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Human languages differ broadly in abundance and are distributed highly

unevenly on the Earth. In many qualitative and quantitative aspects, they

strongly resemble biodiversity distributions. An intriguing and previou-

sly unexplored issue is the architecture of the neighbouring relationships

between human linguistic groups. Here we construct and characterize

these networks of contacts and show that they represent a new kind of

spatial network with uncommon structural properties. Remarkably,

language networks share a meaningful property with food webs: both are

quasi-interval graphs. In food webs, intervality is linked to the existence

of a niche space of low dimensionality; in language networks, we show

that the unique relevant variable is the area occupied by the speakers of a

language. By means of a range model analogous to niche models in ecology,

we show that a geometric restriction of perimeter covering by neighbouring

linguistic domains explains the structural patterns observed. Our findings

may be of interest in the development of models for language dynamics

or regarding the propagation of cultural innovations. In relation to species

distribution, they pose the question of whether the spatial features of species

ranges share architecture, and eventually generating mechanism, with the

distribution of human linguistic groups.
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1. Introduction
Human diversity expresses itself in vastly different ways in terms of cultural

traits, personal identity and relationships [1,2]. The human population is geneti-

cally quite similar [3], and technological advancements have led to personal

mobility and communication on a global scale, but cultural diversity remains

pervasive to a degree mostly comparable with biodiversity [4,5]. Most studies

comparing cultural and biological diversity rely on the language spoken by

individuals to define cultural groups; indeed, human languages are among

the most easily quantifiable cultural traits, and display a variety that has intri-

gued scholars for centuries [6,7]. The analogy between biodiversity and human

linguistic groups has led to the application of ecological methods to cultural

data, often driven by the intuition that analogous features might arise from

common generating processes [5,8,9]. Some remarkable patterns that both

systems share are the latitude diversity gradient [10] and the language–area

dependence [9,11], which mirrors the species–area relationship in ecology [12].

Also, the allometric dependence between the area occupied by the speakers

of a language and the number of speakers of that language [13] finds a counter-

part in the allometric dependence between species ranges and their abundances

[14,15]. The specific history of particular species or languages has little to no

influence in the construction of these collective statistical patterns.

A common representation of the relationships between biological species is

in the form of food webs, where links stand for trophic interactions [16]. Food

webs display the notable property of being graphs of high intervality, a feature

that is deeply related to the existence of a niche space of low dimensionality

http://crossmark.crossref.org/dialog/?doi=10.1098/rspb.2014.2947&domain=pdf&date_stamp=
mailto:jcapitan@gmail.com
http://dx.doi.org/10.1098/rspb.2014.2947
http://dx.doi.org/10.1098/rspb.2014.2947
http://rspb.royalsocietypublishing.org
http://rspb.royalsocietypublishing.org
http://orcid.org/
http://orcid.org/0000-0002-6245-0088
http://rspb.royalsocietypublishing.org/


rspb.royalsocietypublishing.org
Proc.R.Soc.B

282:20142947

2

 on January 29, 2015http://rspb.royalsocietypublishing.org/Downloaded from 
[16–18]. A graph is perfectly interval if their nodes can be

ordered in such a way that the neighbours of any node

occupy positions near that node, with no gaps left in

between. A quasi-interval graph has a small number of

gaps compared with suitable randomizations of its links.

Intervality is deeply related to the existence of an almost

one-dimensional configuration space [16,17], which implies

that feeding relationships in food webs can be determined

using a single species property (a ‘niche’ variable), and

explains the success of models of food-web structure in

accounting for many of their topological properties [19–23].

The probability that a food web is interval diminishes with

its size [24], though larger food webs maintain high interval-

ity in comparison with appropriate random models [17]. In

humans, interactions occur at many levels, from individuals

to confederations of countries, involving a hierarchy of con-

nectivity patterns unfolding at different scales of space and

time. Often, agents and their contacts can be depicted as net-

works embedded in space, a geometrical condition that

affects their structure and evolution [25].

