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Clustering in vibrated monolayers of granular
rodst

M. Gonzalez-Pinto,” F. Borondo,® Y. Martinez-Raton® and E. Velasco®

We investigate the ordering properties of vertically-vibrated monolayers of granular cylinders in a
circular container at high packing fraction. In line with previous works by other groups, we identify
liquid-crystalline ordering behaviour similar to that of two-dimensional hard rectangular particles subject
to thermal equilibrium fluctuations. However, due to dissipation, there is a much stronger tendency for
particles to cluster into parallel arrangements in the granular system. These clusters behave as a
polydisperse mixture of long life-time 'superparticles’, and some aspects of the system behaviour can be
understood by applying mean-field theories for equilibrium hard rectangles, based on two-body
correlations, to these 'superparticles’. Many other features of the granular system are different: (i) for
small particle length-to-breadth ratio k, we identify tetratic ordering at moderate packing fractions and
smectic fluctuations at higher packing fractions, with no sharp transition between the two states. Both
types of ordering can be explained in terms of clustering. (i) For large k, strong clustering precludes the
stabilisation of a uniaxial nematic state, and the system exhibits a mixture of randomly-oriented clusters
which, as packing fraction is increased, develops into states with smectic fluctuations, again through a
diffuse transition. (iii) Vorticity excitations of the velocity field compete with smectic ordering, causing
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very stiff against vorticity, and long-standing steady states, spatially and orientationally homogeneous
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|. Introduction

Thermal systems of particles driven by exclusion forces are
governed solely by entropy and show interesting behaviours.
Hard spheres and discs crystallise at high packing fraction ¢,
while dense systems of anisometric particles can also form
oriented fluid phases (nematics) when the particle aspect
(length-to-breadth) ratio « is larger than a critical value.? In
the uniaxial nematic phase the long axes of the particles tend to
orient parallel to each other and a globally oriented direction
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except for four symmetrical defects located close to the wall, can be observed.

(the director) results. When « is low, two-dimensional particles
of rectangular shape form instead a different nematic phase,
the tetratic phase,® an exotic biaxial phase with two (instead of
one) perpendicular, equivalent directors. The stability of the
tetratic phase stems from the particularly favourable perpendicular
arrangements of particles with sharp corners. For high ¢ particles
form phases with partial (and eventually full) spatial order, although
the exact phase diagram of, in particular, hard rectangular particles,
and the dependence with aspect ratio, has not been studied in
detail.

Horizontally vibrated monolayers of granular, dissipative
particles have been shown to exhibit patterns that resemble those
of thermal equilibrium systems.*'° Different spatial patterns have
been found in experiments on granular rods where the three-
dimensional degrees of freedom of particle centers of mass or the
effect of gravity are crucial to explain the observed textures.'™'?
Monolayers of granular rods of various shapes show liquid-crystal
arrangements at high ¢. In one recent experiment,® the transition
from a fully disordered (isotropic) phase to the uniaxial nematic or
tetratic phase has been characterised from the behaviour of
standard order parameters obtained from adequate averages of
particle orientation distributions. Depending on the aspect ratio,
the isotropic was shown to order into a tetratic (low k) or uniaxial
nematic (high «) phase as ¢ was increased. The critical aspect ratio
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k* that separates the two ordered phases was estimated to be
k* ~ 7.3. This is much higher than the value predicted by mean-
field theories (k* = 2.2 or 3.2, depending on whether three-
particle correlations are neglected or not'*'%), but close to the
results from equilibrium computer simulations.'® However, the
value of packing fraction at the isotropic-uniaxial nematic
transition in the granular system shows qualitatively significant
deviations with respect to the equilibrium (either mean-field
theory or simulation) calculations, indicating the existence of
genuine non-equilibrium effects associated with dissipation.
Clearly, in this system entropic or exclusion interactions are
strongly coupled to dissipation induced by friction and inelastic
collisions. It remains to be seen to what extent entropy-driven
and packing effects compete with hydrodynamic granular flow
and dissipation to produce the observed ordered patterns, and
what is the relative role of both sources of dissipation at any
given packing fraction. At least for hard spheres, there seem to
exist some regimes where mean-field theories and computer
simulations for equilibrium thermal hard particles (i.e. methods
based on entropy maximisation) are useful in discussing results
from granular systems. For example, radial distribution functions
of dense systems of granular spheres and discs are quantitatively
similar to the corresponding equilibrium systems,"® but granular
discs show a more complex phase behaviour and a strong
phase dependence with respect to the shaking frequency and
amplitude.'® Phase ordering of granular anisometric particles
may also be strongly affected by the manner in which energy is
injected into the system and dissipated.

