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We derive, from the dimensional-crossover criterion, a fundamental-measure density functional for parallel
hard curved rectangles moving on a cylindrical surface. We derive it from the density functional of circular arcs
of length σ with centers of mass located on an external circumference of radius R0. The latter functional in
turn is obtained from the corresponding two-dimensional functional for a fluid of hard disks of radius R on a
flat surface with centers of mass confined onto a circumference of radius R0. Thus the curved length of closest
approach between the two centers of mass of hard disks on this circumference is σ = 2R0 sin−1(R/R0), the
length of the circular arcs. From the density functional of circular arcs, and by applying a dimensional expansion
procedure to the spatial dimension orthogonal to the plane of the circumference, we finally obtain the density
functional of curved rectangles of edge lengths σ and L. Along with the derivation, we show that, when the
centers of mass of the disks are confined to the exterior circumference of a circle of radius R0, (i) for R0 > R,
the exact Percus one-dimensional (1D) density functional of circular arcs of length 2R0 sin−1(R/R0) is obtained,
and (ii) for R0 < R, the zero-dimensional limit (a cavity that can hold one particle at most) is recovered. We
also show that, for R0 > R, the obtained functional is equivalent to that of parallel hard rectangles on a flat
surface of the same lengths, except that now the density profile of curved rectangles is a periodic function of the
azimuthal angle, ρ(φ,z) = ρ(φ + 2π,z). The phase behavior of a fluid of aligned curved rectangles is obtained
by calculating the free-energy branches of smectic, columnar, and crystalline phases for different values of the
ratio R0/R in the range 1 < R0/R � 4; the smectic phase turns out to be the most stable except for R0/R = 4,
where the crystalline phase becomes reentrant in a small range of packing fractions. When R0/R < 1 the
transition is absent, since the density functional of curved rectangles reduces to the 1D Percus functional.
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I. INTRODUCTION

The subjects of surfaces decorated with particles in peri-
odically or quasiperiodically packed configurations and the
arrangement of spheres on spherical, cylindrical, or general
surfaces have attracted a long-standing interest [1,2]. The focus
has been mainly on the type of packing, defect stabilization
and interactions, and the topological constraints associated
with nonvanishing Gaussian curvature. A most prominent
problem concerns the stabilization of crystalline order on a
sphere, first predicted [3] and then experimentally observed in
colloidal spheres on water droplets [4]. The problem has many
important consequences in a number of fields, for example,
possible packings of protein capsomeres in spherical viruses
[5], the behavior of particles inserted in lipid membranes and
their curvature-induced interactions [6,7], metallic clusters,
the structure of fullerenes, to name just a few. The spherical or
effectively spherical surface is the most studied, while several
studies have also appeared on cylindrical surfaces. Recently,
Nelson studied the interaction of dislocations on a cylindrical
surface [8]; despite the vanishing Gaussian curvature of the
cylinder, a rich phenomenology was found.

Of particular interest is the case when particles are not
spherical but elongated, since here there are issues of packing
not only from the translational but also from the orientational
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degrees of freedom. Hence one has here two fields, the position
and the nematic-director fields, that compete and interact with
the geometry to possibly stabilize complex defected patterns.
In a nematic phase particle positions are disordered but the
nematic director is still constrained by the topology. The
possibility of stabilizing defects by confining a thin nematic
film on a spherical surface is intriguing. For example, using
computer simulations, Dzubiella et al. [9] studied the nematic
ordering of hard rods confined to be on the surface of a sphere.
In this case the confinement on a spherical surface induces
a global topological charge in the director field due to the
stabilization of half-integer topological point defects.

Another interesting, much less analyzed, aspect concerns
the formation of phases with partial positional order (liquid
crystalline) from a disordered phase and the conditions im-
posed by topology, curvature, and periodicity on the ordering
and phase interplay as thermodynamic conditions (such as
surface density of particles or temperature) are varied. In
liquid-crystalline phases with partial or total translational order
(smectic, columnar, or crystalline) the two fields are coupled,
and a complex interaction with the topology may result. This
problem may be relevant in connection with the ordering of
large protein molecules inserted into lipid membranes, where
curvature may both induce or modify order and be induced or
modified by order.

In the present article we focus on a system of parallel
circular, rectangular particles confined to a cylindrical surface
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(therefore the nematic phase is the most disordered phase of
the system). This is motivated as a useful model to discuss
ordering of squared or rectangular proteins or otherwise on
rod-shaped bacterial cell membranes, but the model can be
analyzed in a broader context. Despite its simple topology,
the nonvanishing curvature and periodicity perpendicular to
the cylinder axis may induce or suppress ordering in some of
the two orthogonal directions, giving rise to possible smectic
or columnar orderings of the particles on the cylindrical
surface. This problem has some similarities with the adsorption
of particles inside slitlike or cylindrical pores [an example
of which is the recent study on the confinement of hard
spheres (HSs) into cylindrical pores [10], or of hard rods into
planar pores [11,12], both employing the density-functional
(DF) formalism]. Recently the close-packed structures of HSs
confined in cylindrical pores of small radii were classified
using analytical methods and computer simulations [13]. All
of these studies reflect the importance of the commensuration
between the pore width (in our case the circle diameter) and
the characteristic dimensions of particles in the structure and
stability of the confined nonuniform phases. Recent studies
show that the extreme confinement of particles along one
direction makes the system behave as an ideal gas in this
direction. Thus the corresponding degrees of freedom can be
integrated out and the resulting lower-dimensional system can
be described by an effective interparticle potential [14].

The purpose of the present article is twofold. First, we
derive a density-functional theory for a fluid of parallel circular
rectangles on an external cylindrical surface; this model is
isomorphic to a fluid monolayer of parallel cylinders adsorbed
on an external cylindrical surface, or to the same fluid confined
between two concentric cylindrical surfaces such that only one
shell of cylinders can be accommodated with no radial motion.
We show that the functional may be obtained consistently from
different routes due to the important dimensional-crossover
property of the theory. This property was first used to derive
a fundamental-measure density functional (FMF) for HSs
[15,16] and parallel hard cubes (PHCs) [17], and it was recently
applied to obtain a density functional for hard parallel cylinders
[18]. Second, the model is analyzed statistical-mechanically by
investigating the free-energy minima landscape. We discuss
different regimes for the ratio of the radius of the external
cylinder to radii of the underlying adsorbed cylinders. When
the ratio is sufficiently low the model is an effectively
one-dimensional (1D) model and no phase transition exists.
Otherwise the smectic phase is found to be the most stable
except for a relatively small range of densities in which the
crystalline phase appears as a reentrant phase. These results
are in line with those of recent experiments on confined liquid
crystals in silica-glass nanochannels, which show that the
stability of the smectic phase is considerably enhanced by the
confinement at the expense of the crystalline phase [19]. We
finally propose, following the dimensional-crossover property,
a DF for spherical lenses (the intersection between a HS of
radius R whose center of mass is located on an external sphere
of radius R0, with R0 > R) moving on a spherical surface.