In this contribution, we construct and analyse networks

of contacts between human linguistic groups, or language

networks for short. Language networks are undirected,

spatial networks that make explicit physical contacts between

the areas in which different languages are spoken. We apply

several measures commonly used in the analysis of complex

networks and show that language networks are characterized

by atypical topological properties, among which are a lognor-

mal degree distribution, a one-dimensional local structure

and quasi-intervality. The relevance of this latter property

is assessed through the introduction of three different con-

structive hypotheses, which eventually allow us to conclude

that the distribution of range sizes, together with a simple

perimeter-covering rule among spatial neighbours, explains

the patterns described. Nonetheless, we conjecture that the

fundamental origin of quasi-intervality in language networks

must arise from a non-trivial interaction between environ-

mental variables and settlement of human groups, leaving

an interesting question open in the area of linguistics.
2. Material and methods
(a) Language networks
Data on world languages have been obtained from the most

comprehensive database currently available, the Ethnologue

[26], which contains information on 6900 extant languages. The

origin of data in the Ethnologue stems from a collection by SIL

International (see http://www.ethnologue.com) and a map

developed by Global Mapping International (World Language

Mapping System, http://www.gmi.org/wlms/index.htm). In

the Ethnologue we find a list of the spatial domains spanned

by the speakers of each language and a centroid that is assigned

to those domains, a point in latitude–longitude coordinates that

best represents their average location. There is only one centroid

per language, and centroids are the nodes of language networks.

Since a language may have more than one disconnected domain

where it is spoken (the sum of domain areas being the range, or

total area, covered by the speakers of a language), centroids do

not always fall inside speaking domains. Two centroids are con-

nected if the two corresponding languages share boundaries in

any of the areas where they are spoken. To avoid insularity

effects, only languages found within the 100 largest landmasses

of the Earth have been considered. Data in the Ethnologue
describe the current distribution of languages, though the

observed heterogeneity can be put in correspondence with differ-

ent evolutionary states [9]. In order to further address the

changes in language networks caused by the disappearance of

languages and recent mechanisms such as colonization, we

have studied how different structural modifications in language

network definition affect the topological patterns described

below. In addition, we have considered a different dataset regard-

ing the distribution of native languages in North America prior

to colonization, to check the robustness of our results (see the

electronic supplementary material for further information).
(b) Definitions
The linkage density of an undirected network is defined as

z ¼ 2L/N, where N is the number of nodes and L is the total

number of links.

A planar network can be drawn on the plane in such a way

that its edges intersect only at their endpoints. Planarity has

been checked in our networks through application of Kuratows-

ki’s theorem to find the minimum number of links that have

to be eliminated to obtain a planar graph (see the electronic

supplementary material).

The degree distribution p(k) of a language network is the prob-

ability that a given linguistic group is in contact with k other

linguistic groups. Though languages are often spoken in more

than one isolated spatial domain, each border contact counts

only once for every possible pair of languages.

The average shortest path length kdl for a network is the aver-

age over all possible node pairs of the minimum number of steps

required to go from one node to another through existing links.

The clustering coefficient Ci of node i is defined as the number

of connections between pairs of neighbours of i divided by the

maximum value this quantity may take, ki(ki 2 1)/2. The cluster-

ing coefficient of a network is the average over all its nodes,

kCl ¼ N�1
PN

i¼1 Ci. This quantity can be exactly calculated in

some simple cases, as for regular networks (i.e. graphs for

which linkage density z is uniform for all nodes) embedded in

D dimensions, where

kCl ¼ l(z� 2D)

z�D
(2:1)

and l ¼ 3/4.

A perfectly interval directed network admits a permutation of its

nodes such that the ki directed links of any given node i point to a

subset of nodes labelled with consecutive indices [17]. This

means that the corresponding adjacency matrix (aij)—defined

by the conditions aij ¼ 1 if there exists a directed link from j to

i and aij ¼ 0 otherwise—has no gaps along its columns. If the net-

work is undirected, it is perfectly interval if and only if there

exists a node ordering such that the ki connections of node i
are restricted to ki circle-neighbours nearby. Therefore, if the

node at position i þ j is connected to i, so is i þ j 2 1 (and simi-

larly for node i 2 n and i 2 n þ 1, respectively). This implies

that the corresponding (symmetric) adjacency matrix has no

gaps along its columns and rows.

