) ≡√

〈[h(r,t) − h(t)]2〉, where h(t) is the mean height at time t

FIG. 1. (Color online) (top) Optimal nanobead patterns formed
by IBS normal to the initial rippled surfaces in Table I: (a) NB(a), (b)
NB(b), (c) NB(c), and (d) NB(d). The size of each image is 1 × 1
μm2. (bottom) Nanobead patterns obtained by numerical simulations
of Eq. (1) for corresponding experimental initial rippled surfaces.
For each image, the inset provides the corresponding height power
spectrum (squared modulus of the Fourier transform).

and 〈·〉 denotes the space average. The mean ripple wavelength
λR was estimated as the distance from the central ripple to
the neighboring one in the two-dimensional height-height
correlation function G(r,t), which is defined as G(r,t) ≡
〈h(ri,t)h(ri + r,t)〉. For each experimental condition NB(a),
NB(b), etc., values quoted in Table I for the various quantities
are average results over more than ten samples.

We subsequently sputtered each rippled surface at normal
incidence. Arrays of nanobeads self-organize along each initial
ripple. During this sputtering process, PAr , ε, and f were 1.2 ×
10−4 Torr, 2 keV, and 1.1875 ions nm−2 s−1, respectively,
corresponding to erosive conditions for IBS of Au.1,2,20 The
mean wavelength of the beads λB is extracted by measuring
the mean distance between adjacent beads on numerous line
profiles along the ripples. Since nanobead patterns are closely
packed along each ripple, λB can be considered the mean
nanobead diameter D. In order to estimate the mean length
of uninterrupted nanobeads arrays, denoted by �B , this was
extracted from line profiles along ripples until convergence
of the mean bead length is reached. In these symbols, the
subscript B refers to the bead pattern.

Figures 1(a)–1(d) show the optimal nanobead patterns
formed by IBS normal to the surfaces of the initial ripple pat-
terns described in Table I. The insets provide the corresponding

TABLE I. Features of initial rippled surfaces and optimal nanobead patterns after IBS normal to the former. Here,
λi

R and Wi are, respectively, the mean ripple wavelength and surface roughness of the initial ripple pattern; T is the
temperature during sputtering to fabricate initial ripple pattern, and D, σ , AB , and �B are the mean bead diameter,
the standard deviation of the distribution of nanobead diameters, the mean bead amplitude, and the mean length of
uninterrupted nanobead arrays along each ripple of the optimal nanobead pattern. Superscript i and subscript B refer
to initial ripple pattern and nanobead pattern, respectively.

Initial ripple pattern Optimal bead pattern

λi
R Wi T λB � D AB �B Time

(nm) (nm) (K) (nm) σ/D (nm) (μm) (min)

NB(a) 27 1.1 298 36.5 0.24 1.8 0.46 10
NB(b) 30 1.8 303 47.8 0.21 3.1 >0.95 25
NB(c) 47 2.7 313 47.9 0.18 2.8 >2.5 25
NB(d) 69 1.0 333 51.3 0.20 3.0 >0.8 25
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FIG. 2. (Color online) Histograms showing the distribution of the
bead diameter D in each nanobead pattern at the optimal time for the
(left) experimental and (right) numerical morphologies considered in
Fig. 1. Solid red lines are Gaussian fits from which we estimate the
standard deviations of the distributions σ , shown in Table I.

height power spectral densities (PSD; squared modulus of the
Fourier transform). For each case, the latter features a line of
maxima corresponding to a heterogeneous ripple structure and
two additional, more diffuse peaks at 90◦ corresponding to the
nanobead alignment along the perpendicular direction.

The optimal time when the optimal nanobead pattern forms
is determined by the maximal ordering parameter, which is
defined as the intensity of the first-order spot relative to
that of the zeroth-order spot in the height-height correlation
function of a nanobead pattern.20 The optimal nanobead
pattern concurrently shows minimal σ /D and maximal �B

values. Here, σ /D is the standard deviation σ of the bead
diameter D, normalized by the mean bead diameter D, while
σ is the standard deviation of the distribution of the bead
diameters, as displayed in Fig. 2. The mean bead amplitude
AB is estimated from the distribution of the bead heights. Both
distributions are obtained from numerous line profiles across
nanobeads.