The article is arranged as follows. In Sec. II we derive the
density-functional theory for hard curved rectangles (CRs) on
an external cylindrical surface. This is done in two steps: In the
first (Sec. II A), the two-dimensional (2D) functional for hard

disks (HDs) is projected on the surface of an external circle,
thus obtaining a 1D functional for curved arcs (CAs) that move
along the circumference of the external circle. In the second
(Sec. II B) the functional is developed along the direction
perpendicular to the circle to give a 2D functional for CRs.
Dimensional consistency is discussed in Sec. II C. The results
are presented in Sec. III. In Sec. V we propose, following the
same dimensional-crossover recipe, a DF for spherical lenses
whose centers of mass are confined on an external sphere.
Finally some conclusions are presented in Sec. VI. Details on
the derivation of the density functionals and the density profile
parametrizations are relegated to Appendixes A–C.

II. DERIVATION OF FUNCTIONALS

In this section we derive the FMF for our model system, i.e.,
a fluid of CRs. We do it in two steps. First, the 2D functional
for an HD of radius R is projected on the external surface
of a cylinder of radius R0, providing a 1D functional for a
fluid of CAs (Sec. II A). Then, this 1D functional is developed
along the orthogonal dimension to obtain a 2D functional for
the CR fluid (Sec. II B). The two cases R0 < R and R0 > R

are discussed separately in each case, since they give rise
to fundamentally different expressions. In the last part of this
section the resulting functionals are shown to be dimensionally
consistent.

A. Functional for CA

We start from the FMF excess free-energy for a fluid of
HDs derived in Refs. [16,18], i.e.,

βF (HD)
ex [ρ] =

∫
dr�(HD)

2D (r), (1)

where r = (r,φ) is the radius vector in polar coordinates. The
reduced free-energy density is defined as

�
(HD)
2D (r) = −n

(HD)
0 (r) ln [1 − ηHD(r)] + NHD(r)

1 − ηHD(r)
, (2)

where the weighted densities are convolutions of the two-
dimensional density profile ρ2D(r):

n
(HD)
0 (r) = 1

2πR

∫
dr1ρ2D(r1)δ (R − |r − r1|) , (3)

ηHD(r) =
∫

dr1ρ2D(r1)
 (R − |r − r1|) , (4)

NHD(r) = 1

(2πR)2

∫
dr1

∫
dr2ρ2D(r1)ρ2D(r2)K(r12)

× δ (R − |r − r1|) δ (R − |r − r2|) , (5)

with δ(x) and 
(x) the Dirac-delta and Heaviside functions,
respectively. Note that ηHD(r) is just the local packing fraction,
while NHD(r) is a two-body weighted density defined through
the kernel

K(r) = 4πR2x sin−1(x)
√

1 − x2
(1 − x), x ≡ r

2R
. (6)

We now restrict the degrees of freedom by imposing that the
HD centers of mass be located on a circumference of radius R0:

ρ2D(r,φ) = ρ1D(φ)δ(R0 − r), (7)

where ρ1D(φ) is the 1D density profile, and substitute Eq. (7)
into Eqs. (3)–(5). Then we take the following steps (the details
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FIG. 1. (Color online) Sketch of the HD configuration on a circle with R0 > R (left) and R0 < R (right).

of which can be found in Appendix A): (i) A first change
of variables (φi,ri) → (φi,ξi), i = 1,2, with ξi = |r − R0ui |
[ui = (cos φi, sin φi) are unit vectors] is used to evaluate the
weighted densities. As a result they become functions solely
of φ and r . (ii) Express the weighted densities as a function of
the three angles α(r), θ (r), and γ (r) [the inner angles of the
triangle of sides r , R, and R0; see Fig. 1] and of their derivatives
with respect to r . (iii) Write the second term of the expression
for the free-energy density (2) as a sum of the derivatives of the
first term with respect to α and φ. (iv) A second change of vari-
ables (φ,r) → (φ,γ ) in Eq. (1). (v) Use of the periodicity of the
density profile with respect to the azimuthal angle, ρ(r,φ) =
ρ(r,φ + 2π ), and integration by parts to finally arrive at the
following expression for the excess part of the DF of HDs:

βF (HD)
ex [ρ] = R0

π

∫ 2π

0
dφ

∫ π

0
dγ

×
{
�(φ,α(γ ))+∂�

∂α
(φ,α(γ ))θ∗(γ )

∣∣∣∣dα

dγ
(γ )

∣∣∣∣
}
.

(8)

Here the shorthand notations �(φ,α) =
−n0+(φ,α) ln [1 − ηHD(φ,α)] and n0+(φ,α) =
[ρ1D(φ + α) + ρ1D(φ − α)]/2 were used, while the
local packing fraction and the angle θ∗ are defined as
ηHD(φ,α) = R0

∫ φ+α

φ−α
dφ1ρ1D(φ1) and θ∗ = θ if 0 � θ � π/2,

while θ∗ = π/2 − θ if π/2 < θ � π .

1. The case R0 > R

A look at Fig. 1 allows us to write the following two
relations between the angles α and γ :

dα

dγ
� 0 if 0 < γ � γ0,

dα

dγ
< 0 if γ0 < γ � π, (9)

where γ0 = cos−1(R/R0), θ0 ≡ θ (γ0) = π/2, and α0 ≡
α(γ0) = sin−1(R/R0). After some lengthy calculations, which
can be followed in detail in Appendix A 1, we obtain from (8)
and (9) the following dimensional crossover:

βF (HD)
ex [ρ] → βF (CA)

ex [ρ] = R0

∫ 2π

0
dφ�

(CA)
1D (φ), (10)

with �CA
1D (φ) the 1D Percus free-energy density:

�
(CA)
1D (φ) ≡ �(φ,α0) = −n

(CA)
0 (φ) ln [1 − ηCA(φ)] , (11)

and with the corresponding weighted densities

n
(CA)
0 (φ) = n0+(φ,α0) = 1

2 [ρ1D(φ − α0) + ρ1D(φ + α0)] ,

(12)

ηCA(φ) = ηHD(φ,α0) = R0

∫ φ+α0

φ−α0

dφ′ρ1D(φ′). (13)

Here the index “CA” means that these densities are evaluated
on a circular arc of length 2R0α0. Then we have proved that
the excess part of the HD free-energy functional reduces to
that of hard CAs.

