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Dynamical properties of heterogeneous
nucleation of parallel hard squares

Miguel González-Pinto,a Yuri Martı́nez-Ratón b and Enrique Velascoc

We use the Dynamic Density-Functional Formalism and the Fundamental Measure Theory as applied to

a fluid of parallel hard squares to study the dynamics of heterogeneous growth of non-uniform phases

with columnar and crystalline symmetries. The hard squares are (i) confined between soft repulsive walls

with a square symmetry, or (ii) exposed to external potentials that mimic the presence of obstacles with

circular, square, rectangular or triangular symmetries. For the first case the final equilibrium profile of a

well commensurated cavity consists of a crystal phase with highly localized particles in concentric

square layers at the nodes of a slightly deformed square lattice. We characterize the growth dynamics of

the crystal phase by quantifying the interlayer and intralayer fluxes and the non-monotonicity of the

former, the saturation time, and other dynamical quantities. The interlayer fluxes are much more

monotonic in time, and dominant for poorly commensurated cavities, while the opposite is true for well

commensurated cells: although smaller, the time evolution of interlayer fluxes is much more complex,

presenting strongly damped oscillations which dramatically increase the saturation time. We also study

how the geometry of the obstacle affects the symmetry of the final equilibrium non-uniform phase

(columnar vs. crystal). For obstacles with fourfold symmetry, (circular and square) the crystal is more stable,

while the columnar phase is stabilized for obstacles without this symmetry (rectangular or triangular).

We find that, in general, density waves of columnar symmetry grow from the obstacle. However,

additional particle localization along the wavefronts gives rise to a crystalline structure which is

conserved for circular and square obstacles, but destroyed for the other two obstacles where columnar

symmetry is restored.

I. Introduction

The Dynamic Density Functional Theory (DDFT)1–3 has proved
to be a very useful tool to extend the study of soft matter
systems from equilibrium to non-equilibrium situations. The
response of colloidal systems to time dependent, in general
inhomogeneous, external fields has been extensively studied
within this formalism.4–7 The diffusion of vacancies through a
crystalline structure,8 the heterogeneous crystal nucleation,9,10

the dynamics of sedimentation processes,11,12 the diffusion of
colloidal spheres13,14 or rods in nematics and smectics,15 and

the study of confined self-propelled rods,16 are important
examples of the variety of systems that have been extensively
studied within this theoretical tool. The orientational degrees
of freedom of rods generate an additional complication in the
numerical implementation of DDFT, which can be avoided by
resorting to the restricted-orientation (Zwanzig) approxima-
tion.17 We should bear in mind that this formalism was derived
from the stochastic Langevin dynamics of Brownian particles in
the overdamped limit,2 and some caution should be taken to
use it in far-from-equilibrium situations. In general, the relaxa-
tion to the equilibrium dynamics is reasonably well described
by DDFT.

By construction, a better performance of DDFT is obtained
when the system at equilibrium is well described by an approxi-
mate grand-canonical free-energy density functional, the main
ingredient of DDFT. Recent work has extended the DDFT by
using a canonical density functional (extracted from the grand-
canonical one), which is more appropriate for systems with a
fixed number of particles.18 As is well known, the functionals
with the highest performance are those for hard particle inter-
actions, such as hard rods in 1D19 (whose density functional is
known exactly), parallel hard squares (PHS)20,21 or hard disks
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c Departamento de Fı́sica Teórica de la Materia Condensada, Instituto de Fı́sica de

la Materia Condensada (IFIMAC) and Instituto de Ciencia de Materiales Nicolás

Cabrera, Universidad Autónoma de Madrid, E-28049, Madrid, Spain.

