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We study the transient synchronization dynamics of locally coupled phase oscillators moving on a one-
dimensional lattice. Analysis of spatial phase correlation shows that mobility speeds up relaxation of spatial
modes and leads to faster synchronization. We show that when mobility becomes sufficiently high, it does not
allow spatial modes to form and the population of oscillators behaves like a mean-field system. Estimating the
relaxation timescale of the longest spatial mode and comparing it with systems with long-range coupling, we
reveal how mobility effectively extends the interaction range.
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I. INTRODUCTION

The flow of information in systems of mobile agents is
relevant to diverse fields of science and technology [1–6]. A
fundamental question is how the mobility of agents affects the
dynamics of information spreading. The synchronization of
locally interacting, mobile oscillators provides an example to
address this question. Through the exchange of information,
a population of coupled oscillators can self-organize to
produce collective rhythms [7–9]. The flow of information
across the population depends on the coupling topology,
that is, how the oscillators are connected with each other
[10,11]. Since interactions often have a finite range [2,12,13],
coupling with local neighbors is common in natural systems
and in technological applications. In a variety of contexts,
locally coupled oscillators can move around and exchange
their neighbors [2,13,14]. For example, in robotics, moving
robots can generate organized collective motions via local
interactions with wireless sensors [2,14]. In somitogenesis in
vertebrate embryos, cells with genetic oscillators move around
in a tissue and interact with their local neighbors through
membrane proteins to synchronize their oscillations [13].

The synchronization of mobile coupled oscillators has
been studied using different theoretical approaches [2,14–29].
In technological applications, this problem has been for-
mulated as synchronization on a time varying network
[2,15,17,18,21,22,25,26,29]. In some of those studies, the
state of oscillators can influence their movement, leading to
the self-organization of complex structures among oscillators
[15,16,20,21]. In the other studies, the movement of oscillators
is independent from their state, allowing the effect of mobility
on synchronization to be examined. These latter studies have
revealed a significant impact of mobility on synchronization
by comparing the dynamics of mobile oscillators with that of
nonmobile ones.
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The mobility of locally coupled oscillators influences the
stability of the steady states of a system. A population of
locally coupled nonmobile oscillators tends to form travel-
ing waves, instead of synchronizing across the system in
one-dimensional systems with periodic boundary conditions
[24] and in two-dimensional systems [23]. The mobility
of oscillators promotes the realization of synchronization
as a steady state by destabilizing traveling waves in these
systems [23,24]. Furthermore, the mobility of oscillators can
stabilize the synchronized steady state in the presence of
noise [17–19,22,29].

It has been shown that mobility affects transient dynamics,
making the approach to synchronization faster [23,25–28].
Despite this progress, it is still unclear how the mobility of
oscillators influences the decay of spatial patterns observed
in the dynamics toward synchronization. In addition, since
mobility allows oscillators to interact with previously distant
neighbors, we could expect mobility to effectively extend
the interaction range of oscillators, but the relation between
mobility and such an effective range remains an open question.

In this paper, we study the transient dynamics of mobile
coupled oscillators on a one-dimensional lattice where mo-
bility does not change the steady states but rather affects
synchronization dynamics. By measuring a spatial phase cor-
relation, we reveal how the mobility of oscillators accelerates
the relaxation of spatial modes. Based on the characteristic
relaxation time of the longest spatial mode, we relate mobility
to an effective interaction range of oscillators. This effective
interaction range increases with the square root of mobility,
explaining a mechanism by which mobility enhances syn-
chronization.

II. MOBILE COUPLED PHASE OSCILLATORS

For simplicity, we consider a population of identical
oscillators arranged in a one-dimensional lattice of N sites
[Fig. 1(a)]. Each oscillator in the lattice is identified by the
index j (j = 0, . . . ,N − 1) and its position is denoted by
xj (xj = 0, . . . ,N − 1). We describe oscillator mobility as a
Poisson process, by letting them exchange locations with their
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FIG. 1. (Color online) Mobile oscillators on a one-dimensional
lattice. (a) Bars indicate a coupling range r = 2 for oscillators in the
bulk and at a boundary. (b) During a small time interval !t , each
oscillator exchanges its position with one of its adjacent neighbors
with probability λ!t .

nearest neighbors at random times [23,28], and implement it
using the Gillespie algorithm [30] [Fig. 1(b)]. Each oscillator
performs a random walk on the lattice at a rate λ.