From Fig. 1, we can see that IBS normal to the previously
rippled surface indeed leads to the production of nanobead
patterns, irrespective of the rippled initial condition. Irradiation
at normal incidence of a flat surface leads to formation of a
disordered array of dots under the present conditions [see,
e.g., Fig. 2(e) in Ref. 20]. For an initially rippled surface, the

undulations guide dot formation with the result that nanobead
patterns develop with a well-defined quasi-one-dimensional
order. Note, however, that the quality of the nanobead structure
at the corresponding optimal time does depend on the initial
condition: for instance, the nanobead pattern obtained from
the initial surface NB(a) shown in Fig. 1(a) has an inferior
quality: thus, the one-dimensional (1D) order of the nanobeads
is frequently interrupted by a high density of defects that
induce coalescence of neighboring ripples and make the
pattern look locally more similar to a quasi-two-dimensional
pattern of nanodots. As indicated in Table I, the mean length of
uninterrupted nanobead arrays �B is about 460 nm for NB(a),
while it is larger than 800 nm for the other bead patterns. Also,
σ /D is 0.24 for NB(a), which is noticeably larger than in the
other bead patterns, where it is around 0.2, so that individual
beads are more heterogeneous. For NB(a), the initial ripple size
estimated by the ripple wavelength (λi

R � 27 nm) or the global
roughness (Wi � 1.1 nm) is smaller than that of the other
ripple patterns. Hence, due to the relatively small size of the
ripples, the initial pattern NB(a) seems to be destroyed early
by IBS normal to the rippled surface and cannot constrain
the growth of individual nanobeads until the nanobead pattern
fully develops over the whole rippled surface. Furthermore, at
the optimal time, λB is still much smaller for the NB(a) case.
On the other hand, the nanobead patterns developed for initial
conditions with larger λi

R show better quasi-1D ordering, as
observed in Figs. 1(b)–1(d). Moreover, they show large �B

and small σ /D values, as summarized in Table I, supporting
the idea that the initial ripple guides the growth of nanodots
preferentially, with its initial wavelength value being critical
to an ordered growth of the nanobeads.

Simultaneous with the dynamical process of bead formation
and ordering, we can assess how the initial ripple morphology
evolves under irradiation. Thus, the time evolution of the
experimental λR and W are plotted in Fig. 3 (open symbols). As
noted here, λR and W converge approximately to λ∗

R � 50 nm
and W ∗ � 2.25 nm for all cases, except when the initial values
are very different from the final ones or NB(a). Notice that the
value of λ∗

R is quite close to those of the optimal λB � D

in Table I for conditions NB(b)–NB(d), the corresponding
optimal times being achieved when λB ≈ λ∗

R . This may explain
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FIG. 3. (Color online) Time evolution of (top) ripple wavelength
λR and (bottom) global roughness W for experiments (open symbols)
and numerical simulations of Eq. (1) (solid symbols) for the
conditions considered in Fig. 1. Lines are guides to the eye.
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why the beads formed for condition NB(a) (in which the initial
ripples are too narrow compared with the natural dot size D)
overgrow single ripples rapidly. This leads to a smaller optimal
time, later deterioration of 1D order, and worse convergence
to W ∗, even though λR becomes large and finally close to λ∗

R .
Generally speaking, and as seen in Fig. 3 (open symbols), it is
interesting to note that the values of the ripple wavelength and
roughness decrease with time for large initial value conditions.
Thus, in the case of NB(d) the wavelength decreases from
approximately 70 nm to a value close to λ∗

R , while for the
initial rippled surface NB(c) the roughness is reduced from
approximately 2.75 nm to W ∗.

III. THEORETICAL DESCRIPTION AND COMPARISON
WITH EXPERIMENTS

In order to understand the dynamics of nanobead pattern
formation, we consider the eKS equation.7,12 In contrast to
other continuum models, it has been shown to reproduce
experimental properties such as the ordering of the nanobead
pattern and its long-term preservation for the case of a single
initial condition.20 This evolution equation for the height field
h(r,t) of the irradiated target reads