E-mail: enrique.velasco@uam.es

Received 14th September 2017,
Accepted 21st November 2017

DOI: 10.1039/c7sm01857f

rsc.li/soft-matter-journal

Soft Matter

PAPER

http://orcid.org/0000-0002-8199-0207
http://crossmark.crossref.org/dialog/?doi=10.1039/c7sm01857f&domain=pdf&date_stamp=2017-12-02
http://rsc.li/soft-matter-journal


This journal is©The Royal Society of Chemistry 2017 Soft Matter, 2017, 13, 9246--9258 | 9247

(HD)22 in 2D, and hard spheres (HS)23 in 3D, all of them based
on the original fundamental measure theory proposed by
Rosenfeld.24 Some coarse-grained density functionals, such as
those based on phase-field-crystal models, are obtained from the
microscopic ones by an appropriate order-parameter gradient
expansion. These models were successfully used to study the
dynamical properties of heterogeneous crystallization in mono-
layers of paramagnetic colloidal spheres.25 The phase-field-crystal
approximation was also used to explore, through its numerically
tractable implementation, all possible stable two- and three-
dimensional liquid-crystal textures as a function of some
parameters25 describing the particle interactions. There exist
recent studies on DDFT applied to fluids of HD and HS using
accurate density functionals.14,26 However these studies are
scarce due to their complicated numerical implementation; in
contrast, phase-field approximations are simpler due to the
local dependence of the free-energy on the order parameters.

We use an accurate density functional, based on Fundamental-
Measure Theory, in combination with DDFT, to study the relaxa-
tion dynamics in fluids of PHS. The theory used20,21 has been
tested at bulk and in highly confined situations.27 Our study
extends the type of particle geometries (HD and HS) considered
thus far. As shown below in this section, the fundamental
measure theory for PHS predicts the stability of columnar and
crystal phases for particular density intervals.

The aims of the present work are: (i) to understand how the
dynamical properties of heterogeneous nucleation induced by
external potentials depend on the degree of commensuration
between the columnar or crystal lattice parameters and the
characteristic lengths of the confining walls and the different
obstacles; (ii) to systematically study the full dynamics, from
the initial to the final equilibrium states (for example, under
some conditions, the system can be dynamically arrested in
metastable states for very long times).

The fundamental measure theory applied to a fluid of PHS
predicts the equation of state shown in Fig. 1. The fluid phase is

stable up to a mean packing fraction Z0 = r0s
2 (s is the side

length of the squares) equal to 0.534, at which a second-order
transition to a columnar phase takes place. The latter is stable
up to Z0 C 0.73 (from free energy minimization28) or Z0 C 0.75
(from a Gaussian density-profile parameterization27). For higher
densities a crystalline phase with simple square symmetry is
stable up to close packing. See Fig. 2 for a sketch of the different
stable phases. Although simulations and experiments of freely
rotating hard squares certainly exist,29–32 to our knowledge there
is only one simulation study on the one-component PHS fluid.
This work predicts a direct transition between the fluid and
crystal phases at Z0 E 0.8 and discards the stability of the
columnar phase.33 The other simulation work related with PHS
was focused on the demixing phase behavior of a binary
mixture.34 Thus, the columnar phase seems to be a spurious
prediction of fundamental measure theory. However, a simula-
tion work focused specifically on the possible existence of the
columnar phase is necessary to definitively settle this question;
this work should implement periodic boundary conditions with
simulation boxes of variable sizes and geometries different
from the square (which certainly induce crystal stability). We
are aware of the importance of having a precise commensura-
tion between the lattice parameters and the box size in order to
stabilise the correct phase at bulk. However, even though the
columnar phase might not be stable at bulk, it is interesting,
from a theoretical point of view, to study how the dynamical
path to equilibrium is affected by commensuration effects; this
path may be different depending on the symmetry (columnar
vs. crystal) of the confined nonuniform phase.

The article is organized as follows. In Section II we present the
model used. The external potentials are specified in Section II A
together with the initial conditions implemented to study crystal-
lization induced by confinement. In Section II B we define the
quantities that characterize the dynamics. In Section III the
results for the crystallization of PHS induced by confinement
are presented. This section is in turn divided into three parts
devoted to the different initial conditions used: uniform
(Section III A), columnar (Section III B) and crystal (Section III C)
density profiles as initial conditions. Section IV is concerned
with the study of the heterogeneous nucleation of columnar
and crystal phases induced by the presence of obstacles of
different sizes and symmetries. Finally some conclusions are
drawn in Section V.