2. The case R0 < R

In this case we always have

dα

dγ
< 0, ∀γ, 0 � θ < π/2 (14)

(see Fig. 1). After some algebra (described in detail in
Appendix A 2), we obtain from (8) and (14) the following
dimensional crossover:

βF (HD)
ex [ρ] → βF (CA)

ex [ρ] = ηCA + (1 − ηCA) ln(1 − ηCA),

(15)

corresponding to the exact zero-dimensional (0D) functional
of CA (such that at most one arc can exist on the circle). The
mean number of particles is

ηCA ≡ R0

∫ π

−π

dφ′ρ1D(φ′) = 2πR0ρ1D, (16)

with ρ1D the mean number density over the circle of radius R0.

B. Functional for CR

We now define a collection of CRs, each consisting of two
parallel curved edges formed by circular arcs of length 2R0α0

and two parallel straight lines of length L perpendicular to the
former. The centers of mass of the CRs are located on a 2D
cylindrical surface of radius R0. The density profile will be
ρ2D(φ,z), where z is the coordinate along the cylinder axis and
φ is the azimuthal angle. The functional for this model will be
obtained in the two cases.
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1. The case R0 > R

First, we define the local packing fraction as

ηCR(φ,z) = R0

∫ φ+α0

φ−α0

dφ′
∫ z+L/2

z−L/2
dz′ρ2D(φ′,z′), (17)

and the weighted density

n
(CR)
1,⊥ (φ,z) = 1

2

∫ z+L/2

z−L/2
dz′[ρ2D(φ − α0,z

′)+ρ2D(φ + α0,z
′)].

(18)

Let us write the modified 1D Percus free-energy density:

�̃1D(φ,z) = −n
(CR)
1,⊥ (φ,z) ln [1 − ηCR(φ,z)] . (19)

Note that this is in fact a local free-energy density corre-
sponding to the CA fluid. Now the CR free-energy density
can be calculated by applying a differential operator ∂/∂L to
the modified 1D free-energy density [17]:

�
(CR)
2D (φ,z) = ∂

∂L
�̃1D(φ,z), (20)

which results in

�
(CR)
2D (φ,z) = −n

(CR)
0 (φ,z) ln [1 − ηCR(φ,z)]

+ n
(CR)
1,⊥ (φ,z)n(CR)

1,‖ (φ,z)

1 − ηCR(φ,z)
, (21)

where we have defined

n
(CR)
0 (φ,z) = ∂

∂L
ñ

(CR)
1,⊥ (φ,z)

= 1

4
[ρ2D(φ−,z−) + ρ2D(φ−,z+) + ρ2D(φ+,z−)

+ ρ2D(φ+,z+)] , (22)

n
(CR)
1,‖ (φ,z) = ∂

∂L
ηCR(φ,z)

= R0

2

∫ φ+

φ−
dφ′[ρ2D(φ′,z−) + ρ2D(φ′,z+)], (23)

and z± = z ± L/2, φ± = φ ± α0. Then the excess CR free-
energy functional can be calculated as

βF (CR)
ex [ρ] = R0

∫ 2π

0
dφ

∫ ∞

−∞
dz�

(CR)
2D (φ,z). (24)

Note that (21) is equivalent to the excess free-energy density
of a fluid of parallel hard rectangles (PHRs) of length L and
width σ = 2R0α0 which in turn coincides with that of the
parallel hard square (PHS) fluid after scaling one of the edge
lengths [17]. Also note that, taking the limit R0/R → ∞,
changing the variable φ to x ≡ R0φ, and setting σ = 2R0α0,
we obtain from (24) the excess part of the density functional
of PHRs on a flat surface of edge lengths σ and L given in
Ref. [17]. Thus the present functional has the same degree of
exactness as that for the PHS fluid. As was shown in Ref. [20],
the minimization of the latter gives a phase behavior in which
the columnar and crystalline phases both bifurcate from the
uniform fluid branch at η ≈ 0.54, with the columnar phase
being the stable phase (although the difference between free
energies is very small) up to η ≈ 0.73, where a weak first-order
columnar-to-crystal transition occurs. Single-speed molecular
dynamics simulations of PHSs show a second-order melting

transition at η ≈ 0.79 [21], similar to the above given value.
However, columnar ordering was not found in the simulations.

2. The case R0 < R

If R0 < R we define a 1D local packing fraction as

ηCR(z) = R0

∫ π

−π

dφ

∫ z+L/2

z−L/2
dz′ρ2D(φ′,z′), (25)

and a modified 0D free-energy density as

�̃
(CR)
0D (z) = ηCR(z) + [1 − ηCR(z)] ln [1 − ηCR(z)] . (26)

The CR free-energy density for this case can be obtained by
using the differential operator ∂/∂L applied to the modified
0D free-energy density [17]:

∂

∂L
�̃

(CR)
0D (z) = R0�

(CR)
1D (z) = −R0n

(CR)
0 (z) ln [1 − ηCR(z)] ,

(27)

where

n
(CR)
0 (z) = R−1

0

∂

∂L
ηCR(z)

= 1

2

∫ π

−π

dφ′[ρ2D(φ′,z−) + ρ2D(φ′,z+)]. (28)

The excess free-energy functional is now

βF (CR)
ex [ρ] = 2πR0

∫ ∞

−∞
dz�

(CR)
1D (z). (29)

C. Confined hard cylinders

The free energy of a collection of CRs can be obtained
from two different routes. In the previous two sections we
used a two-step process: First, the HD fluid was projected on
the circumference of a circle, giving the functional for CA.
This in turn was developed along z to give the free energy
for CR. There is another possible route which starts from the
three-dimensional (3D) functional for hard cylinders (HCs).
The HC excess free energy is

βF (HC)
ex [ρ] =

∫
dz

∫
dφ

∫
drr�

(HC)
3D (r,φ,z), (30)

with �
(HC)
3D (r,φ,z) the excess free-energy density [18,22].