∂h

∂t
= −ν∇2h − K∇4h + λ1(∇h)2 − λ2∇2(∇h)2 + η, (1)

where ν, K, λ1, and λ2 are positive coefficients depending
on phenomenological parameters and η is an uncorrelated
Gaussian noise modeling fluctuations in sputtering and surface
relaxation events, which has zero average and correlations
〈η(r,t)η(r′,t ′)〉 = Nδ(r − r′) δ(t − t ′). The first two terms in
Eq. (1) actually correspond to the classic BH model, in which
the one with coefficient ν implements the unstable geometrical
dependence of the local sputtering yield, while the one with
coefficient K accounts (to linear order) for stabilizing surface-
diffusion currents that can be induced both by temperature and
by the ion beam.12 To nonlinear order, the term with coefficient
λ1 in Eq. (1) is the so-called Kardar-Parisi-Zhang (KPZ)
nonlinearity, which reflects the fact that, at any given surface
point, erosion proceeds along the local normal direction, usu-
ally being responsible for amplitude saturation of the pattern
at long times.10 Up to this point, the equation determined
by the first three terms on the right-hand side of Eq. (1)
is the celebrated KS equation, which has played a relevant
role in the modeling of IBS systems.3 Finally, a distinctive
feature of the eKS model, that is, of the full Eq. (1), is the
conserved Kardar-Parisi-Zhang (cKPZ) term with coefficient
λ2, which describes local redeposition of sputtered material
and surface-confined transport.12 For N = 0, this equation
has been successfully applied to describe quantitatively IBS
of silicon surfaces.24,25 Our present case of metallic targets
under erosive irradiation conditions is consistent with the main
physical assumptions behind the derivation in Ref. 12, with
material transport reducing essentially to surface-confined
currents of adatom and advacancies.2

Given the nonlinear nature of the eKS system, we re-
sort to numerical simulations that follow a similar scheme
to Refs. 23–25. For N = 0 the behavior of the equation
is controlled by the single dimensionless parameter r =
νλ2/(Kλ1).23,26 In general, the KPZ nonlinearity with coeffi-

cient λ1 is responsible for amplitude saturation and pattern dis-
ordering at long times, while the cKPZ term favors dot coarsen-
ing and short-range order at short/intermediate times. The pre-
dominance of each nonlinearity depends on the dimensionless
parameter r . Actually, small values of r imply conditions in
which the effect of the cKPZ term is relatively secondary to that
of the KPZ term, so that the long-time behavior expected for a
flat initial condition is an array of dots with weak short-range
order.23,26 This is the case in the present system in which
the value of this parameter that provides a good quantitative
agreement with the experiments is of unit order.20 In our
case we will consider r = 0.85. An additional constraint that
allows us to determine the values of the equation coefficients
is the wavelength of the linearly most unstable mode, λ∗ =
2π (2K/ν)1/2 � 50 nm. Since the small noise amplitudes were
proven not to significantly alter the pattern structures, the phys-
ical time and height scales can be rescaled varying K/ν2 and
ν/λ1 as in Refs. 26 and 23 to heuristically obtain the parameter
values leading to our most complete quantitative comparison
with experimental data (see below and Figs. 1–3). These
are ν = 12 nm2 min−1, K = 379 nm4 min−1, λ1 = 4.88 nm
min−1, λ2 = 132 nm3 min−1, and N = 5 nm2 min−1/2. Note
that the present parameter choice is much more involved than
in previous studies for initially flat Si targets.24,25 This is due to
the availability of approximate analytical results relating fea-
tures of the solutions for flat initial conditions with equation pa-
rameters, as shown in Refs. 23 and 26, which do not apply in the
present case. Additionally, we have checked the robustness of
this parameter set, verifying that small changes in their values
do not modify substantially the results to be discussed below.

For a flat initial condition, at short times Eq. (1) leads
to the formation of a disordered array of dots due to a
morphological instability controlled by the linear terms. Thus,
sinusoidal perturbations of a flat profile with wavelengths
λ > λc = 2π (K/ν)1/2 � 35 nm are amplified with time, while
those with λ < λc are damped out. The specific perturbation
with λ = λ∗ grows at a maximum rate and provides the size
of the linear dot pattern. One might expect that the effective
coarsening of λR seen in experiments (Fig. 3, open symbols,
top panel) for rippled initial conditions with λi

R < λc might
be due to this linear filtering of small-wavelength components
of the surface morphology. Thus, it is interesting to elaborate
on this possibility in detail since analytical solutions become
available.