The intervality of a network can be measured through the

overall number of gaps G0 along its columns. For a perfectly

interval network, G0 ¼ 0. In particular, a one-dimensional regular

graph is an example of a perfectly interval network. Conversely,

the larger the number of gaps, the lower the intervality of the net-

work. The overall number of gaps depends on the particular

node labelling scheme. Hence there exists a node permutation

s ¼ (si) such that G0(s) is minimal. This quantity is the empirical

number of gaps of the network, G ¼minsG0(s). We have used

simulated annealing to estimate the minimum number of gaps

G in language networks (see the electronic supplementary

material).
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3. Results
We constructed the world’s network of contacts and extracted

from it the subgraphs corresponding to Africa, Asia, Europe

and the Americas. For each subgraph, a connected com-

ponent analysis was performed. World languages can be

grouped into a set of connected networks of variable size.

To analyse topological properties, we have selected the

13 largest connected components, with sizes ranging from

2126 nodes (Continental Africa) to 33 (a group of languages

located in the borders between Argentina, Bolivia and Para-

guay—ABP borders; table 1). Figure 1a depicts a subset of

the network obtained for New Guinea. Analogous results

and maps of networks for all other cases studied are provided

as electronic supplementary material.

(a) Topological properties
(i) Planarity
Despite the existence of strong spatial restrictions in our net-

works—a constraint that often facilitates planarity—language

networks are non-planar in general. Small language networks

are planar or almost planar, but the larger the network, the

larger the fraction of non-planar links (table 1). Planarity is

broken due to the variable number of isolated domains

where a language is spoken and to multilingualism, which

causes different domains to overlap (see the electronic

supplementary material for details).

(ii) Degree distribution
The distribution p(k) of the number of neighbours of a given

linguistic group presents a peak at value 2–4 and a fat tail

that extends to high degrees (up to 125 for Mandarin Chinese

in Continental Asia). In all cases, the degree distribution of

language networks is compatible with a discrete lognormal dis-

tribution. This means that most languages have a similar

number of neighbours, but there is a small fraction of excep-

tions with a large number of connections. Figure 1b shows

the degree distribution for New Guinea’s network. In order

to assess the likelihood that empirical degrees of nodes arise

from independent trials of a lognormal distribution, we have

compared this model with two others: an Erdó́s–Rényi

model, characterized by a Poisson degree distribution, and a

modified Watts–Strogatz model for which an analytical

expression of its p(k)—based on the derivation for the original

case [27]—has been calculated (see the electronic supplemen-

tary material). We have used maximum likelihood for

parameter estimation and Akaike’s information criterion for

model comparison. The lognormal model is rejected only in

one case (for New Guinea’s degree distribution) at a 5% confi-

dence level. Degree distributions for the remaining networks,

together with parameter estimates from lognormal fits as well

as the quantitative comparison between the models tested,

can be found in the electronic supplementary material.

(iii) Average shortest path length
For each language network, we have calculated the empirical

value of the average shortest path length kdl, which has been

compared with lengths rendered by different models for

which the functional dependence between kdl and the size

of the network N is known. Language networks are mostly

compatible with two-dimensional, planar networks of similar

average degree (square or hexagonal lattices; see the
electronic supplementary material), which indicates that

nodes are ‘separated’ on average as if linguistic domains

were spatially distributed yielding a perfectly planar network

of contacts. Two cases that show significant deviations are

Continental Africa and Continental Asia, which actually con-

tain the largest fraction of non-planar links (0.43 and 0.46,

respectively) among all networks analysed. In agreement

with this fact, they present average shortest paths well

below the value expected for regular, planar networks with

comparable linkage density z.

(iv) Clustering
The average clustering coefficient kCl obtained for language

networks has been represented in figure 2 as a function of z.

When the functional form (2.1) expected for regular networks

is fitted to the data, we obtain a reasonable fit with par-

ameters D ¼ 0.84 (95% CI: (0.56, 1.12)) and l ¼ 0.68 (95%

CI: (0.57, 0.80)). Therefore, language networks seem to

behave locally as one-dimensional networks. This is remark-

able considering that language networks are naturally

embedded in the two-dimensional space, and points to a

non-trivial reorganization of neighbouring relationships.