Now we confine the HC on a plane perpendicular to the
cylinder axes at z = 0 by choosing the 3D density profile
ρ3D(r,φ,z) = ρ2D(r,φ)δ(z). Inserting this into (30), we obtain
an excess free energy

βF (HD)
ex [ρ] =

∫
dφ

∫
drr�

(HD)
2D (r,φ), (31)

where, due to the dimensional-crossover consistency,
�

(HD)
2D (r,φ) is given by Eq. (2), i.e., coincides with the HD free-

energy density. Selecting now ρ(r,φ,z) = ρ(φ,z)δ(R0 − r)
(i.e., confining the HC on a 2D cylindrical surface of radius
R0) and inserting it into Eq. (30), we obtain, for R0 > R,

βF (CR)
ex [ρ] = R0

∫ 2π

0
dφ

∫ ∞

−∞
dz�

(CR)
2D (φ,z), (32)
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FIG. 2. (Color online) Dimensional crossover of HCs of radius
R and length L confined on a cylindrical surface of radius R0. This
3D → 2D crossover becomes HC into CR. Also shown is the 3D →
2D crossover when the HCs are confined on a flat surface. This
crossover becomes HC into HD. Finally the 2D → 1D crossover from
HD or CR when both are confined on a circumference of radius R0

results in CAs of length 2R0 sin−1(R/R0) (the arc of closest approach
between two HDs). Dashed arrows indicate the route to obtain the
FMF for CR.

where �
(CR)
2D (φ,z) is the free-energy density of curved

rectangles (20). When R0 < R we obtain

βF (CR)
ex [ρ] = 2πR0

∫ ∞

−∞
dz�

(CR)
1D (z), (33)

where �
(CR)
1D (z) is the free-energy density (27).

We sketch in Fig. 2 the dimensional crossovers involved in
the preceding discussion.

III. PHASE BEHAVIOR OF CR

In this section we analyze the phase behavior of the CR fluid
predicted by the functional derived in the previous section, in
the nontrivial case R0 > R. We start by presenting the numeri-
cal treatment in Sec. III A and then show the results in Sec. IV.

A. Minimization technique

The total free-energy density functional (ideal plus excess
parts) per unit of area is

βF (CR)[ρ]

2πR0L
= 1

2πd

∫ 2π

0
dφ

∫ d

0
dz
[
�

(CR)
id (φ,z) + �

(CR)
2D (φ,z)

]
,

(34)

where L is the system length along z and

�
(CR)
id (φ,z) = ρ2D(φ,z)[log ρ2D(φ,z) − 1] (35)

is the ideal part. The excess contribution is given by Eq. (21).
The possible ordered phases in the system are smectic (S),
columnar (C), and crystal (K) (sketched in Fig. 3). A general
density profile will be periodic in z (with period d) and φ

(with period 2π ), i.e., ρ2D(φ + 2π,z + d) = ρ2D(φ,z), and a
convenient representation is a double Fourier expansion

ρ2D(φ,z) = ρ0

⎡
⎣1 +

∑
(k,m)�=(0,0)

skm cos(kN0φ) cos(qmz)

⎤
⎦ ,

(36)

where ρ0 is the mean density ρ0 =
(2πd)−1

∫ 2π

0 dφ
∫ d

0 dzρ2d(z,φ), {skm} are the Fourier
amplitudes, and q = 2π/d is the wave vector along z. Note
that skm = 0 ∀ k �= 0 corresponds to the S phase, while skm = 0
∀ m �= 0 implies a C phase. In the latter phase the obvious
periodicity ρ2D(φ) = ρ(φ + 2π ) must be supplemented with
a periodicity ρ2D(φ + φ0) = ρ2D(φ), with φ0 = 2π/N0 the
period; here the average position of the columns would be
located on the vertices of a N0-sided regular polygon. N0 is an
integer in the interval 2–[π/α0], with [x] the integer part of x,
and α0 = sin−1(R/R0). As an example, if R0 = 2R, we have
N

(max)
0 = 6, a value that can be reached only at close packing.
Using the above Fourier expansion, the weighted densities

(17), (18) and (22), (23) can be calculated from the expressions
given in Appendix B [see Eqs. (B2)–(B4)]. The strategy
followed to minimize the functional (34) was to use a truncated
Fourier expansion in terms of the amplitudes {skm} for 0 �
k,m � M (with M selected in such a way as to guarantee an
adequate description of the density profile) and then minimize
with respect to these amplitudes and the period d. We used
a conjugate-gradient method to numerically implement the

(a)

2R 0

ρ
ρ(z)

d

(b)

R φ00

(c)

ρ(φ)

zρ(  ,φ)

R φ00

d

(d)

FIG. 3. (Color online) Phases of CRs on a cylindrical surface of radius R0: (a) N, (b) S, (c) C, and (d) K. The lattice parameters and the
variables of which the density profiles depend are correspondingly labeled.
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YURI MARTÌNEZ-RATÒN AND ENRIQUE VELASCO PHYSICAL REVIEW E 87, 052314 (2013)

0.52 0.56 0.6 0.64 0.68 0.72
η

0

0

0.005

0.01

0.015

0.02

Δ 
Φ

∗

(a)

1.04, 1.66

2

1.3

1.3

2

1.04, 1.66

0.53 0.54 0.55 0.56 0.57 0.58 0.59 0.6
η

0

0

0.001

0.002

0.003

ΔΦ
∗

(b)

FIG. 4. (a) Free-energy differences ��∗
C,K (see the text for the definition) between the C and S (solid lines) phases and K and S phases

(dashed lines) and for different values of R0/R; in (a) they are equal to 1.04, 1.3, 1.66, and 2. Different lines are labeled with their corresponding
values of R0/R. The number of columns N0 in the C phases are 2, 3, 4, and 5, respectively. In (b) R0/R = 1.05 and N0 = 2. The crystalline
phase in (b) was calculated through the free-energy minimization with respect to the Fourier amplitudes of the density-profile Fourier expansion.

minimization. All the integrals were calculated using Legendre
quadratures with as many roots as necessary to guarantee
numerical errors in the amplitudes below 10−7.

As shown in the next section, the unstable or metastable
character of the crystalline phase is difficult to obtain by direct
minimization, so in this case we chose to parametrize the
density profile as a sum of Gaussians:

ρ2D(φ,z) = (1 − ν)ζ0⊥(φ)ζ0‖(z),

ζ0⊥(φ) =
(

�⊥
π

)1/2∑
k

exp
[−�⊥R2

0(φ − kφ0)2], (37)

ζ0‖(z) =
(

�‖
π

)1/2∑
k

exp[−�‖(z − kd)2],

where �⊥(2R0α0)2 = �‖L2 = � is the scaled Gaussian pa-
rameter and ν the fraction of vacancies. Within this approxi-
mation, the total free energy per unit of area, in reduced units,
can be computed from the expression given in Appendix B
[see Eq. (B5)]. We minimized (B5) with respect to � and ν.
The mean packing fraction can be computed as η0 = (1−ν)a

R0φ0d

(with a = 2R0α0L the particle area) and thus for fixed η0

and ν we can compute the period d from the latter equation.
The integrals of Eq. (B5) were evaluated using a Gauss-
Hermite quadrature while the minimization was carried out
using the Newton-Raphson method with supplied numerical
derivatives.