In this paper we report on experiments using vibrated mono-
layer of granular cylindrical particles, which project on the
horizontal plate approximately as hard rectangles. Our aim is
to assess to what extent the ordered liquid-crystalline patterns
predicted for thermal hard rectangles in equilibrium can be
observed in the granular experiments. In doing so, we have
found a strong dependence on particle aspect ratio of the liquid-
crystalline patterns observed, as previously obtained.'® We have
found that the tendency for clustering of particles is very strong,
and that these effects help explain most of the phenomenology
observed, in particular, some of the differences with respect to
equilibrium systems. Thus far, clusters and clustering effects in
general have not been carefully analysed in experiments on
dense packings of vibrated granular rods. We argue that clustering
gives a useful picture to explain the different high-density
configurations with respect to aspect ratio. Dense collections
of dissipative rectangular particles exhibit a strong tendency to
lie parallel to each other, and clusters of approximately parallel
particles are formed easily. These clusters are very stable, and
in many respect behave as single units, which we call ‘super-
particles’. The clustering tendency is much stronger than in
fluids of equilibrium thermal rods, as demonstrated by com-
parison with equilibrium Monte Carlo simulations on thermal
particles. In the vibration experiments, particles of low aspect
ratio, k < 8, are seen to form clusters with square or close-to-
square shape quite easily, and these superparticles of still lower
effective aspect ratio may orient parallel or perpendicular in
relatively efficient packing configurations; bulk tetratic ordering,
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and smectic at even higher packing fractions, may result. However,
for long rods, k > 8, large clusters involve many particles and
tend to bend, so that superparticles cannot pack into tetratic or
uniaxial nematic configurations: randomly oriented arrangements
of large clusters or ‘patches’ are preferred, which at high density
also exhibit smectic fluctuations. In addition, this granular system
features the usual non-equilibrium properties of vibrated mono-
layers: strong dependence with excitation parameters, formation
of cavities and large density fluctuations, hydrodynamic flow
competing with ordering, etc. In particular, we do not observe
sharp transitions between states with different ordering properties,
a result which is at variance with those of ref. 10. However, these
results may not necessarily be in contradiction, given that the
experimental conditions of both experiments are not identical and,
in addition, different protocols to calculate the order parameters
could have been used. Another distinct feature of our experiment
is that, in the high-density regime, there is an absence of well-
defined steady states, which we explain as a competition between
smectic ordering effects due to packing and disordering effects
due to excitation of hydrodynamic modes. Finally, an intriguing
result is that, as observed in ref. 10, x* = 7-8 is a critical aspect
ratio separating two types of orientational ordering, similar to
equilibrium. But clustering effects and the associated formation
of superparticles renormalise this value to xk* ~ 2.1, a value very
close to that predicted by equilibrium mean-field theories. We
suggest that clustering renormalises the range of interactions,
which are reduced to the mean-field, two-particle level.

In Section 2 details on the experiment and the parameters
used are given. Section 3 presents the results from the cluster
analysis, the order parameters and the angular distribution
functions, both for rectangles and for superparticles. Section 4
presents a discussion and our interpretation of the results, and
also contains some concluding remarks. An explanation on the
analysis tools is relegated to the Appendix.

ll. Experiment and analysis

Our experiment uses nonmagnetic steel cylinders of length L
and breadth D = 1 mm. Plastic cylinders were also studied in
one case for comparison.'” The packing fraction is calculated as
¢ = NLD/A, where N is the number of cylinders and A the area of
the circular cavity. The vibration experiment is standard: particles
are inside a cylindrical container, consisting of a thin horizontal
cylindrical cavity made of aluminium, with a diameter of 14 cm.
An upper plastic lid limits the free motion of cylinders in the
vertical direction, which is ~0.8D, so that particles cannot over-
lap in the plane of the plate. Vertical vibration is induced by an
electromagnetic shaker which generates a sine-wave vertical
motion of frequency v and amplitude a. The value of frequency
is set to v = 39 Hz. Effective accelerations I' = a*/g in the range
3-4 are used. Results are observed to be rather sensitive to the
frequency, but not so much to the value of a. Some frequencies
tend to promote the formation of cavities, i.e. persistent regions
with very few particles,® even in the high-packing-fraction regime.
We have tried to avoid these states, as well as the dilute regime,
by always choosing ¢ 2z 0.50.
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To analyse the experiments we use standard procedures. All
measured quantities are obtained from the projected coordinates
of the cylinders on the plate, r = (x,y), and from the projected
orientations of the long particle axis é of each particle. These
are obtained by using the Image] software.'® Typically 98% of
particles are successfully identified. Particle velocities v are
calculated by identifying particle positions in two consecutive
frames, separated by 0.3 s, and using a simple finite-difference
approximation. Success in the identification of particle trajectories
decreases from 98% for k > 8 to 85% (at worst) for «k = 4; the latter
case, however, involves a larger number of particles, so that
statistical errors are not significantly altered. Calculation of velo-
cities allows for the computation of a local granular temperature
(see Section 3). The orientational and positional orders in the cell
are quantified by the local and global uniaxial nematic, g,, tetratic,
q4, and smectic, o, order parameters. The nematic and tetratic
order parameters were obtained through the orientational
distribution %(¢), and also through properly defined order tensors.
Details on the definition and calculations of these parameters are
given in the Appendix.