Clustering values are large when compared with random

networks with the same linkage density, for which

kCrndl ¼ z=N. Hence, though we could not discard that an

Erdó́s–Rényi model matched the degree distribution of

New Guinea language network, the random model cannot

explain the high clustering measured (table 1). In general,

no model without spatial correlations can account for high

values of kCl when z is low [25].

Contrary to what is observed for the shortest path length,

the clustering analysis described above reveals that language

networks exhibit local topological features compatible with

those of one-dimensional regular networks. This suggests

that our networks might be described using a reduced

number of variables embedded in a low-dimensional space,

as reported in previous work for food webs [16–18,22]. To

substantiate this possibility we have quantified to what

extent language networks are close to one-dimensional

regular graphs by analysing their intervality.

(v) Language network intervality
The values of the empirical number of gaps G obtained for

language networks as a measure of their degree of intervality

are summarized in table 1. An example of a node ordering

that minimizes the number of gaps for New Guinea is

shown in figure 3a (other networks are provided in the

electronic supplementary material).

(b) Assessment of the significance of intervality in
language networks

The absolute number of gaps is not informative per se of the

degree of intervality of a network, since G depends on the

network size, on the number of links it has and, in general,

on the precise connectivity pattern. Therefore, G has to be

compared with appropriate models able to reveal whether

the obtained value indeed originates from high intervality

or whether it is a generic property of networks sharing

some of the topological features described. In order to

assess the significance of intervality levels in language net-

works, we have first devised two random models that

http://rspb.royalsocietypublishing.org/
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Figure 1. Network of contacts between neighbouring linguistic groups. (a) Part of the network corresponding to New Guinea, indicating its localization on the
island. (b) Degree distribution of the empirical network (bars), maximum-likelihood fit to a lognormal model (dashed line) and average values obtained with the
RCM (circles) with its standard deviation (error bars) calculated by averaging over 1000 model realizations. New Guinea has been chosen as a representative example
due to its size—large enough to yield good statistical power but manageable so as to produce clear illustrations. There is no other particular feature that singles it
out from the set of networks analysed.
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conserve the degree distribution plus another a priori relevant

ingredient: the spatial random model (SRM) and the planar

random model (PRM). These models fail at recovering,

among others, the intervality of language networks. Finally,

and inspired by niche models in ecology, we introduce the

range contact model (RCM), which is shown to accurately

reproduce the structural patterns observed.
(i) Spatial random model
Let us hypothesize that the topological structure of language

networks arises from local spatial restrictions in such a way

that links can only be established between nodes (centroids)

that are at a certain mutual distance on Earth’s surface. For

this model, we have thus chosen to preserve, in addition to

the degree distribution, the empirically obtained distribution

of physical distances between pairs of centroids. These

empirical distributions are compatible with lognormal
distributions in most cases, thus implying the existence of a

typical distance for linkage but also a non-negligible prob-

ability that distant centroids are linked. The preservation of

the distance distribution is a qualitative way to account for

the restrictions imposed by a two-dimensional space—it

seems unreasonable that links can be drawn arbitrarily

between centroids regardless of their mutual separation. We

performed 50L link rewirings to randomize language net-

works under the two previous assumptions. Then, we

estimated the minimum number of gaps GSRM for the net-

work so obtained, and repeated for 500 independent

realizations. The distribution of GSRM values takes a Gaussian

shape (figure 3e,f; averages are reported in table 1) that has

been used to estimate the probability p that GSRM is smaller

than the empirical number of gaps G. There is only one

instance where we cannot reject this hypothesis at a 1–99%

confidence interval: ABP borders (see the electronic

supplementary material).
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(ii) Planar random model
Our second model corresponds to networks where the

empirical degree of planarity is preserved. To this end, only

links in the previously identified planar component are

rewired in a way that maintains planarity and the degree of

the node. The PRM assumes that the planar component of

language networks is strong and should be conserved. The

number of rewirings allowed in this case is significantly smal-

ler than under distance-preserving rewiring. Therefore, we

have rewired 10L links to generate random networks under

the PRM conditions, and repeated the procedure 500 times.