IV. RESULTS

We minimized (34) using the Fourier expansion of the
density profile (36) for the S and C phases and for four different
values of R0/R = 1.04, 1.30, 1.66, and 2.00. The results are
shown in Fig. 4(a) in which we plot the difference between the
free energies per unit area corresponding to the C and S phases,
i.e., ��∗

C = �∗
C − �∗

S (with �∗ = βF[ρeq]a
2πR0L ), as a function of

the mean packing fraction η0. For the C phase the number
of columns for each value of R0/R are N0 = 2, 3, 4, and

5, respectively. As can be seen, ��∗
C � 0 always, implying

that the S phase is the most stable phase. This behavior can
be understood if we take into account that the C period in
reduced units is φ∗

0 = φ0R0/(2α0R0) = π/(N0α0) which in
turn is different from that of PHRs (remember that the excess
part of the free-energy density of CRs can be obtained from
that of PHRs by the mapping σ → 2α0R0, with σ the width
of the rectangle); the latter is calculated by minimizing the
free energy with respect to the period. Note that, for PHRs,
the C and S phases have the same free energies (the PHRs
can be obtained by scaling the PHSs along one direction).
However, in the present case the value of φ∗

0 is imposed once
we fix R0/R and the number of columns N0, the latter being
dictated by the commensuration of a CA of length 2α0R0 in
a circle of perimeter 2πR0, i.e., 2 � N0 � [π/α0]. In a case
when different values of N0 are possible, we select the one
which minimizes the free energy. It is interesting to note that
��∗ = 0 both at the bifurcation point η∗

0 and at that value of
η0 for which the periods in reduced units of CRs (φ∗

0 ) and of
hard parallel rectangles (HPRs) on a plane (d∗

HPR ≡ dHPR/σ )
are exactly the same. Finally, from Fig. 4(a), we can see that
��∗

c for the cases R0/R = 1.04 (N0 = 2) and 1.66 (N0 = 4)
are indistinguishable from each other. The reason behind this
behavior is that the commensuration numbers π/(N0α0) [ratio
between the perimeter of the circle (2πR0) and the total length
of the N0 arcs of length 2R0α0] are approximately equal in
both cases (1.2153 and 1.2148, respectively).

In the same figure we also plot ��∗
K = �∗

K − �∗
S, i.e., the

difference between the free energies per unit volume of the
K and S phases. For this case we have used the Gaussian
parametrization (37) and minimized (B5) with respect to �

and d∗ [we tried to use the Fourier expansion (36) with K
symmetry, but the numerical algorithm converged to a solution
with C or S symmetry always, except for those values of η0

close enough to the bifurcation point, an example of which
is shown in Fig. 4(b)]. In Fig. 4(a) we see that the K phase
has a larger free energy compared to the S phase. However,
now ��∗

K does not touch the η0 axis tangentially, because the
PHR free energies corresponding to the C (or S) and K phases
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FIG. 5. (a) Free energies per unit of area [we plot �∗ + η0 ln(a)] of N (dotted), S (dotted-dashed), C4 and C5 (solid lines correspondingly
labeled), and K4 and K5 (dashed lines correspondingly labeled) phases as a function of η0 for R0/R = 1.8. The open circle indicates the
N-S bifurcation point. Circles indicate the metastable C4-C5 coexistence, while squares correspond to the metastable K4-K5 coexistence.
(b) Free-energy density differences between the S and all the phases shown in (a). The lines and symbols have the same meaning as in (a).

are not equal, the former being energetically favored up to
η0 ∼ 0.73 [20].

It is interesting to note that the N-S transition exists even
for values of R0/R � 1. As already shown, for R0/R < 1 this
transition is absent since the free-energy functional is in fact
the 1D functional for hard rods (Percus functional).

Now we present the results for R0/R = 1.8, a value for
which the free-energy branches of the C phases with N0 = 4
(C4) and 5 (C5) columns intersect at some value of η0. These
free energies are plotted in Fig. 5. The C4 and C5 branches
are above those of the K4,5 and S phases. This result could
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FIG. 6. Free-energy density differences between the S and the N
(dotted), C10 and C11 (solid lines correspondingly labeled), and K10

and K11 (dashed lines correspondingly labeled) phases as a function of
the mean packing fraction η0 for R0/R = 4. The open circle indicates
the N-S bifurcation point. The circles and squares show the C10-C11

and K10-K11 metastable coexistences, respectively. The gray region
shows the packing fraction interval in which the K11 has a lower free
energy than the S phase.

change in a confined binary fluid of HCs with different lengths.
For dissimilar enough lengths, the S and K phases would be
energetically unfavored with respect to the CN0 phases. In this
situation a C4-C5 transition could take place as η0 increases.
For some higher values of R0/R we will find a cascade of
CN0−1 → CN0 transitions for different values of N0 because
multiple values of N0 fulfill the constraint 2 � N0 � [π/α0].

Finally, we have calculated all the energy branches of stable
or metastable phases for R0/R = 4, which are plotted in Fig. 6.
For this case there are two columnar, C10 and C11, and two
crystalline, K10 and K11, phases which are metastable with
respect to the Sm phase (except the K11 phase, which is stable
in a small range of η0). We show in Fig. 6 the metastable
C10-C11 and K10-K11 coexistences, using different symbols.
Note that the coexistence gaps decrease with respect to the
case R0/R = 1.8, a trend that should be confirmed if the value
R0/R were to be increased even more. It is interesting to note
that there is a relatively small interval of packing fractions
(dashed region in the figure) where the K11 phase becomes
reentrant. This interval should increase for higher values of
R0/R and, in fact, in the limit R0/R → ∞ (the HPR limit),
the K phase becomes stable for η � 0.73 [20].

V. DENSITY FUNCTIONAL OF SPHERICAL LENSES

In principle the same dimensional-crossover procedure
can be implemented on the density functional for HSs of
radii R whose centers of mass are restricted to be on a
spherical surface of radius R0. If the density functional for
HSs adequately fulfills the dimensional-crossover property,
the resulting functional, that of a fluid consisting of hard
spherical lenses (SLs) [obtained from the intersection be-
tween the spherical surface and a cone with vertex at the
origin and with solid angle equal to 4π sin2(α0/2) = 2π [1 −√

1 − (R/R0)2]], should coincide, when R0/R > 1, with the
2D functional for HDs [Eq. (2)] where the density profile this
time is a periodic function of the spherical angles ρ(φ,θ ) =
ρ(φ + 2π,θ ), ρ(φ,θ ) = ρ(φ,θ + 2π ) and the semilength of
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the SLs is equal to R0α0 = R0 sin−1(R/R0). We present in
Appendix C the explicit expressions for the weighted densities
of SLs. With the present tool, the study of the freezing of HSs
on a spherical surface could be carried out. An interesting point
to be studied is how the symmetry of the crystalline structure,
and the presence of defects and vacancies, could change with
the ratio R0/R.