These mobile oscillators can interact with their local
neighbors within a coupling range r [Fig. 1(a)]. We use a
locally coupled phase oscillator model [31], described in a
rotating reference frame:

dφj (t)
dt

= κ

nj

∑

|xj ′−xj |!r

sin[φj ′(t) − φj (t)], (1)

where φj (t) is the phase of oscillator j at time t , κ is the
coupling strength between oscillators, nj is the number of
oscillators with which oscillator j interacts, and the sum is
carried over all oscillators within the coupling range r . Note
that each oscillator can interact with oscillators within the
range 2r , but it exchanges its position only with one of its
nearest neighbors.

The model includes two independent timescales, one for the
phase dynamics represented by 1/κ and another for the mobil-
ity, 1/λ. The ratio λ/κ measures how high mobility is relative
to the phase dynamics. In the following, we fix κ = 1 without
loss of generality. The initial phase of each oscillator is chosen
randomly from a uniform distribution between 0 and 2π .

We adopt a boundary condition where oscillators in the left
and right ends of the lattice interact only with their right and
left neighbors, respectively [Fig. 1(a)]. Similarly, an oscillator
in an end of the chain can exchange its position only with its
single neighboring oscillator. Our numerical simulations show
that in finite systems of identical oscillators, phase differences
always vanish after a transient regardless of their initial
phases and parameters. We refer to the steady state where all
phase differences are zero as complete synchronization. The
boundary condition we adopt here makes analyzing transient
behavior toward synchronization simpler than the periodic
boundary condition, which allows spatial patterns to coexist
with complete synchronization as stable steady states [24].

III. SPATIAL PHASE CORRELATION

We first consider the case of nearest-neighbor coupling,
r = 1. Figure 2(a) shows the snapshots of a spatial phase
profile for nonmobile oscillators (λ/κ = 0) at different time
points. First, the nearest-neighbor coupling for each oscillator
balances phase differences between its left and right neighbors.
As a result, these nonmobile oscillators tend to form a winding,
snaky spatial phase profile comprising several spatial modes
with different wavelengths. However, oscillators gradually re-
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FIG. 2. (Color online) Snapshots of spatial phase profiles.
(a) λ/κ = 0, (b) λ/κ = 10, and (c) λ/κ = 104. Each dot represents
an oscillator. In all panels, κ = 1, r = 1, and N = 100.

lax these spatial modes, and in finite systems eventually reach
complete synchronization. Thus, there are two timescales for
nonmobile oscillators during the achievement of complete
synchronization, one for them to form a snaky pattern and the
other to relax it. Note that it takes a very long time for these
oscillators to relax the snaky pattern and to reach complete
synchronization.

The transient synchronization dynamics of mobile oscil-
lators is quite different. Figure 2(b) shows the snapshots of
a spatial phase profile for oscillators with mobility λ/κ =
10. These oscillators still form a snaky phase pattern from
random initial phases, but the pattern is dominated by longer
wavelength modes, even at its first appearance. This is because
the exchange of neighbors does not allow the nearest-neighbor
coupling for each oscillator to balance phase differences with
its two neighbors but forces it to synchronize phases of
nearby oscillators instead. When mobility is further increased
to λ/κ = 104, the movement of oscillators precludes the
formation of a snaky phase profile by completely breaking
local phase order [Fig. 2(c)]. Due to the very short interaction
times, each oscillator cannot synchronize its phase with
neighbors before moving again. However, all oscillators seem
to be attracted to the mean phase of the population, speeding
up complete synchronization [Fig. 2(c)].