As above, the minimum number of gaps GPRM has been esti-

mated for each PRM network. The distributions are also well

approximated by Gaussian curves, again used to test the like-

lihood that the PRM explains the observations: in this case,

this hypothesis is consistently rejected for all empirical net-

works (see the electronic supplementary material). The

probability distribution of GPRM for New Guinea has been

depicted in figure 3f. Average values of GPRM are summar-

ized in table 1: they are systematically far from empirical

values in language networks.

Figure 3a–c depicts optimal orderings obtained for net-

works generated through SRM and PRM together with the

permutation that maximizes intervality for the empirical net-

work corresponding to New Guinea. Both SRM and PRM

qualitatively yield many more gaps (i.e. lower levels of

intervality) than those in language networks. Interestingly,

SRM and PRM implicitly reinforce the two-dimensional

structure of contacts between the ranges of linguistic

groups, a feature that seems to blur the one-dimensional

structure uncovered by clustering and high intervality.
(iii) The range contact model
None of the two putative explanations analysed is able to

account for the high intervality observed. At this point, it
seems necessary to resort to different kinds of models if we

wish to explain not just the high intervality measured in

language networks, but also their uncommon degree distri-

bution or the local similarity to networks embedded in a

one-dimensional space. Inspired by niche models for food-

web structure, which by definition entail a one-dimensional

organization, we have devised a model for language net-

works, the RCM, where the relevant variable is the total

area over which linguistic groups are spread. Our working

hypothesis is that the lognormal distribution of areas [13]

and the lognormal degree distribution of language networks

are somehow related through actual spatial contacts between

neighbouring linguistic groups ordered along a one-dimen-

sional ring. Group interactions—expressed as conflicts for

territory—coupled to demographic growth can quantitatively

account for the lognormal shape of the distribution of areas

[13]. Our expectation is that other topological properties

may also follow from an effective arrangement of areas stem-

ming from an intuitive condition on neighbouring domains:

the assumption that the perimeter of any domain is covered

by the sum of shared perimeters across all of its neighbours.

The RCM is defined as follows. (i) N0�. N random numbers

are drawn from a lognormal distribution with parameters

(ma,sa). Each of them represents an area ai. (ii) Areas are

arranged along a one-dimensional space in no particular

order. (iii) A directed link connects i to its adjacent neigh-

bours j ¼ i+1, i+2, . . . (1� j � N0) until the condition
ffiffiffiffi
ai
p � f

P
j[nn(i)

ffiffiffiffiaj
p

is first fulfilled. This amounts to assuming

that the perimeter of domain i is covered by the sum of shared

perimeters of all its neighbours. Parameter f weights the aver-

age fraction of perimeter shared by domain i with each of its

neighbours. (Note that, for regular tilings, f ¼ 1/z. In general,

f is inversely correlated to the linkage density in empirical

networks, but a precise functional relationship cannot be sys-

tematically derived.) The set of nodes linked to i, nn(i), is

determined as follows: the initial link is established with

http://rspb.royalsocietypublishing.org/


Table 2. Summary of topological properties for spatial networks (extracted from [25]) and language networks. Broad degree distributions that have not
been proved to be power-law-like in the original reference (no exponent has been calculated) are classified as ‘broad’. Exponential or other short-ranged
degree distributions have been classified as ‘peaked’. If various types have been reported within the same group, we mention both. Language networks
are mostly planar and share the N1/2 scaling of the average path length with other planar (or almost planar) networks reported. However, as for the
clustering values, these networks are similar to non-planar networks (airline, cargo ship or neural networks). The shape of the degree distribution is
distinctively new.

network planar clustering coefficient average path length degree distribution

airline networks no large (�0.6) �log N power law

cargo ship no large (�0.5) �log N power law/broad

neural networks no intermediate (�0.2) �log N or �N1/3 power law/peaked

public transportation mostly planar small (�0.1) �N1/2 peaked

railway mostly planar very small (�0.01) �N1/2 peaked

road networks yes intermediate (�0.2) �N1/2 peaked

power grid/water yes very small (�0.01) �N1/2 peaked

linguistic groups mostly planar large (�0.5) �N1/2 lognormal
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the left or right neighbour with equal probability, and sub-

sequent links occur with neighbours on alternating sides,

not previously considered, and in order of decreasing proxi-

mity to i. The procedure is repeated for each area i; note that

the order in which areas are selected is so far irrelevant. (iv)