VI. CONCLUSIONS

The present work followed two motivations. The first was
to illustrate the dimensional-crossover criterion as a powerful
projection tool to obtain a DF for hard particles with centers
of mass constrained to be on a particular (in the present
case cylindrical) surface from a given DF which fulfills this
criterion. The second motivation was the study of the phase
behavior of CRs (the particles obtained by projecting the
centers of mass of HCs onto a cylindrical surface). We show
that surface curvature has a profound impact on the stability
of the liquid-crystal phases of curved rectangles as compared
with the planar case. The projection method is quite general
and can be used to obtain DFs for other particle geometries and
other surfaces. As an example, we proposed in Sec. V a DF for
spherical lenses, i.e., the particles obtained when the centers
of mass of HSs are placed on an external spherical surface.

During the derivation of DF for CRs we proved the
dimensional-crossover properties of the FMF of HDs of radii R
when their centers of mass are constrained to be on a circumfer-
ence of radius R0. Depending on the ratio R0/R the original 2D
density functional reduces to the 1D Percus functional (when
R0/R > 1) or to the 0D functional (R0/R < 1), which are both
exact limits. From these dimensionally reduced functionals,
using the dimensional expansion procedure, we derive the
density functional for CRs moving on a cylindrical surface
of radius R0. We show that this functional is equivalent to
that of PHRs on a flat surface with the edge lengths of the
particles being σ = 2R0 sin−1(R/R0) and L. We minimized
the functional for CRs to get the phase behavior for different
values of R0/R. When R0/R > 1 we obtain that the most
stable phase is S, as compared to the C or K phases, except
for some relatively large values of R0/R and small density
intervals in which we find a reentrant K phase. We find
also metastable Cn−1-Cn or Kn−1-Kn transitions related to the
commensuration between the particle width and the perimeter
of the cylindrical surface. These transitions could become
stable when the confined HCs have different lengths (it is well
known that the length polydispersity destroys the S ordering).
When R0/R < 1 the density functional of CRs coincides with
the 1D Percus functional, so that the system does not exhibit
any phase transition. We are presently performing Monte Carlo
(MC) simulations of CRs with the aim to compare the phase
behavior with that obtained from the present FMF. Note that
the latter, being a 2D functional, is not exact.

The present phase behavior points to possible textures
that adsorbed molecules (for example proteins) on cylindrical
membranes could exhibit. If these molecules are highly
anisotropic, highly oriented along the cylinder axis, and
interact repulsively with each other, their stable textures should
include only nematic and smecticlike configurations for low
and high densities, respectively.

The wall of some rod-shaped bacteria grows in the direction
of the cylinder axis, keeping the radius approximately constant.
The new proteins come from the inside of the cell to the
wall. In Ref. [23] the authors explain cell growth by the
insertion of these proteins into the wall and their subsequent
active diffusion along the perimeter of the cylinder via a
dislocation-mediated growth. The model assumes that the
proteins form a square lattice on a surface of the cylinder (this is
apparently confirmed by experiments). Protein diffusion along
the wall perimeter (activated by the cell machinery) departs
from some of these dislocations which constitute the source of
the new proteins coming from the cell. Our results show that the
smecticlike configuration of proteins favors their transversal
diffusion. Also the sources of new molecules could be located
at any position inside the smectic layers with marginal energy
cost associated with the spatial deformation of layers (as they
are fluidlike). However, this mechanism makes the cylindrical
membrane grow in the transversal direction. Growth along
the longitudinal direction is possible by creating new smectic
layers and consequently smecticlike defects in the layers. This
is an alternative mechanism that might explain the growth of
cells whose membranes are constituted by molecules that form
smecticlike textures.
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APPENDIX A: 2D → 1D,0D DIMENSIONAL CROSSOVER
OF HD ON A CIRCLE

Substitution of (7) into Eq. (3) gives

n
(HD)
0 (r) = R0

2πR

∫ 2π

0
dφ1δ(R − |r − R0u1|)ρ1D(φ1), (A1)

where u1 = (cos φ1, sin φ1) is a unit vector. Here the po-
lar radius r is restricted to be in the interval [|R0 −
R|,R0 + R]. Using the change of variables ξ = |r −
R0u1| =

√
r2 + R2

0 − 2rR0 cos(φ − φ1), where r = ru, u =
(cos φ, sin φ), and u · u1 = cos(φ − φ1), we obtain

n
(HD)
0 (r) = 1

2πr

[ρ1D(φ + α(r)) + ρ1D(φ − α(r))]√
1 − ( r2+R2

0−R2

2rR0

)2
×
(R − |r − R0|), (A2)

where

α(r) ≡ cos−1

(
r2 + R2

0 − R2

2rR0

)
. (A3)

Now we calculate the two-body weighted density NHD(r)
by substituting ρ2D(ri) = ρ1D(φi)δ(R0 − ri) [which is equiv-
alent to setting ri = R0ui with ui = (cos φi, sin φi)] into
Eq. (5). Noting that r12 = |r1 − r2| = 2R0| sin(φ12/2)| and
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using Eq. (6), we obtain

K(r12) = 4πR2 R0

R
| sin(φ12/2)| sin−1

(
R0

R
| sin(φ12/2)|

)

×
√

1 −
[
R0

R
sin(φ12/2)

]2

. (A4)

Using again ξi = |r − ri |, taking into account that
|sin(φ12/2)|ξi=R = | sin α(r)|, and using (5), we obtain

NHD(r) = R0

πr3

ρ1D(φ − α(r))ρ1D(φ + α(r))√
1 − ( r2+R2

0−R2

2rR0

)2 ∣∣R2 + r2 − R2
0

∣∣

× sin−1

[
R0

R

√
1 −

(
r2 + R2

0 − R2

2rR0

)2]
×
(R − |r − R0|). (A5)

The local packing fraction (4) results in

ηHD(r) = R0

∫ 2π

0
dφ1ρ1D(φ1)
(R − |r − R0u1|)

= R0

∫ φ+α(r)

φ−α(r)
dφ1ρ1D(φ1), (A6)

where we used the fact that the condition |r − R0u1| �
R implies |φ − φ1| � α(r). The weighted densities can be
written in terms of the angle α(r) and the new angles θ (r) and
γ (r), defined in Fig. 1:

n
(HD)
0 (r) = R0

2πr
[ρ1D(φ − α(r)) + ρ1D(φ + α(r))]

dγ

dr
(r),

(A7)