To characterize the transient dynamics described above, we
introduce a correlation between two lattice sites:

ρ(d,t) = 〈cos[ϑk+d (t) − ϑk(t)]〉k, (2)

where ϑk(t) is the phase value at site k at time t , d is the distance
between two sites (d = 1, . . . ,N − 1), and 〈. . .〉k represents
the average over different k (k = 0, . . . ,N − 1 − d). If two
sites at distance d have similar phases on average, then ρ ∼ 1.
In contrast, if they have opposite phases on average, ρ ∼ −1.
If there is no correlation at this distance, ρ ≈ 0. We calculate
an average of ρ(d,t) over 200 different realizations of initial
conditions and movement of oscillators.

Figure 3(a) shows the time evolution of the correlation
ρ(d) for nonmobile oscillators. Correlations start increasing
sequentially, from shorter to longer ranges. This captures the
fact that nonmobile oscillators first form local phase order
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FIG. 3. (Color online) Time evolution of the correlations ρ

defined by Eq. (2), (a)–(c), and 1 − ρ, (d)–(f). λ/κ = 0 in (a) and (d),
λ/κ = 10 in (b) and (e), λ/κ = 104 in (c) and (f). Lines of different
colors represent correlations for different distances d , as indicated
in the figure. In all panels, κ = 1, r = 1, and N = 100; from left to
right, the lines are ρ(1), ρ(5), ρ(20), ρ(40), and ρ(99).

structures, which are visible as a snaky spatial phase profile,
and then gradually approach global phase order by relaxing
spatial modes [Fig. 2(a)]. Relaxation of the snaky pattern
is best observed in the behavior of 1 − ρ(d) [Fig. 3(d)].
After a transient, only the longest spatial mode survives,
and correlations show an exponential relaxation described
by 1 − ρ(d) ∝ e−t/Tc . In this regime we can estimate a
characteristic time Tc by fitting this exponential function to
the data obtained by numerical simulations. Note that Tc

does not depend on d, but for a longer-range correlation the
exponential decay occurs much later than for a shorter-range
correlation. The phase profile can encompass phase differences
larger than 2π [24]. As this difference becomes smaller, the
longest-range correlation oscillates. However, the average of
the correlation over different initial conditions cancels out this
oscillatory behavior, making the start of the exponential decay
in 1 − ρ(N − 1) a signature of the phase differences between
the most distant sites having become smaller than π .

For mobile oscillators with nearest-neighbor coupling,
the growth of the shortest-range correlation ρ(1) is delayed
[Fig. 3(b)]. Correlations ρ(1) and ρ(5) start to increase at
roughly the same time, indicating that oscillators within
this range effectively interact with each other. Growth of
the longest-range correlation ρ(N − 1) occurs much earlier
than for nonmobile oscillators [Figs. 3(b) and 3(e)]. Mobile
oscillators also relax the longest spatial mode much faster
than nonmobile oscillators, as indicated by a smaller Tc

[Fig. 3(e)]. Thus, the mobility of oscillators accelerates the
relaxation of snaky phase patterns and the approach to
complete synchronization. For even higher mobility, growth of
correlations occurs simultaneously for all correlation lengths
[Fig. 3(c)]. This indicates the absence of any spatial structure
and suggests that the population of oscillators approaches
complete synchronization as if each oscillator interacted with
all the others. The system exhibits an exponential decay with
Tc ≈ 0.5 [Fig. 3(f)], which coincides with the characteristic
time of a mean-field system, Tcm ≈ 1/2 for κ = 1. High
mobility allows each oscillator to meet and interact with all
the others in a sufficiently short time and, as a result, these
oscillators behave like a mean-field system.