By construction, the network generated through steps (i)–(iii)

is directed. Since language networks are undirected, we intro-

duce an additional parameter q that sets the probability that a

directed link is complemented by its reverse counterpart;

with probability 1 2 q the existing link is removed. In this

symmetrization process, some nodes or small groups of

nodes in the network might become disconnected from the

bulk. We have checked that the final networks used are con-

nected by discarding these small disconnected components,

and accepting RCM networks only if their final size has at

most a 0.5% size difference to N. The likely elimination of

some nodes under application of the algorithm is the

reason to begin with N0�. N nodes.

Variations in parameter ma mostly cause a rescaling of the

areas, leaving any other topological property of the resulting

networks essentially invariant. Therefore, we fix ma to its

empirical value (see the electronic supplementary material),

and the RCM model is left with three relevant parameters:

the dispersionsa of the lognormal distribution of areas, the frac-

tion of shared perimeter f and the symmetrization probability q.

(iv) Comparison of the range contact model with language
networks

The values of parameters that better render the empirical

adjacency matrix of each of the 13 studied networks are

obtained through a maximum-likelihood procedure (see the

electronic supplementary material for further information).

The degree distribution yielded by the RCM is fully com-

patible with data in all cases. An example of the goodness of

fit can be seen in figure 1b. The RCM distributions of the

remaining networks also show an excellent agreement (see

the electronic supplementary material). The RCM reproduces

with reasonable accuracy the values of the clustering coeffi-

cient kCl and the average shortest path length kdl (table 1).

Probably the most remarkable result concerns the distribution

of the minimum number of gaps, GRCM, derived from the
model. The distribution of this variable has been obtained

through 500 independent RCM realizations for each of

the 13 language networks analysed (figure 3e,f displays the

RCM distribution for New Guinea). The hypothesis that

the degree of intervality of language networks can be

accounted for with RCM networks cannot be rejected in

any case at a 1% confidence level. In addition, the RCM

accounts for the local structure of language networks

measured through the distribution of the number of gaps

per node (see the electronic supplementary material for

details). An example of an optimal RCM network mimicking

New Guinea’s language network is represented in figure 3d.

The same hypothesis testing has been conducted for net-

works modified according to three different mechanisms:

first, a procedure of domain aggregation that mimics

language colonization; second, the removal of hubs (i.e.

widespread languages) from language networks; and third,

the use of available, high-resolution data of pre-colonial

language distributions. High intervality of language net-

works remains a robust pattern under such modifications,

akin to different processes of language network evolution.

A detailed account of results can be found in the electronic

supplementary material.
4. Discussion
The topological structure of networks of contacts between

linguistic groups is consistently similar in all cases analysed

despite likely differences in the accuracy of language identi-

fication in different world regions. This indicates that the

characteristics uncovered are generic and robust under

different classifications (such as if more taxonomic levels

are considered for languages or different cultural traits are

used) and under modifications that mimic the natural pro-

cesses affecting language networks, as we have shown.

Language networks present a particular architecture pre-

viously unseen in any other networks described in the

literature. A lognormal-like degree distribution has been

rarely observed [28,29], and to the best of our knowledge

never reported in spatial networks. Table 2 summarizes

the main properties of the latter in comparison with

http://rspb.royalsocietypublishing.org/
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language networks. Language networks constitute the

second natural example of quasi-interval graphs, together

with food webs [17,18]. This property supports that the

architecture of language networks is mainly driven by a

single quantitative attribute of nodes, which has been

shown to be the area occupied by linguistic groups. Further

support that domain area is the quantity that shapes

language networks stems from the positive correlation

between area and node degree, as the RCM trivially predicts

(these results will be published elsewhere). In analogy with

niche models, we have introduced the RCM, which success-

fully reproduces the structure and organization of language

networks. Other network models parametrized in two

dimensions have been successful in reproducing certain

food-web properties [30], a small number of species attri-

butes being needed to explain their global topology [18].

Confronting language network data with those models is a

future direction worth pursuing.