Finally, in order to study collective properties of the cylinders
from a different perspective, we analysed clustering properties.
This has not been done systematically in vibrated experiments
on rods, but we have concluded that these properties are
extremely useful. We define a cluster as a collection of cylinders
that are approximately parallel and spatially close to each other.
Our connectedness criterion imposes two conditions for two
cylinders to be connected: (i) their projected long axes form an
angle A¢p = ¢ — ¢’ < 10° and (ii) their projected geometric
centres are at a distance d < 1.8D (we should mention that, as
usual in cluster analysis, results turn out not to depend qualitatively
on the exact definition of the connectedness criterion). Once the
connection matrix for the cylinders is established, a standard
routine to identify the cluster distribution N.(n) is used to obtain
the average number of clusters N, of a given size n, where n is the
number of cylinders making up the cluster.

[1l. Results

In this section we present results for the different quantities
defined in the previous section. In all the experiments particles
were initially placed in the container by hand, trying to achieve
a random initial arrangement. No dependence on the initial
particle configuration of the final results has been observed.

A. Clustering

We start by looking at the particle distribution from the point of
view of cluster formation. Clustering effects play an important role
in dense packings of dissipative rectangular particles. Clustering is
known to enhance the tendency for tetratic ordering in dense
packings of particles with low x at thermal equilibrium. Monte
Carlo simulations on equilibrium rectangular rods demonstrated
this clustering effect.”® A theory based on stable, polydisperse
clusters with a distribution decaying exponentially with size was
shown to lead to good agreement with simulations of equally-sized

This journal is © The Royal Society of Chemistry 2017
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rectangles.”® It is therefore worthwhile to discuss the cluster
statistics of our experiments.

The formation of clusters is quite apparent in our dissipative
vibrated system. Fig. 1 shows a picture of a typical configuration of
a system with x = 10 and ¢ = 0.82. Particles belonging to the same
cluster, as defined by the connectedness criterion mentioned in
Section 2, are drawn in the same colour. Well-packed clusters are
formed. The dynamics of a given cluster can be followed for a
significant fraction of the total experimental time.

Fig. 2 shows the cluster distribution function N.(n) from a
real vibration experiment compared to an equivalent Monte
Carlo simulation of hard rectangles in a circular cavity. The
aspect ratio in both cases is k = 4, the packing fraction is set to
¢ = 0.52 and the number of particles was adjusted to be equal in
both experiment and simulation. Although both distributions
are close to exponential, N.(n) oc e *", we can see that the
cluster distribution of the granular system decays more slowly
with cluster size (approximately a factor 3 in decay parameter),
indicating the stronger tendency of the granular system to
cluster than in the thermal equilibrium system.

The experimental distribution in Fig. 2 is an average over many
configurations representative of the steady state. ‘Instantaneous’
cluster distributions can also be obtained for each configuration. A
large and rapid variation of the instantaneous distribution towards
the steady-state distribution is observed. The ESI{ contains a
comparison between the initial and final distributions of a
particular experiment.

Clustering of dissipative particles stems from the locally
cooling effect of inelastic particle collisions and the associated
tendency of particles to align in highly dense packing configurations.
Contrary to the equilibrium system, dissipation in the granular fluid
can lead to local inhomogeneities of the granular temperature.

———
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Fig. 1 Snapshot of particle configurations of a system with x = 10 at
packing fraction ¢ = 0.82. Particles belonging to the same cluster are
drawn as straight lines of the same colour.

Soft Matter, 2017, 13, 2571-2582 | 2573
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Fig. 2 Normalised cluster distribution functions N.(n) as a function of
cluster size n for ~2000 particles with k = 4 at packing fraction ¢ = 0.52 in
a circular container of diameter 14 cm. Open circles: Monte Carlo
simulation at thermal equilibrium. Filled circles: vibration experiment.
Straight lines represent reference exponential functions with values for
decay parameters as indicated.

Since particles organise into long-lived clusters, one could think
that local inhomogeneities caused by the local cooling effect could
give different granular temperatures for clusters of different sizes.
We define the granular temperature Ty(n) for clusters of size n
from the mean square velocity of the particles in the cluster,

Ty(n) = <1Z| - V|2> , 1)

i=1

where v; is the velocity of a particle in the cluster, V the local
velocity of the cluster centre of mass, and (- - -),,, is an average over
clusters of size n and over time. Fig. 3 shows the cluster granular
temperature as a function of cluster size for two different conditions.
Although we have observed that in ~80% of the experiments Ty(r)
decreases with #, as in panel (a), the effect is not robust, since in the
remaining cases T,(n) hardly changes with size, as in panel (b).