A. Linearized eKS equation

If one sets nonlinearities to zero in the eKS equation
(BH limit), the space Fourier modes hk(t) of the height
field behave independently of one another, as hk(t) = hk(t =
0) exp(ωkt) + ĥk(t), where ĥk(t) = ∫ t

0 eωk(t−τ ) ηk(τ ) dτ is the
solution for a flat initial condition and

ωk = νk2 − Kk4 (2)

is the so-called dispersion relation, which is a function of the
magnitude of the wave vector, k = |k|, only. Under conditions
for pattern formation in which ν,K > 0, there is a finite band
of (unstable) Fourier components whose amplitude grows
exponentially, which are those for which ωk > 0, namely,
k < kc = (ν/K)1/2. Using the relation λ = 2π/k between
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wave vector k and wavelength λ, the unstable wavelengths
verify λ > λc = 2π/kc � 35 nm for the chosen values of the
equation coefficients. Therefore, the surface amplitude will
evolve differently for surfaces that are initially prepared as
sinusoidal ripples with different wave vectors: ripples for
which the wavelength is smaller than λc will, in principle,
decay, while the amplitude of ripples with wavelength larger
than λc will increase, at least until nonlinear effects set it.
Among these unstable modes there is a unique value k = k∗
that corresponds to a maximum growth rate, i.e., for which ωk

takes on its maximum positive value. For flat initial conditions,
a disordered dot structure would develop, with a typical dot
size equal to λ∗ = 2π/k∗ = √

2λc � 50 nm. These features
can be appreciated in Fig. 4.

We employ the same symbol and color coding as in previous
figures. Namely, we use the open symbols joined with dashed
lines for a sinusoidal ripple condition that has the same mean
values of roughness and wavelength as the experimental initial
condition. When we perform numerical simulations using
experimental images as initial conditions, we employ solid
symbols and solid lines. We should note that the difference
between the initial values of the roughness and wavelength
in these simulations and those given in Table I is because the
latter are average values.

From Fig. 4 it is clear that for sinusoidal initial conditions
the amplitude, and therefore the roughness, decays at short
times provided λi

R < λc, as for conditions NB(a) and NB(b)
when λi

R = 27 and 30 nm, respectively. On the other hand,
the ripple amplitude is amplified if λi

R > λc, as for conditions
NB(c) and NB(d) when λi

R = 47 and 69 nm, respectively,
with the amplification rate being larger for values closer to λ∗.
For initial conditions NB(a) and NB(b), in the stable band of
modes, the increase of the roughness for sufficiently long times
may seem unexpected. In order to understand it, note that we
are considering an isotropic (BH) equation, which for a flat
initial condition is well known to lead to a disordered array
of dots (beads). Thus, simultaneous with the evolution of the
rippled initial condition, some contribution to dot formation
and dynamics is to be expected. This is substantiated by the
exact solution of the linearized eKS equation, which for the
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FIG. 4. (Color online) Time evolution of W (t) as obtained from
numerical simulations of the linearized eKS (BH) equation using
sinusoidal initial conditions (dashed lines and open symbols) or
experimental initial conditions (solid lines and solid symbols) as in
Table I. Lines are guides to the eye.

FIG. 5. Surface morphologies (top views) as predicted by the
linearized eKS (BH) equation using sinusoidal initial conditions for
cases (top) NB(a) and (bottom) NB(d) in Table I for times t = 0,6,
and 25 min from left to right. The size of each image is 1 × 1 μm2.

surface roughness readily leads to27

W 2(t) = W 2
flat(t) +

∫
e2ωkt 〈hk(t = 0)h−k(t = 0)〉 dk, (3)

where W 2
flat(t) = ∫

N (1 − e2ωkt )/(−2ωk) dk is the roughness
for a flat initial condition (where N is the noise amplitude) and
the integrals extend over all wave-vector values. For a purely
sinusoidal initial condition, only one value of k contributes to
the second term on the right-hand side of Eq. (3), and such
a contribution decays exponentially with time if the initial
condition is in the stable Fourier band. Thus, the increase
of W (t) seen in Fig. 4 for sinusoidal conditions NB(a) and
NB(b) can be attributed to the first term in Eq. (3). Namely,
the short-time dynamics wipes out the initial ripple efficiently,
and for longer times the evolution occurs as for a flat initial
condition: a disordered dot structure forms with dot size close
to λ∗, and the roughness increases. This behavior can be
appreciated in Fig. 5, in which we show the evolution of
the surface morphology using sinusoidal conditions for cases
NB(a) (top row) and NB(d) (bottom row) for times t = 0,6,
and 25 min from left to right.