The number of neighbours of a given language depends

on its area of spread, a quantity strongly correlated to the

number of speakers [13]. The number of contacts is also a

measure of the likelihood of conflicts between different

groups. It has been argued that the frequency and strength

of those conflicts affects the area occupied by the group

[13]. A particular form of conflict between neighbouring

languages is competition for speakers. The dynamics

of extinction of languages is influenced by the attractiveness

of competing languages [31], by geography [32] and, plausi-

bly, by the number of competitors, which we have shown to

vary broadly.

Overall, language networks might be regarded as a first

approximation to networks of contacts between cultures. As

such, their topology may have implications in the way cul-

tural innovations (e.g. farming, animal domestication or

iron tools) spread in the past [33], and in the modelling of

the spreading process [34]. A common language is a fast

vehicle for the dissemination of knowledge assuming that

individuals speaking the same language experience stronger

ties than those shared with other linguistic groups. The exist-

ence of a complex underlying topology of contacts may entail

qualitative changes in the propagation dynamics, as com-

pared with propagation on homogeneous media. This

modification echoes how our understanding of epidemic

spreading was improved upon the introduction of hetero-

geneous networks [35] and calls for a deeper study of its

effect in the cultural relationships that might be established

between human groups.

High intervality, a property reflecting a one-dimensional

underlying ordering of nodes (linguistic groups in our

case), is indeed a remarkable feature considering that

language networks are embedded in two-dimensional

space. Although language domains are clustered together,

contacts between them are such that the spatial ordering of

languages resembles one-dimensional arrays. This suggests

that linguistic communities interact along certain directions

to a greater extent than would be expected for spatial net-

works with low intervality. These patterns are robust

throughout different regions across the world, and could be

used to further improve our understanding of language

organization, change and extinction.

The placement of cultural groups is plausibly related to

properties of the landscape. Mountain ranges, coastlines,
rivers and fertile valleys condition the position and extension

of human settlements, as well as preferred directions for

movement and group interaction [36–38], which seem to

partly eliminate the freedom of a two-dimensional space in

favour of linear interactions among neighbouring groups.

Indirect evidence of the role played by the environment

arises from the significant dependence between linguistic

diversity and, especially, landscape roughness and river den-

sity [9]. Whether an explicit consideration of topography

might explain the quasi-intervality of language networks is

an open question that deserves additional attention.

Widespread languages play a relevant role in several of

the issues tackled. Usually, they have many neighbours,

responsible for most ‘shortcuts’ in our networks and, conse-

quently, for decreasing intervality. The elimination of those

languages in the Ethnologue networks, or their progressive

appearance through models that effectively consider

modern evolutionary processes of language extinction and

growth, shows however that they are not essential in deter-

mining the topological properties uncovered. Widespread

languages are the hubs of language networks, though at

the same time they percolate across continents, and cause

the isolation and fragmentation of groups of minority

languages. That is the case for North America, with 609

remaining languages forming 30 disconnected components

located on the continental landmass. Asia also holds an

astonishingly large number of solitary languages (34% of

its total diversity) and many disconnected components.

However, the latter are mostly due to the abundance of

large islands, not to fragmentation on the mainland. The

structure of language networks is in continuous transform-

ation due to the sustained growth of widespread

languages and to the disappearance of many others: 3500

languages are predicted to become extinct within the next

century [39]. Extinction dynamics are likely to be affected

by variations in contacts with potentially competing

languages, but also by increasing isolation and area shrink-

age. These factors find their counterpart in ecology. Habitat

fragmentation leads to the isolation of species, to a reduction

of their home ranges, and eventually to an accelerated

extinction [40]. It would be interesting to extend our analysis

to networks of contacts between species ranges. An intri-

guing question is whether the architecture of those networks

belongs to the class here described and, in that case, whether cul-

tural and biological diversity patterns are the final products of

generic constructive processes. As our knowledge increases, so

does evidence supporting the qualitative and quantitative paral-

lelisms between both evolutionary systems.
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intervality of food webs: from body-size data to
models. J. Theor. Biol. 334, 35 – 44. (doi:10.1016/j.
jtbi.2013.06.004)

24. Cohen JE, Briand F, Newman CM. 1990 Community
food webs: data and theory. Berlin, Germany:
Springer.
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