In Fig. 4(a-c) the cluster distribution N.(n) for three different
cases are plotted as a function of cluster size n. The distributions
are approximately exponential with a decay parameter / that
depends on aspect ratio and packing fraction. The exponential
behaviour of N.(n) was already observed in Monte Carlo simulations
of thermally fluctuating hard rectangles,” and can be attributed to a
mechanism for cluster formation where the probability of a particle
joining (or leaving) a cluster is approximately independent of the
cluster size.”"

Fig. 4(d-f) show the distribution nN.(n) for the same cases as
in panels (a-c). These distributions give the fraction of particles
in the system that belong to a cluster of size n. For reference, we
have drawn in each case a vertical dashed line located at a
cluster size equal to the corresponding aspect ratio. Note that
the position of these lines are very close to the maximum of the
corresponding distributions. This feature is general for k < 8,
and means that particles have some preference to arrange into
square clusters with size n ~ k. The effect is not so clear for
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Fig. 3 Cluster granular temperature Ty as a function of cluster size for
two different conditions. (a) k = 4, ¢ = 0.68. (b) k = 6, ¢ = 0.78. Error bars
indicate the mean-square fluctuation of each data point.
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K > 8, see Fig. 5(a), although a change in behaviour clearly exists at
n ~ k. Our conclusion is that, for particles of low aspect ratio, the
probability of a particle to be part of a cluster of size n is maximum
when n ~ k, ie. for close-to-square clusters. These clusters have a
characteristic axis (along or perpendicular to the particle long axes,
according to whether n < k or n > k, respectively) and seem to be
particularly stable during the course of the experiment. Interaction
between these clusters drives the formation of extended ordered
patterns in the system, as will be seen below.

On closer inspection, some cluster distributions are seen to
be more complex than a simple exponential. First, for sizes
n < k, the distribution is usually not exponential. Second, and
more significant, is the fact that, as packing fraction is increased,
the distributions develop a nonexponential tail at larger and
larger values of n. At high ¢, they correspond to fat-tailed
distributions, rather than to pure-exponential, indicating the
existence of a marked process of cluster aggregation. An example
is given in Fig. 5(b). This feature signals the formation of large
ordered structures that will be analysed below.

B. Order parameters and dynamical evolution

In this section we look at order parameters and angular
distribution functions. These results are crucial to identify

This journal is © The Royal Society of Chemistry 2017
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Fig. 4 Plots in (a—c) give the normalised cluster distribution functions N.(n) as a function of cluster size n for (a) k = 4 and ¢ = 0.59; (b) k = 6 and
¢ =0.69; and (c) k = 8 and ¢ = 0.78. Straight lines correspond to exponential behaviour with decay parameters indicated with labels. Plots in (d—f) are the
fraction of particles in clusters of size n. (d) Conditions as in (a); (e) conditions as in (b); and (f) conditions as in (c). In (d—f) the dashed vertical line indicates

the corresponding value of x.

the type of ordering in the system.'® Due to spatial and time
fluctuations, the order parameters depend on both position and
time, and proper local fields g,(r,f) and g4(r,t) have to be obtained
from the particle positions. To obtain the fields at some point r, we
average over the particles located within a circular region of radius
¢ centred at r. The values of gr,t;¢) depend on the radius &; one
would expect these values to saturate for a size ¢ of the order of the
coherence length or typical domain size. This is approximately the
case, but it is not possible to establish a clearcut criterion. Fig. 6
shows the time-averaged values of the local parameters, as a
function of ¢/L, for all cases studied. In general the order
parameters decrease with . From the figures, we have reached
a compromise and in the following we set the values for the
radius used to calculate the local order parameters to & = 4L.

Let us now examine the time evolution of the order para-
meters. Fig. 7(a) shows the time evolution of the order para-
meters g, and g, for an experiment with x = 6 and ¢ = 0.65. After
a short transient of approximately 10° s, the order parameters
level off at more or less constant values with large fluctuations
about these values, of typically 20% with respect to the mean.
These steady-state values of the order parameters correspond to
a well-developed and stable tetratic configuration. Note that a
purely tetratic state would have g, = 0, g, # 0. In our case,
where the number of particles is N ~ 10%, we expect a non-zero
value of g, due to the finite number of particles.

However, we have identified cases where order parameters
fluctuate strongly, and a steady state does not seem to exist.

This journal is © The Royal Society of Chemistry 2017

These cases always correspond to high-density configurations,
irrespective of the aspect ratio. An example is given in Fig. 7(b),
where the time evolution of g, for the case x = 8 and ¢ = 0.81 is
shown. Orientational order builds up with time, but there seem
to be abrupt events in the system which destroy order. We later
argue that these situations are associated to the formation of
smectic fluctuations at high density. Smectic domains are very
sensitive to hydrodynamic shear modes, which are known to be
excited in vibrated monolayers of rods.” Note that the duration
of the experiments in Fig. 7(a) and (b) was particularly long
since the aim was to establish the existence of steady states in
the system. With this information, the duration of the experiments
to be reported in the following were adjusted according to the time
evolution of the order parameters.