IV. CHARACTERISTIC RELAXATION TIME

To understand how mobility changes the behavior of the
system, we examine the dependence of the characteristic
time Tc on λ/κ for different system sizes [Fig. 4(a)]. Mobility
affects the characteristic time only in an intermediate range:
for very low and very high mobility, Tc is independent of
λ/κ . For very high mobility, Tc ≈ 0.5, indicating that the
oscillators behave as a mean-field system. For low mobility,
Tc depends strongly on system size. By considering the
decay of the longest spatial mode in the linearized Eq. (1),
we find that Tc ≈ N2/π2κ for nonmobile oscillators with
nearest-neighbor coupling. Therefore, we can scale the data by
introducing T̃c = Tc/(N2/π2κ) [Fig. 4(b)]. Within the range
between λ/κ = 1 and the onset of mean-field behavior, the
characteristic time T̃c follows (λ/κ)−1, suggesting that

Tc ≈ N2

π2κ

1
1 + λ/κ

. (3)

This expression matches precisely the scaled numerical results
[Fig. 4(b)].

To derive Eq. (3) analytically, we examine how a single
exchange of locations between two oscillators affects the
relaxation process of the longest spatial mode. The derivation
relies on the assumption that the number of oscillators N is
large. We consider a situation in which the coupling range r
of each oscillator is small enough such that the longest spatial
mode can be approximated by a sinusoidal function [Fig. 5(a)].
We describe the time evolution of the phase at each lattice site
in a rotating reference frame:

dϑk(t)
dt

= κ

nk

∑

|k′−k|!r

sin[ϑk′(t) − ϑk(t)], (4)

where ϑk is the phase value at site k and nk is the number of
neighboring sites coupled with the site k (k = 0,1, . . . ,N − 1).
Note that we do not describe single oscillators; instead,
we consider the time evolution of the phase at each lattice
site. We introduce a small perturbation ϕk(t) around the
completely synchronized state ϑ0, ϑk(t) = ϑ0 + ϕk(t), and
linearize Eq. (4):

dϕk(t)
dt

= κ

nk

∑

|k′−k|!r

[ϕk′(t) − ϕk(t)]. (5)

FIG. 4. (Color online) Onset of nonlocal and mean-field behavior.
(a) Dependence of the characteristic time Tc on λ/κ for different
system sizes. (b) Dependence of the scaled characteristic time T̃c

on λ/κ . The solid line indicates Eq. (3). The dashed line indicates
T̃c = 1. (c) Dependence of Tc on the scaled moving rate (λ/κ)/N2.
In (a) and (c), the dashed line indicates Tc = 1/2. In all panels, κ = 1
and r = 1.
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Because Eq. (5) is a system of linear ordinary differen-
tial equations, we can write its general solution (ϕ(t) =
[ϕ0(t),ϕ1(t), . . . ,ϕN−1(t)]T between two successive exchange
events as:

(ϕ(t) = eσ0tε0(v0 + eσ1tε1(v1 + · · · + eσN−1tεN−1(vN−1, (6)

where εi are small constants determined by the initial condi-
tion, σi is the eigenvalue of the linearized matrix corresponding
to Eq. (5), and (vi = [v0i ,v1i , . . . ,vN−1i]T is the eigenvector as-
sociated to the eigenvalue σi (i = 0,1, . . . ,N − 1). We choose
orthonormal eigenvectors, such that their scalar products are
(vi · (vj = δij . Since the synchronized state ϑ0 is always stable,
we can sort the eigenvalues as σN−1 < σN−2 < · · · < σ1 <
σ0 = 0. The eigenvector (v0 =

√
1/N [1,1, . . . ,1]T is the spa-

tially uniform mode. The eigenvector (v1 represents the longest
spatial mode with components vk1 ≈

√
2/N cos(πk/N). Its

characteristic relaxation time |σ1|−1 is the slowest among
all nonuniform modes [Fig. 3]. Note that σi and (vi in
Eq. (6) are the same as those in a corresponding system
of nonmobile oscillators. Therefore, by substituting (ϕ(t) =
eσ1tε1(v1 in Eq. (5), we obtain

σ1 ≈ −π2κ(r + 1)(2r + 1)
12N2

. (7)

Below, we approximate the effect of exchange events by
introducing time-dependent coefficients εi(t) in Eq. (6). We
derive an expression for the time evolution of ε1(t) to obtain
an effective characteristic timescale for the relaxation of the
longest spatial mode.