NHD(r) = 2R2
0

πr
ρ1D(φ − α(r))ρ1d(φ + α(r))

∣∣∣∣dα

dγ
(r)

∣∣∣∣
× θ∗(r)

dγ

dr
(r), (A8)

where

θ∗ =
{

θ, if 0 � θ � π/2,

π − θ, if π/2 � θ � π.
(A9)

The following equation is satisfied:

ρ1D(φ − α(r))ρ1D(φ + α(r))

= 1

4

{
2

R0
n0+(r)

∂ηHD

∂α
(r) − 1

R2
0

[
∂ηHD

∂φ
(r)

]2
}

. (A10)

This can be derived from the relation
∂ηHD

∂α
(r) = 2R0n0+(r),

∂ηHD

∂φ
(r) = 2R0n0−(r), (A11)

with

n0±(r) = 1
2 [ρ1D(φ + α(r)) ± ρ1D(φ − α(r))] . (A12)

Now using the relations

2

R0

∂n0+
∂α

(r) − 1

R2
0

∂2ηHD

∂φ2
(r) = 0,

n0+(r) ∂ηHD

∂α
(r)

1 − ηHD(r)
= − ∂

∂α
{n0+(r) ln[1 − ηHD(r)]}

+ ∂n0+
∂α

(r) ln[1 − ηHD(r)],

[
∂ηHD

∂φ
(r)
]2

1 − ηHD(r)
= − ∂

∂φ

{
∂ηHD

∂φ
(r) ln[1 − ηHD(r)]

}

+ ∂2ηHD

∂φ2
(r) ln[1 − ηHD(r)], (A13)

we get

2n0+(r) ∂ηHD

∂α
(r)

R0[1 − ηHD(r)]
−

[
∂ηHD

∂φ
(r)
]2

R2
0 [1 − ηHD(r)]

= − 2

R0

∂

∂α
{n0+(r) ln[1 − ηHD(r)]}

+ 1

R2
0

∂

∂φ

{
∂ηHD

∂φ
(r) ln[1 − ηHD(r)]

}
. (A14)

Next we take into account the periodic condition ηHD(r,φ) =
ηHD(r,φ + 2π ) which implies∫ 2π

0
dφ

∂

∂φ

{
∂ηHD

∂φ
(r) ln[1 − ηHD(r)]

}
= 0. (A15)

Equations (A10), (A14), and (A15) can be used to give∫ 2π

0
dφ

2R2
0

π

ρ1D(φ − α(r))ρ1D(φ + α(r))
1 − ηHD(r)

= −
∫ 2π

0
dφ

R0

π

∂

∂α
{n0+(r) ln[1 − ηHD(r)]} . (A16)

Introducing the change of variable (r,φ) → (γ,φ) and using
Eqs. (A7), (A8), and (A16), the excess part of the free energy
(1) can be rewritten as (8).

1. The case R0 > R

Using (9) we have

∫ π

0
dγ

∂�

∂α
[φ,α(γ )]θ∗(γ )

∣∣∣∣dα

dγ
(γ )

∣∣∣∣ =
∫ γ0

0
dγ

∂�

∂α
[φ,α(γ )][π − θ (γ )]

dα

dγ
(γ ) +

∫ π

γ0

dγ
∂�

∂α
[φ,α(γ )]θ (γ )

[
−dα

dγ
(γ )

]

= [π�(φ,α)]α0
α(0) −

∫ π

0
dγ

∂

∂α
[�(φ,α(γ ))θ (γ )]

dα

dγ
(γ )︸ ︷︷ ︸

=[�(φ,α)θ(α)]α(π)
α(0) =0

+
∫ π

0
dγ�(φ,α(γ ))

dθ

dα
(γ )

dα

dγ
(γ )

= π�(φ,α0) +
∫ π

0
dγ�(φ,α(γ ))

dθ

dα
(γ )

dα

dγ
(γ ), (A17)
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where we have used the change of variable∫ γ2

γ1
dγ T (φ,α(γ )) dα

dγ
(γ ) = ∫ α(γ2)

α(γ1) dαT (φ,α) for a general
function T (φ,α) and also that α(0) = α(π ) = 0. Now from
(A17) and (8) we can reexpress the excess free energy as

βF (HD)
ex [ρ] = R0

π

∫ 2π

0
dφ

{
π�(φ,α0) +

∫ π

0
dγ�(φ,α(γ ))

×
[

1 + dθ

dα
(γ )

dα

dγ
(γ )

]}
. (A18)

Further, since α + θ + γ = π , we have

dγ + dθ

dα

dα

dγ
dγ = dα

(
dγ

dα
+ dθ

dα

)
= −dα (A19)

and

βF (HD)
ex [ρ]

= R0

π

∫ 2π

0
dφ

⎧⎪⎪⎪⎨
⎪⎪⎪⎩π�(φ,α0) −

∫ α(π)

α(0)
dα�(φ,α)︸ ︷︷ ︸
=0

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ . (A20)

Let us redefine the weighted densities as in (12) and (13)
where the index “CA” means that these densities are those on
a circular arc of length 2R0α0. Then we have proved that the
excess part of the HD free-energy functional reduces to that of
hard CA, given by Eq. (10).

2. The case R0 < R

Taking into account (14), Eq. (8) reads

βF (HD)
ex [ρ] = R0

π

∫ 2π

0
dφ

∫ π

0
dγ

×
{
�(φ,α(γ )) − ∂�

∂α
[φ,α(γ )]θ (γ )

dα

dγ
(γ )

}
.

(A21)

Using

∂�

∂α
(φ,α)θ (γ ) = ∂

∂α
[�(φ,α)θ (γ )] − �(φ,α)

dθ

dα
(γ ),

(A22)

Eq. (A21) becomes

βF (HD)
ex [ρ]

= R0

π

∫ 2π

0
dφ

{∫ π

0
dγ�(φ,α(γ ))

[
1 + dθ

dα
(γ )

dα

dγ
(γ )

]

−
∫ π

0
dγ

dα

dγ
(γ )

∂

∂α
[�(φ,α(γ ))θ (γ )]

}
, (A23)

and, using (A19),

βF (HD)
ex [ρ]

= R0

π

∫ 2π

0
dφ

⎧⎪⎨
⎪⎩−

∫ 0

π

dα�(φ,α) − [�(φ,α)θ (α)]0
π︸ ︷︷ ︸

=0

⎫⎪⎬
⎪⎭

= R0

π

∫ 2π

0
dφ

∫ π

0
dα�(φ,α), (A24)

where we used the fact that the function α(γ ) has values
α(0) = π and α(π ) = 0, while the function θ (α) has values
θ (0) = θ (π ) = 0 (see Fig. 1). Taking into account now that
∂ηHD