For intermediate values of ¢, steady-state values for ¢, and
g4 can always be obtained. Fig. 8 collects the results for these
order parameters from experiments with particles of different
aspect ratios x. We can identify two general trends: (i) the
uniaxial order parameter g, is low (ii) the tetratic order parameter
increases steadily with packing fraction for particles with x = 4
and 6, while it remains constant for 10 and 12, the case 8 being a
critical case. At even higher packing fractions the g, order
parameter rises up to relatively high values; this is due to the
appearance of smectic domains in the system. Smectic fluctuations
will be covered in more detail later. Overall we can say that there are
no sharp boundaries between the differently ordered states,
and that large fluctuations or domains with one type of order

Soft Matter, 2017, 13, 2571-2582 | 2575
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Fig. 5 (a) Fraction of particles in clusters of a given size, nNc(n)/N, as a
function of cluster size n, for the case k = 10 and ¢ = 0.64. The inset is a
semilogarithmic graph. (b) Normalised cluster distribution functions N(n)
as a function of cluster size n for the case k = 8 and ¢ = 0.81. The straight
line in both panels corresponds to exponential behaviour.

80 100

may be found in samples with a predominance of a different
type of order in large intervals of packing fraction. This observation
is at variance with the findings in ref. 10, where a detailed ‘phase
diagram’ including sharp ‘phase transitions’ was obtained.
However, we must be cautious when emphasising the different
results of the experiments, since different protocols to quantify
the order may lead to different conclusions on the global ordering
behaviour.

To more easily connect the order parameters with particle
configurations, Fig. 9 shows distribution functions for the cases
x =4 and 8 and different packing fractions in each case, along
with typical snapshots. Panel (a) corresponds to the case k = 4
and ¢ = 0.52. The orientation distribution is uniform and the
steady-state configurations pertain to the isotropic phase. Panel
(b) corresponds to the same aspect ratio, but the packing
fraction is increased to ¢ = 0.70. The distribution exhibits two
peaks at ¢ = 0° and 90°, which corresponds to configurations
containing large domains with tetratic ordering. Note in the
image the considerable layering next to the circular wall,
extending up to three layers into the cavity. Finally, panel (c)
corresponds to the case xk = 8 and ¢ = 0.81. Here configurations
containing large uniaxial smectic domains, with a much lower
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Fig. 6 Dependence of order parameters g, and g4 on radius of averaging
circular region &/L, scaled with particle length L. Left panels (a), (c), (e), (9)
and (i) refer to g,, while right panels (b), (d), (f), (h) and (j) depict g4. Aspect
ratio x increases from top to bottom, as indicated by labels. Different
symbols indicate different densities, in the sequence @, ®. @, . ™, W and
A for increasing density. For each value of k, the sequences in ¢ are: for
Kk =4, 0.52, 0.59, 0.64, 0.68, 0.70 and 0.75; for k = 6, 0.55, 0.60, 0.64,
0.69, 0.74, 0.78 and 0.80; for k = 8, 0.65, 0.67, 0.70, 0.74, 0.78 and 0.81;
for k = 10, 0.59, 0.64, 0.70, 0.73, 0.78 and 0.82; and for x = 12, 0.65, 0.69,
0.73, 0.77 and 0.81.

secondary maximum in the orientation distributions, are formed;
this case corresponds to the high value of g, visible in Fig. 8. We
note that, in (a), the distribution function is not completely flat,
but presents some inherent structure. This is due to a bias
introduced by our procedure to translate the origin of angles to
the direction given by the director in each sampling region. In
essence this effect gives rise to non-zero values of the order
parameters for regions containing a few non-oriented rectangles.

One important result of our experiments is that it was not
possible to identify truly uniaxial nematic configurations, not

This journal is © The Royal Society of Chemistry 2017
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Fig. 7 (a) Time evolution of the uniaxial g, and tetratic g4 order para-
meters for an experiment with k = 4 and ¢ = 0.64. (b) Time evolution of
uniaxial nematic order parameter g, for the case k = 8 and ¢ = 0.81. In this
experiment the system exhibits local smectic fluctuations.

even locally, for all particle aspect ratios explored. This result
includes the longer particles, for which both equilibrium
systems and the vibration experiments of ref. 10 predict uniaxial
nematic phases. This phenomenon is signalled by the fact that
the local uniaxial nematic order parameter, g,, is always low,
regardless of the size chosen for the region where the local
average is performed. This seems to indicate that uniaxial
correlations in the direction of the long axis of a particle decay
very fast (except in the case where well-developed smectic
fluctuations are present), precluding the formation of local uniaxial
nematic order. We think that this behaviour is a consequence of
the strong clustering tendency exhibited by a granular system of
rectangular particles. Uniaxial nematic phases have been iden-
tified by Narayan and coworkers in vibrated monolayers of steel
rolling pins,” but cylinders only exhibited tetratic order. However, in
ref. 10 uniaxial nematic phases were identified in systems of plastic
cylinders. We have used the same plastic cylinders in our vibration
setup and confirm our results for steel particles. However, it is true
that the experimental conditions of the two experiments (free
particle height, cavity size, etc.) are not identical, and therefore the
different results are not conclusive. The identification of ordered
phases may be a subtle question in these dissipative granular