Suppose that by the time t0 shorter spatial modes have
disappeared almost completely, and the solution Eq. (6) can be
approximated by the longest spatial mode (v1 alone [Fig. 5(a)].
Let (ϕ0 ≡ (ϕ(t0) be this solution at t = t0. We can determine εi

in Eq. (6) by solving

(ε(t0) = V(t0)−1 (ϕ0, (8)

where (ε(t0) = [ε0(t0),ε1(t0), . . . ,εN−1(t0)]T and V(t0) =
[eσ0t0 (v0,eσ1t0 (v1, . . . ,eσN−1t0 (vN−1]. |εi(t0)/ε1(t0)| + 1 for i =
2,3, . . . ,N − 1 because (ϕ0 is well approximated by the longest
spatial mode.

t0 t0+τ1

ϕ ϕ

k k
ϕ(t0) ϕe(t0+τ1)

t
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FIG. 5. (Color online) Effect of a single exchange event on the
longest spatial mode. (a) Shape of the longest spatial mode and a
small defect caused by an exchange event between two neighboring
oscillators at time t = t0 + τ1. Each dot indicates an oscillator. See
text for symbols. (b) Dependence of 1 − 〈c11〉x on system size N

for different coupling ranges r . Symbols indicate the results obtained
from a numerical calculation where we first compute c11(x) for each
x and then compute its spatial average 〈c11〉x . The broken line is
π 2/N 3, as in Eq. (17).

Suppose that at the time t1 = t0 + τ1, the first exchange
event after t0 happens between a pair of oscillators in sites k =
x1 and k + 1 = x1 + 1 in the system (x1 = 0,1, . . . ,N − 2)
[Fig. 5(a)]. Just before the exchange event, the solution of
Eq. (5) can be written as

(ϕ(t1) = eσ0t1ε0(t0)(v0 + eσ1t1ε1(t0)(v1 + · · ·
+ eσN−1t1εN−1(t0)(vN−1. (9)

The exchange event introduces a defect in the solution
described by Eq. (9). The phase values (ϕe(t1) at each lattice
site immediately after the exchange event are obtained by ex-
changing the x1 component of (ϕ(t1) with its x1 + 1 component:

(ϕe(t1) = eσ0t1ε0(t0)(u0 + eσ1t1ε1(t0)(u1 + · · ·
+ eσN−1t1εN−1(t0)(uN−1, (10)

where (ui = [v0i , . . . ,vx1−1i ,vx1+1i ,vx1i , . . . ,vN−1i]T. At the
time t1, the solution jumps from (ϕ(t1) given by Eq. (9) to
(ϕe(t1) given by Eq. (10).

We write the vectors (ui in Eq. (10) as linear combinations
of the orthonormal base (vi , (ui = -N−1

j=0 cji(x1)(vj , where cji(x1)
are coefficients that depend on the location of exchange
x1. Since (ui is a small perturbation to (vi , we argue that
cii(x1) ∼ O(1) and cji(x1) ∼ O(γ ), where i ,= j and γ + 1.
By substituting this expression into Eq. (10), we obtain

(ϕe(t1) = eσ0t1ε0(t1)(v0 + eσ1t1ε1(t1)(v1 + · · ·
+ eσN−1t1εN−1(t1)(vN−1, (11)

where we have introduced rescaled coefficients:

εi(t1) ≡ εi(t0)
N−1∑

j=0

cij (x1)e(σj −σi )t1εj (t0)/εi(t0). (12)

If we compare Eq. (11) with Eq. (9), we see that we describe
the effect of the exchange event as a time-dependent coefficient
for each eigenmode.