The behavior we have just described is clear for condition
NB(a). However, for condition NB(d), the initial surface
mode is well into the unstable band, so that the initial
ripple amplitude increases very fast and noise contributions
[dominant, e.g., for the NB(a) condition at t = 25 min] have a
mild effect, reduced to a slight disordering of the ripple shapes.

The time evolution of the experimental initial conditions
which are not purely sinusoidal is more complex but can
still be rationalized with the help of this linear argument.
Any initial condition can be thought of as a superposition
of sinusoidal components. The early time dynamics works as
a low-pass filter in the sense that components with k > kc =
2π/λc are damped out, while long-wavelength components
are amplified. With solid lines and solid symbols in Fig. 4,
we show the evolution of the roughness for the linearized eKS
equation using as initial conditions experimental topographies
corresponding to the four conditions in Table I. For λi

R > λc,
the behavior of W (t) does not differ much from that obtained
for the corresponding sinusoidal initial condition (dashed lines
and open symbols), with larger differences being obtained for
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FIG. 6. Surface morphologies (top views) as predicted by the
linearized eKS (BH) equation using experimental initial conditions
for cases (top) NB(a) (upper row) and (bottom) NB(d) in Table I for
times t = 0,6, and 25 min from left to right. The size of each image
is 1 × 1 μm2.

cases in which λi
R < λc. The analysis of the topographies is

perhaps even more informative. We provide examples in Fig. 6
for conditions NB(a) and NB(d) in Table I. By inspecting
Fig. 6, we can see that, irrespective of the wavelength of the
initial condition, small wavelength components are damped
out during the evolution, leading to a morphology dominated
by a ripple structure with a wavelength that is comparable
to λ∗. Notice there is a faint formation of dots (“beads”)
along the directions of some of the initial ripples. However,
the roughness of these morphologies increases exponentially
fast, as shown in Fig. 4, and it does not show the convergence
seen in experiments to a similar value independently of the
initial conditions (see bottom panel in Fig. 3, open symbols).
The ripple wavelength does not evolve in a similar way to the
experimental one either (compare the top panel in Fig. 3, open
symbols, with Fig. 7). Indeed, while the decoupling of Fourier
modes hinders the linearized eKS equation from reproducing
ripple coarsening for purely sinusoidal initial conditions, an
effective coarsening due to the mentioned low-pass-filtering
effect can occur for initial conditions that are a superposition
of sine waves, as seen in Fig. 7. Note also that, for experimental
conditions NB(c) and NB(d) in which the initial surface has
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FIG. 7. (Color online) Time evolution of λR as obtained from
numerical simulations of the linearized eKS (BH) equation using
experimental initial conditions as in Table I. Lines are guides to the
eye.

little contribution from short-wavelength components, such a
low-pass-filtering process is essentially nonoperative because
there is no evolution of the ripple wavelength, as suggested by
the bottom row in Fig. 6. This contrasts the behavior of λR(t)
seen in experiments for such initial conditions, justifying the
need for nonlinear terms in the interface equation.

B. Full eKS equation

As we have just seen, the linearized eKS equation does
not lead to bead formation for any initial condition that is
a pure sine wave. Even taking as initial conditions for the
simulations the experimental rippled surfaces corresponding
to Table I, the surface roughness still does not show the
type of convergence observed in the experiments (see bottom
panel of Fig. 3, open symbols). Thus, nanobead formation
and alignment, concurrent with convergence of λR(t), need
take place through nonlinear effects, and one should consider
the full eKS equation to reproduce the experiments. In order to
understand the interplay of nonlinearities in Eq. (1), it is natural
to first consider the dynamics for patterned initial surfaces with
a purely sinusoidal shape. As seen in Fig. 8, a bead structure
does emerge at long times, whose ordering depends sensitively
upon the wavelength of the initial condition. Still, sinusoidal
initial conditions do not allow for quantitative agreement
between experiments and simulations. This is readily seen
when comparing the bottom panel of Fig. 3 (open symbols)
with Fig. 9, where we show the dynamics of W (t) (dashed
lines and open symbols) for sinusoidal initial ripples with the
same wavelength and average roughness as the experimental
conditions in Table I. In any case, by comparing Fig. 9 (full eKS
equation) with Fig. 4 (linearized eKS equation), the former
supports the importance of nonlinear effects even at small
times.