This journal is © The Royal Society of Chemistry 2017
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Fig. 8 (a) Uniaxial nematic g, and (b) tetratic g4 order parameters as a
function of particle packing fraction ¢ for different aspect ratios « (indicated
in the keybox). The dotted lines indicate that the system exhibits large
smectic fluctuations. In this case values were obtained from averages over
the whole experiment.

0.8 0.9

systems subject to fluctuations and stringent geometrical
constraints, and further studies on this question are desirable.

In the range of packing fractions and particle aspect ratios
where Miiller et al.'® claim to find a uniaxial nematic phase, we
have observed instead a random mixture of clusters or ‘patchy’
state consisting of large groups of particles in parallel arrangements,
with groups oriented more or less at random with respect to
each other. An example of this state is given in Fig. 1. As already
discussed, these groups of particles are quite stable, since they
have a long lifetime compared with the typical diffusion time
(obviously the identity of a given cluster remains the same provided
only a few particles are joining or leaving the cluster in a short time).
The example of Fig. 1 corresponds to the uniaxial nematic region of
ref. 10 (note that the effective cavity sizes of the two experiments are
equivalent). Clearly local tetratic order is absent, but so is local
uniaxial nematic ordering. Again, different experimental conditions
may be causing different behaviours.

Summing up our findings on orientational order in the
monolayer, Fig. 6 reflects the behaviour in a very transparent
way. For k = 4 and 6 ¢, is low and g, high, a condition for
tetratic ordering. At high density g, begins to increase at sizes
r/L compatible with the observed fluctuating smectic domains.
Kk = 10 and 12 exhibit low values of both order parameters,
corresponding to the patchy state with locally frustated orientational

Soft Matter, 2017, 13, 2571-2582 | 2577
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Fig. 9 Orientational distribution functions for three different cases. (a) k = 4 and ¢ = 0.52, isotropic configuration. (b) k = 4 and ¢ = 0.70, configuration
with large tetratic domains. (c) k = 8 and ¢ = 0.81, configuration with large smectic domains. Typical snapshots are shown in each case.

order; at higher densities the order parameters increase, again
reflecting the formation of small-size smectic fluctuations. k = 8
seems to be a critical case.

Let us now turn to the spatially-ordered, smectic fluctuations.
Fig. 10 shows the changes in the smectic parameters, defined in
the Appendix, as a function of packing fraction, for the different
aspect ratios explored. o5 is the standard smectic order para-
meter, while ng reflects the amount of particles belonging
to large clusters. Overall both parameters become larger as
density increases. Their evolution is highly correlated, but ng
gives a clearer picture. Again, it is not possible to identify a
sharp transition or at least a region where smectic order beings
to increase at a significantly high ratio. In an effort to under-
stand the gradual and rather smooth increase in smecticity
with density, we looked at videos of the time evolution of the
system (see ESIT). Obviously uniform smectic order is hampered
by the circular geometry of the cavity, which is incompatible with
the uniaxial symmetry of the smectic phase and should induce
the presence of defects; this is not observed in our system. From a
close examination of the videos, one can conclude that the time
evolution of these systems at high packing fraction is very
dynamic, with smectic domains forming, living for relatively
short times, disappearing and reappearing at later times. An
example of a smectic fluctuation is given in Fig. 11, where a
false-colour map of a field of the parameter og (obtained by
averaging over a short time interval) is superimposed on a
configuration at a corresponding instant of time. The size of
smectic domains increases with density.

To support this conclusion, Fig. 7(b) shows a time evolution
of the parameter g, for an experiment with x = 8 and ¢ = 0.81.
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Fig. 10 Two measures of smectic order as a function of packing fraction.
(a) ns, which is the fraction of particles belonging to clusters of size larger
than n. = 2k. (b) Smectic order parameter os. In both cases data are
provided for all the aspect ratios k explored (indicated by labels). The
dotted lines indicate that the system exhibits large smectic fluctuations.
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In this experiment the system exhibits large smectic-domain
fluctuations, which are clearly correlated with the uniaxial order
parameter ¢,. Time variations of the smectic order parameter g5 and
the parameter ng are perfectly correlated with those of ¢, (not
shown). From the figure, it is apparent that smectic order can reach
high values, but there are repeated, abrupt falls in g, with time. We
believe that these sudden falls, after which the order parameter rises
up again, are related with the increase of hydrodynamic flow and
vorticity.” Smecticity and vorticity are present, one suppressing the
other, during a given experiment. By contrast, tetratic order can
develop uniformly in the cavity, as demonstrated in Fig. 12, where
the false-colour map represents the local field g,, again supersim-
posed on a configuration at a corresponding instant of time. To
restore the symmetry of the phase and at the same time satisfy the
preferred orientation at the walls the system develops four point
defects symmetrically located at relative angles of 90°. This proves
that, when the velocity flow is suppressed, the granular monolayer
behaves as a liquid-crystalline material in thermal equilibrium,
whose properties can be understood from a competition between
surface alignment, elasticity and defects that restore the symmetry.’