Next, we will approximate these time-dependent coeffi-
cients to find the effective characteristic relaxation time of the
longest spatial mode in the presence of exchange events. From
Eq. (12), the coefficient for the longest spatial mode is

ε1(t1) ≡ ε1(t0)
{
c11(x1) + eσ2t1ε2(t0)

eσ1t1ε1(t0)
c12(x1) + · · ·

+ eσN−1t1εN−1(t0)
eσ1t1ε1(t0)

c1N−1(x1)
}

. (13)

If a system is dominated by the longest spatial mode,
|eσi t1εi(t0)/eσ1t1ε1(t0)| < 1 for i = 2,3, . . . ,N − 1. Because
c1i ∼ O(γ ) for i = 2,3, . . . ,N − 1, we can write Eq. (13) as

ε1(t1) = ε1(t0){c11(x1) + O(γ )}. (14)

Since the eigenvectors form an orthonormal base, c11(x1) =
(v1 · (u1.

If exchange events occur subsequently at t2 = t1 + τ2,
t3 = t2 + τ3,. . ., tm = tm−1 + τm in a system dominated by the
longest spatial mode, the time-dependent coefficient of the
longest spatial mode will be given by

ε1(tm) = ε1(t0)






m∏

q=1

c11(xq) + O(γ )




 . (15)
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Hence, we approximate ε1(tm) by the leading order term:

ε1(tm) ≈ ε1(t0)
m∏

q=1

c11(xq). (16)

Assuming that over long timescales exchange events will occur
at different locations, sampling evenly c11(x), we approximate
the c11(xq) in Eq. (16) by the spatial average of c11(x):

〈c11〉x =
N−2∑

x=0

c11(x)/(N − 1) ≈ 1 − π2/N3, (17)

for N - 1 [Fig. 5(b)]. The time-dependent coefficient in
Eq. (16) can then be approximated by

ε1(tm) ≈ ε1(t0)(1 − π2/N3)m. (18)

Subsequently, we transform the second factor of the right-
hand side of Eq. (18) using the relation (1 − π2/N3)m =
exp[m ln(1 − π2/N3)]. Since π2/N3 + 1, we expand the log-
arithm as exp[m ln(1 − π2/N3)] ≈ exp[−π2m/N3]. Because
the average waiting time between two successive exchange
events is

∑m
j=1 τj /m = (tm − t0)/m ≈ (λN/2)−1, the number

of exchange events m within the time interval tm − t0 can be
approximated as m ≈ λN (tm − t0)/2. Therefore,

ε1(t) ≈ exp
[
− π2λ

2N2
(t − t0)

]
ε1(t0). (19)

Since the system is dominated by the longest spatial mode, we
approximate the solution of Eq. (5) under exchange events as

(ϕ(t) ≈ eσ0tε0(t)(v0 + eσ1tε1(t)(v1. (20)

In this approximate expression for the relaxation of the longest
spatial mode, the effect of mobility is described by the time-
dependent coefficient ε1(t) and results in an effective relaxation
time. By substituting Eq. (19) into Eq. (20), we obtain

(ϕ(t) ≈ eσ0tε0(t)(v0 + e(σ1− π2λ

2N2 )tηε1(t0)(v1, (21)

where η = exp(π2λt0/2N2). The characteristic time Tc of the
correlation ρ defined by Eq. (2) can be expressed as

Tc = 1/(2|σ1| + π2λ/N2). (22)

The factor of 1/2 in this expression for Tc comes from the
expansion of the cosine in the definition of the correlation; see
Eq. (2). By substituting Eq. (7) for |σ1|, we obtain

Tc = N2

π2κ

1
f (r) + λ/κ

, (23)

where

f (r) = (r + 1)(2r + 1)/6. (24)

Setting r = 1 in Eq. (23) gives Eq. (3). This expression
matches precisely the numerical results as long as the ratio λ/κ
is smaller than at the onset of mean-field behavior [Fig. 4(b)].