A more successful description is obtained when the initial
conditions are taken from the experimental topographies.
Thus, in contrast to the sinusoidal conditions, the evolution
of W (t) is now quite similar to that in experiments (compare
Fig. 9 with the bottom panel in Fig. 3, open symbols).
Movies of the full simulated surface dynamics are available in
the Supplemental Material28 for the four experimental initial
conditions, where the nontrivial interplay between the two

FIG. 8. Surface morphologies (top views) as predicted by the full
eKS equation using sinusoidal initial conditions for cases (top) NB(a)
and (bottom) NB(d) in Table I for times t = 0,6, and 25 min from
left to right. The size of each image is 1 × 1 μm2.
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FIG. 9. (Color online) Time evolution of W (t) from numerical
simulations of Eq. (1) using sinusoidal initial conditions (dashed
lines and open symbols) and experimental initial conditions (solid
lines and symbols) as in Table I. Lines are guides to the eye.

length scales, λR and the bead size λB , can be appreciated. The
final morphology reached in each case is compared in Fig. 1
(bottom row) with the corresponding experimental topography
at the optimal time (top row); agreement is noticeable,
including the behavior of the corresponding PSD functions.
As in the experiments, the simulated ripple wavelength curves
λR(t) converge to a value close to λ∗ (compare the top panel
in Fig. 3), while a bead structure sets in along the ripple
directions developing short-range order. Disorder in the bead
structure [see, for example, condition NB(a) for long times]
occurs for small λi

R , so individual ripples cannot constrain bead
overgrowth. In view of the compactness of the eKS equation as
a model for the present complex pattern formation process, we
believe the agreement with experiments is rather satisfactory;
additional features, such as the bead size distribution (see
Fig. 2), support this conclusion.

IV. SUMMARY AND CONCLUSIONS

In our nanobead pattern formation experiments, a dynam-
ical regime is reached in which the values of the global
roughness and the wavelength of the remaining undulations are
largely independent of those prior to bombardment. Specifi-
cally, the value for λR “selected” by the dynamics is close to the
size of the dots that would be produced on an initially flat sur-

face, keeping all other experimental conditions fixed. The ini-
tial ripples play the role of a template that guides dot alignment,
leading to arrays of nanobeads. The final 1D order worsens for
surfaces in which the initial ripple wavelength and roughness
differ significantly from the converged values. Note that the
hierarchical nanobead pattern does not require secondary
morphological transitions as in other pattern-forming systems
far from equilibrium.29 Its complex morphology arises, rather,
from the interplay between two basic structures, i.e., the initial
ripples and the dots produced at normal incidence. From a
practical point of view, the advantage is that both are controlled
by a single technique and a common set of physical parameters.

In order to elucidate the processes driving the dynamics
of the nanobead structure, we have performed simulations
of the eKS equation. Although more refined models can be
considered that are sensitive to, e.g., the specifics of surface
diffusion for metallic systems, the quantitative agreement of
Eq. (1) with the main features of the experimental patterns
is substantial. Physically, this fact stresses the relevance of
relaxation processes that preserve the amount of material, such
as surface-confined transport due to local redeposition. Tech-
nically, it reflects in the non-negligible effect of the conserved
KPZ term, even if the numerical value of λ2 is relatively small.
Note that the KS equation, which is obtained for λ2 = 0 in
Eq. (1), is known not to reproduce nanobead alignment.20

From a general point of view of modeling pattern dynamics
at surfaces, our simulations underscore the crucial role for
the evolution that is played by the spatial correlations that
exist in the initial morphology. For applications of the present
nanostructuring technique, one should take into account this
fact if interested in producing surface morphologies with
prescribed topographical properties. For instance, in our case
an initial rippled surface with a wavelength and roughness
that are similar to the final ones will accelerate nanobead
alignment, with maximal order and minimal defects in the
resulting structure.
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