C. Cluster-mixture view

Based on the high stability of clusters, it is tempting to regard
the system as a collection of superparticles with their own
ordering properties. To look at this picture in more detail, we
have computed angular distribution functions and corresponding
order parameters for the superparticles. Some interesting results
emerge from this analysis. For example, one can calculate an
effective mean and dispersion in the aspect ratio of clusters,

/L 1 L\
Ke = <Dc>," 4. = Ke <<Dc) K¢ A’ (2)
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Fig. 12 Colour map of the local tetratic order parameter g4 for the case
x =4 and ¢ = 0.75. Note that particles have been shortened by a small
amount to improve visualization. Holes correspond to particles that could
not be identified by the imaging software.

where the length and width of a cluster is L. = max(L,0),
D. = min(L,0), with 6 the maximum centre-to-centre distance
between two particles in the cluster, and where index i runs over
all the clusters detected in the stationary regime of the experiment.

Fig. 13 shows the behaviour of «. as a function of ¢ for all
the particles aspect ratios x analysed. One observes that, for a
particular x, the effective mean cluster ratio is remarkably
insensitive to ¢. The dispersion 4. (which is close to the cluster
length polydispersity) is more sensitive to ¢, see Fig. 14. All of
these results suggest that, for a given k, the system can be
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regarded as a mixture of polydisperse superparticles of rather
constant aspect ratio and a relatively high polydispersity that
increases with density. But still more interesting is the fact that,
in all cases, k. < «, and that: (i) systems forming tetratic states
(x =4 and 6) have k. < 2; (ii) systems not forming tetratic states
(x =10 and 12) have k. 2 2.3; and (iii) the critical system x = 8
has 2.0 < k. < 2.2. Therefore, k* ~ 2.1 can be regarded as a
critical aspect ratio for the formation of tetratic ordering. This
is surprisingly close to the critical value predicted by scaled-
particle theory, which gives x* = 2.2."% It is tempting to suggest
that the strong clustering effects in the vibrated system somehow
renormalise the interaction units from rectangles to clusters or
superparticles. Since most of the important short-range particle
correlations are ‘hidden’ inside the superparticles, the remaining
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K. 22
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Fig. 13 Mean cluster aspect ratio as a function of packing fraction for the
aspect ratios explored (indicated as labels). The dotted lines indicate that
the system exhibits large smectic fluctuations. The dashed horizontal line
indicates the critical value of aspect ratio for tetratic stability according to
scaled-particle theory.*®
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Fig. 14 Polydispersity of the cluster aspect ratio as a function of packing
fraction for the aspect ratios explored (indicated as labels). The dotted lines
indicate that the system exhibits large smectic fluctuations.

2580 | Soft Matter, 2017, 13, 2571-2582

Soft Matter

0.9 .

0.7 -

Q9 L

|
K
4
® 6
051 |e 8 i
10
03| L= 12 -

0.1

-0.1

0.8

0.6_ "f. . -
qic) | /\/ 4

0.4 | 4//' -
- /./ ( o A -
020" p"~g ma _ -
0.0 i 1 ] 1 | ] ] 1 |
0.5 06 07 08 09

¢
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weak correlations between superparticles can be renormalised
into effective two-particle (excluded-area) correlations, well
accounted for by standard mean-field theories. A further result
that may support this idea is the behaviour of the cluster order
parameters, q(zc) and qﬁc), presented in Fig. 15. This behaviour is
remarkably similar to the one shown by the order parameters of
particles, Fig. 8.

IV. Discussion and conclusions

The results presented in the previous section point to a
scenario for the ordering properties of vibrated rods a bit more
complicated than previously reported.'® On the one hand, we
could not identify a sharp transition point between the dis-
ordered isotropic phase and the orientationally order phases at
any value of aspect ratio. Rather, orientational order is built up
in a continuous fashion as packing fraction is increased, and
probably finite size and boundary effects also contribute to the
smearing down of the transitions. On the other hand, the oriented
configuration of the system is different for aspect ratios x < 8 and
x > 8. This is consistent with the critical value x* = 7.3 found in
ref. 10, which separates tetratic from uniaxial-nematic ordering.
But the nature of our phases is not completely identical. In the first
case, k < 8, clear tetratic ordering is observed, as in ref. 10. But in
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the second, k > 8, the system forms large clusters of parallel
particles with a random relative orientation, and uniaxial nematic
configurations cannot be defined, even locally. At large packing
fractions all systems form smectic domains, whose size and life-
time increase with packing fraction. Smectic order, which can be
understood as arising from packing maximisation, competes with
the formation of vortices in the system, and uniform, well-defined
steady states apparently do not exist.