V. ONSET OF NONLOCAL AND MEAN-FIELD BEHAVIOR

Equation (3) indicates that mobility starts to affect the
dynamics at λ/κ ∼ 1, and this onset of nonlocal behavior
does not depend on the system size N [Fig. 4(b)]. This is
because in order to disturb the local patterns, oscillators have

to move before the coupling restores the balance between
neighbors. We can also use this expression to determine the
onset of mean-field behavior. Since the characteristic time for
a mean-field system is Tcm ≈ 1/2κ , Eq. (3) suggests that this
onset occurs for

λ/κ ≈ 2N2/π2, (25)

as long as N - 1. By introducing a scaled moving rate
(λ/κ)/N2, the onset of mean-field behavior for different
system sizes collapses at around 2/π2 [Fig. 4(c)], as expected
from Eq. (25). Equation (25) shows that mean-field behavior
is observed for (N2/λ)/(1/κ) < π2/2. Since each oscillator
performs a random walk in the lattice, the average time for an
oscillator to go across the system from one end to the other
is N2/λ. When this timescale becomes similar to that of the
phase dynamics 1/κ , each oscillator can meet and interact with
all others before their phases change significantly. As a result,
on long timescales each oscillator behaves as if coupled to a
mean field.

The onset of mean-field behavior seems to occur abruptly at
the value of λ/κ predicted by Eq. (25) [Fig. 4(c)], suggesting
that there might be a dynamic phase transition. The longest
spatial mode is expected to lose stability at this point, and the
system approaches complete synchronization without having
any characteristic length scales, as in the mean-field regime.
Clarifying what kind of transition occurs at the onset of mean-
field behavior is an open question that we leave for future
work.

VI. EFFECTIVE COUPLING RANGE

As mobility bridges from local to mean-field type behavior,
it seems to increase the effective coupling range of the
oscillators until it spans the whole system. To introduce a
mobility-dependent effective coupling range, we compare the
characteristic time Tc in systems of mobile oscillators with
that of nonmobile oscillators with a coupling range r . Using
Eq. (7) we obtain for nonmobile oscillators:

Tc ≈ 1
2|σ1|

≈ 6N2

π2κ(r + 1)(2r + 1)
. (26)

Equation (26) gives a good approximation of Tc for nonmobile
oscillators when r/N + 1, and it deviates from numerical
results as r increases [Fig. 6(a)]. Equating Eqs. (3) and (26),
an effective coupling range of mobile oscillators re can be
defined as

re =
−3 +

√
49 + 48λ/κ

4
. (27)

Equation (27) is valid in the regime where the longest spatial
mode keeps its sinusoidal shape, that is for (λ/κ)/N2 + 1.
When λ/κ - 1, r2

e ∝ λ/κ , which can be interpreted as the
mean square displacement of an oscillator during the time
interval 1/κ with a diffusion coefficient λ [Fig. 6(b)]. Thus,
the mobility of oscillators effectively extends the coupling
range.
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FIG. 6. (Color online) Effective coupling range induced by
mobility. (a) Dependence of the characteristic time Tc on the coupling
range r for nonmobile oscillators in systems of different sizes N .
Symbols correspond to numerical simulations, lines indicate the
approximation given by Eq. (26). Parameters: κ = 1 and λ/κ = 0.
(b) Dependence of the effective coupling range re given by Eq. (27)
on λ/κ . r = 1. The dotted line represents re =

√
48/4 ×

√
λ/κ .

VII. LONG-RANGE COUPLING

In this section, we study the onset of nonlocal and mean-
field behavior in a system of mobile oscillators with an
arbitrary coupling range r , extending the case r = 1 discussed
above. Equation (23) provides a good approximation of the
characteristic time Tc as compared to its numerical estimation
[Fig. 7(a)] and indicates that the effect of mobility becomes
apparent when

λ/κ > f (r). (28)

If r - 1 while r/N + 1, this condition can be approximated
as

λ/κ > r2/3. (29)

Equation (29) can be transformed into (r2/λ)/(1/κ) < 3,
indicating that the mobility of oscillators can affect synchro-
nization dynamics when the timescale for each oscillator to
explore the coupling range r is comparable to that of the phase
dynamics [Fig. 7(a)].
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FIG. 7. (Color online) Onset of nonlocal behavior for mobile
oscillators with coupling ranges r and their effective coupling range
re. (a) Dependence of Tc on λ/κ for different coupling ranges r .
Symbols indicate Tc obtained by numerical simulations of Eq. (1),
while each colored line indicates Eq. (23) for corresponding r of the
same color. The horizontal dotted line indicates Tc = 1/2. κ = 1 and
N = 100. (b) Dependence of the effective coupling range re given
by Eq. (31) on λ/κ . The dotted line represents re =

√
48/4 ×

√
λ/κ .