∂α
(φ,α) = R0 [ρ1D(φ + α) + ρ1D(φ − α)] = 2R0n0+(φ,α),

we obtain from (A24):

βF (HD)
ex [ρ]

= −R0

π

∫ 2π

0
dφ

∫ π

0
dα

1

2R0

∂ηHD

∂α
(φ,α) ln [1 − ηHD(φ,α)]

= 1

2π

∫ 2π

0
dφ

∫ π

0
dα

∂

∂α
{ηHD(φ,α)

+ [1 − ηHD(φ,α)] ln[1 − ηHD(φ,α)]}

= 1

2π

∫ 2π

0
dφ {ηHD(φ,α)

+ [1 − ηHD(φ,α)] ln[1 − ηHD(φ,α)]}π0 . (A25)

Noting that ηHD(φ,0) = 0 and that

ηCA ≡ ηHD(φ,π ) = R0

∫ φ+π

φ−π

dφ′ρ1D(φ′)

= R0

∫ π

−π

dφ′ρ1D(φ′) = 2πR0ρ1D, (A26)

we arrive at (15).

APPENDIX B: FOURIER AND GAUSSIAN
PARAMETRIZATIONS

The expressions for the weighted densities of CRs, using
the Fourier expansion (36), are

ηCR(φ,z) = η0

[
1 +

∑
(k,m)�=(0,0)

skmχ1(kN0α0)χ1

(
mπ

d∗

)

× cos(kN0φ) cos(qmz)

]
, (B1)

n
(CR)
0 (φ,z) = ρ0

[
1 +

∑
(k,m)�=(0,0)

skmχ0(kN0α0)χ0

(
mπ

d∗

)

× cos(kN0φ) cos(qmz)

]
, (B2)

n
(CR)
1,⊥ (φ,z) = η0

L

[
1 +

∑
(k,m)�=(0,0)

skmχ1(kN0α0)χ0

(
mπ

d∗

)

× cos(kN0φ) cos(qmz)

]
, (B3)

n
(CR)
1,‖ (φ,z) = ρ0L

[
1 +

∑
(k,m)�=(0,0)

skmχ0(kN0α0)

(
mπ

d∗

)

× cos(kN0φ) cos(qmz)

]
, (B4)

where η0 = 2ρ0R0α0L is the mean packing fraction, d∗ = d/L

is the z period in reduced units, and χ0(x) ≡ cos x, χ1(x) ≡
sin x/x.
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Within the Gaussian parametrization (37), the free-energy density functional of CR can be computed as

βFCR[ρ]a

2πR0L
= η0

⎧⎨
⎩ln

⎡
⎣η0

√
�∗

⊥�∗
‖

πa

⎤
⎦− 1 + 2√

π

∫ ∞

0
dte−t2

ln

⎛
⎝ ∏

τ=⊥,‖

{∑
k

exp[−(t − k
√

�∗
τ )2]

}⎞⎠
+ 1

π

∫ ∞

0
dt1e

−t2
1

∫ ∞

0
dze−t2

2 T

(
t1√

�⊥R0
,

t2√
�‖

)}
. (B5)

where a = 2R0α0L is the particle area and we have defined �∗
⊥ ≡ �(φ∗

0 )2 [with φ∗
0 = π/(N0α0)], �∗

‖ ≡ �(d∗)2, and

T (φ,z) =
∑

τ1,τ2=±
H (φτ1 ,zτ2 ), H (φ,z) = − ln [1 − ηCR(φ,z)] + ηCR(φ,z)

1 − ηCR(φ,z)
, (B6)

with φ± = φ ± α0, z = z ± L/2, and ηCR(φ,z) = (1 − ν)ζ1⊥(φ)ζ1‖(z). We have used the notation

ζ1⊥

(
t1√

�⊥R0

)
= 1

2

∑
k

{
erf

[
t1 +√�∗

⊥

(
1

2φ∗
0

− k

)]
− erf

[
t1 −√�∗

⊥

(
1

2φ∗
0

+ k

)]}
,

ζ1‖

(
t2√
�‖

)
= 1

2

∑
k

{
erf

[
t2 +

√
�∗

‖

(
1

2d∗ − k

)]
− erf

[
t2 −

√
�∗

‖

(
1

2d∗ + k

)]}
, (B7)

with erf(x) the error function.

APPENDIX C: DF FOR SPHERICAL LENSES

The correct dimensional crossover of HSs confined on a spherical surface means the following: When the density
profile of HSs is restricted to be on a spherical surface of radius R0, ρ3D(r,�̂) = ρ2D(�̂)δ(R0 − r), where (r,θ,φ) are the radius
and the angles of spherical coordinates, while �̂(θ,φ) = (sin θ cos φ, sin θ sin φ, cos θ ) is the unit vector in the radial direction,
we should obtain

βF (HS)
ex [ρ] → βF (SL)

ex [ρ] = R2
0

∫
d�̂�

(SL)
2D (�̂), (C1)

which results in a dimensionally reduced density functional for spherical lenses (SLs), where d�̂ = dφdθ sin θ is the solid-angle
element. The expression for �2D(�̂) is the same as in (2), with the weighted densities now defined as

n
(SL)
0 (�̂) = R0

2πR

∫
d�̂1ρ2D(�̂1)δ(α0 − γ (�̂,�̂1)), (C2)

ηSL(�̂) = R2
0

∫
d�̂1ρ2D(�̂1)
(α0 − γ (�̂,�̂1)), (C3)

NSL(�̂) =
(

R0

2πR

)2 ∫
d�̂1

∫
d�̂2ρ2D(�̂1)ρ2D(�̂2)δ(α0 − γ (�̂,�̂1))δ(α0 − γ (�̂,�̂2))K

(
Rγ (�̂1,�̂2)

α0

)
, (C4)

where α0 = sin−1(R/R0) and we have used the notations

cos γ (�̂,�̂i) = sin θ sin θi cos(φ − φi) + cos θ cos θi, i = 1,2, (C5)

cos γ (�̂1,�̂2) = sin θ1 sin θ2 cos(φ1 − φ2) + cos θ1 cos θ2, (C6)

which define the angles between the unit vectors �̂ and �̂i and �̂1 and �̂2, respectively. The kernel K(r) is that defined in Eq. (6).
The conditions ρ(φ,θ ) = ρ(φ + 2π,θ ), ρ(φ,θ ) = ρ(φ,θ + 2π ) should be imposed, as the density profile is now a periodic
function of φ and θ .
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