The formation of ordered structures in the system may also
be viewed in terms of particle clustering. The tendency of
dissipative rods to cluster is much stronger than in thermal
equilibrium, and the cluster concept becomes more useful. For
low aspect ratio, particles organise into clusters with a close-to-
square shape, low shape polydispersity and high rotational
mobility. These factors favour local configurations with tetratic
order where neighbouring clusters are oriented at orthogonal
directions. Clusters with low aspect ratio form easily, because
they involve a small number of rods and consequently recruit
low-order particle correlations. By contrast, for long rods, the
system forms compact clusters of large and uneven sizes that
are curved and cannot arrange into tetratic or uniaxial nematic
configurations, but orient randomly. These large clusters,
however, easily form layered, smectic structures at high density.

The fact that vortices seem to affect tetratic and smectic
configurations differently is also interesting. Tetratic configurations
seem to be very stiff against the excitation of vortices,” since the two
mutually orthogonal local directors are inconsistent with a
rotational velocity field. Therefore, uniform tetratic states, which
include point defects that restore the symmetry of the system, may
exist for very long times in stable configurations. On the other
hand, smectic configurations are easily disrupted by vorticity and
local shear modes, and uniform, well-defined steady states cannot
be formed because smectic order is ‘entropically’ favoured, but
competes with vortex excitations.

Appendix A

The orientational and positional orders in the cell are quantified
by the local and global uniaxial nematic, tetratic and smectic
order parameters. The nematic order parameters can be obtained
either through the orientational distribution function, x(¢;R), or
from the local nematic and tetratic order tensors, Q(R) and T(R),
all calculated locally at the grid points R and averaging over
circular regions of a radius conveniently set to 4L. ¢ is the angle
between the long particle axis and a reference fixed axis defined
as the x axis, i.e. cos ¢ = é-x. The distribution function and order
tensors depend on the position R because particles will in general
form domains with different orientational order in different
regions of the cell and also through the spatial dependence
of the local director, Ai(R) = (cos ¢o(R), sin ¢y(R)). To find the
local director, the local ordering tensor, with elements Q,4(R) =
(26,85 — 04p), is diagonalised. The local director points along the
eigenvector associated with the highest eigenvalue, which can be
identified as the uniaxial order parameter g,(R). The local tetratic
order parameter, g4(R), can be obtained from the tetratic tensor,
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Topys (R) = 4<€1€/;€},€5> — E(Oa/;éws + bw,é,;(; + 50655/;3,) . Alternatively,

the local nematic order parameters can be computed from #(¢;R) as
2n
01 (R) = (coskg), = | "4 R) coskls — 4o(R). (A1)

In the experiments, results for these parameters obtained from the
two routes are slightly different but qualitatively consistent. To
obtain a global distribution function for the whole cell, A(¢), the
local distribution functions are superimposed by rotating the
local directors to a common reference axis. The global nematic
and tetratic order parameters can be obtained by averaging the
local nematic g,(R) and tetratic g4(R) order parameters over all
the circular regions defined in the cell and over time,

qr = <qk(R)>R,t) k= Zy 4’ (AZ)

Local and global smectic order parameters can be computed in
the same way. To avoid surface effects, a shell immediately next
to the surface is excluded from all the calculations. The thickness of
this shell depends on the aspect ratio and experimental conditions
(see ref. 10).

Orientational order parameters can also be defined for the
clusters. Once a cluster is identified, a long axis é. and a geometrical
centre can be obtained. The former is defined simply by
diagonalising the gyration tensor and taking the eigenvector
associated to the highest eigenvalue, é. If the maximum centre-
to-centre interparticle distance is less than L, then é. = é;
otherwise we take the perpendicular vector, é. = é 1. Using é.
an orientational distribution function for the clusters, Z.(¢),
and cluster order parameters, gi¢, can be calculated.

To characterise smectic ordering, we have monitored the
evolution of two parameters. One is the standard smectic order
parameter og(R), defined locally as

l - ’Q"'/’> )
(5e)

Here n is the number of cylinders inside the averaging region
centred at R, r; is the position of one cylinder, and Q is a
wavevector (tuned to the wavelength of the smectic density
wave as measured directly on the images). |---| denote the
modulus of the complex argument. As usual, a global smectic
order parameter can be defined for the whole sample,

ags(R) = (A3)

Os = <US(R)>Ry (A4)

where the average is over all the regions defined in the cavity
(excluding a shell next to the circular wall).
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