From top to bottom, the solid lines are r = 20,10,5,2,1.

The onset of mean-field behavior occurs when Tc ≈ Tcm =
1/2κ . Substituting this condition in Eq. (23), we obtain

λ

κ
= 2N2

π2
− f (r). (30)

As long as coupling range is small, r/N + 1, we can neglect
f (r) in Eq. (30). Thus, in contrast to the onset of nonlocal
behavior, the onset of mean-field behavior through mobility
does not depend on the coupling range r; see also Fig. 7(a).
For large r/N , our estimate of Tc is no longer accurate.

Finally, an effective coupling range for mobile oscillators
with coupling range r can be defined from Eqs. (23) and (26)
as

re = −3 +
√

1 + 8(r + 1)(2r + 1) + 48λ/κ

4
. (31)

For small λ/κ , the oscillators stay within the coupling range
r in the timescale of phase dynamics 1/κ . In this regime,
mobility has no impact and the effective coupling range re stays
constant or very close to the actual coupling range r [Fig. 7(b)].
In the asymptotic regime of large mobility λ/κ - r2, the
effective coupling range scales as re ∝

√
λ/κ [Fig. 7(b)].

A crossover occurs at an intermediate mobility and can be
estimated as the point where the lines defined by these two
regimes cross. Thus, the value of mobility that marks the onset
of nonlocal behavior scales as λ/κ ∼ r2. Beyond this value
of mobility, the random walk takes the oscillators further than
their actual coupling range in the timescale relevant to phase
dynamics, effectively resulting in an extension of the coupling
range.

VIII. DISCUSSION

In this work we have considered mobile coupled oscillators
as an example to understand how the mobility of agents affects
their collective dynamics. We have presented a framework to
relate mobility to an effective interaction range by comparing
the dynamics of mobile agents with that of nonmobile agents
with a longer interaction range. Because some of our key
results are derived in a linear regime, Eqs. (23) and (31), we
expect that they will also apply to systems where the linearized
equations are the same as those of phase oscillators, such as
in models for consensus formation [2]. We have modeled the
movement of oscillators as a random walk on the lattice and
found that its characteristics appear in the onset of mean-field
behavior, Eq. (25), and the expression of the effective coupling
range, Eq. (27). Corresponding results for different types of
movement will reveal how an effective interaction range of
oscillators can be connected to movement in general. Testing
the generality of the approach we described in this paper would
be an interesting subject for future work.

Here we considered identical oscillators on a one-
dimensional lattice for simplicity. In systems of nonidentical
oscillators there is a critical coupling strength for synchroniza-
tion. One may ask whether and how mobility changes its value
and the character of the synchronization transition in such
systems. In two dimensions, patterns with stable defects, such
as vortices, coexist as a steady state with the synchronized
solution [32,33]. It will be interesting to study the effect of
mobility on the stability of these patterns.
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These theoretical findings could be tested, for example,
using coupled chemical oscillators, which have been recently
realized with chemically loaded microscopic beads [34,35].
While patterns have been observed when the beads are
nonmobile and fixed on a plate [34], stirred beads have been
shown to synchronize in three dimensions [35]. Since stirring
rate in theses experiments controls the mobility of chemical
oscillators, this system could be used to study how mobility
affects synchronization dynamics.

Physical, chemical, biological, and social systems include
mobility of agents to a greater or lesser extent. Our current
study shows that mobility of agents changes qualitatively
the dynamics of information spreading across spatially dis-
tributed systems, by effectively extending the range of local
interactions. Therefore, addressing the effects of mobility

is key to understanding collective dynamics in distributed
systems.
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