Fig. 1 Equation of state (pressure in reduced units vs. mean packing fraction)
of PHS from the fundamental measure theory. The fluid (F), columnar (C) and
crystal (K) branches are correspondingly labeled.

Fig. 2 Sketch of fluid, columnar and crystal phases (from left to right) that
the present theory predicts.
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II. Model

The relaxation dynamics to equilibrium is studied using the
DDFT formalism of ref. 2,

@r
@t
ðr; tÞ ¼ �r � Jðr; tÞ; (1)

where r(r,t) is the local density. The local flux, J(r,t), is
defined by

Jðr; tÞ ¼ �Drðr; tÞrdbF½r�
drðr; tÞ; (2)

where D is the diffusion constant, and

bF½r� ¼
ð
dr Fðr; tÞ þ rðr; tÞbVextðr; tÞ½ �; (3)

is the free-energy density functional. b = 1/kBT is the inverse
temperature, Vext(r,t) is the confining external potential, and
F(r,t) is the free-energy density whose excess part corresponds
to that obtained from the fundamental measure theory of
PHS.20,21

A. External potential and initial conditions

Our first study concerns the dynamic evolution to equilibrium
of a fluid of confined PHS when the confining external
potential is switched on at t = 0. The potential is defined in a

box x 2 �h
2
;
h

2

� �
, y 2 �h

2
;
h

2

� �
, where h is the side of the square

cavity. The external potential acts on the particles as a quickly
decaying soft wall. For the sake of computational convenience,
the box is periodically replicated, forming a square lattice of
boxes. In Fig. 3(a) the function bVext(r,0) is plotted for the sake
of illustration.

In a second study we analyse the heterogeneous nucleation
around obstacles with different geometries. For a rectangular
obstacle, we define a soft repulsive external potential centred at
r = 0, with characteristic dimensions Dx and Dy along the x and
y axes respectively [see Fig. 3(b)]. The long, L = Dy, and short,
D = Dx, lengths of the rectangle will always be chosen to be
parallel to the y and x axes, respectively. For Dx = Dy = D we are
describing a square obstacle. For a circular obstacle, the
repulsive external potential, also centred at r = 0, has a circular

symmetry and a characteristic dimension (diameter) D. In
panel (c) we plot this external potential for D = 1.

It can be shown easily that the dynamic evolution that
follows from eqn (1) and (2) conserves the grand-canonical

mean number of particles �N ¼
Ð
Acell

drrðr; tÞ, where Acell ¼

�h
2
;
h

2

� �
� �h

2
;
h

2

� �
is the area of the unit cell defined by the

external potential. Three different initial conditions were
used for the density profiles: (i) r(r,0) = r0, i.e. a uniform
density profile, (ii) r(r,0) = r(C)

0 (y), corresponding to the bulk
equilibrium density profile of columnar (C) symmetry, and
(iii) r(r,0) = r(K)

0 (r), corresponding to the scaled bulk equili-
brium density profile of crystalline (K) symmetry. Both density
profiles were previously calculated by fixing the mean number
density r0 (obtained from integration of the density profile over
the unit cell) to those values for which these phases are stable
or metastable at bulk. By the scaled density profile we mean an
equilibrium density profile scaled along the x and y directions
so as to be commensurate with the unit cell of the external
potential, multiplied by a corresponding factor to obtain the
same mean number density r0 = %N/Acell.

B. Quantities to characterize the dynamics

In this section we define the different quantities that character-
ize the relaxation dynamics. As shown in Section III the final
equilibrium state of the confined system consists of well-
localized density peaks positioned in concentric square-like
chains. We define a layer Ai i ¼ 1; . . . ;N layers

� �
as a square ring

containing each of the above chains and with boundaries
defined by joining the local minima of req(r) between neigh-
boring chains (see Fig. 4 for an illustration). The innermost
chain consists of either a single particle or four particles,
depending on whether the total number of layers is an odd or
an even number, respectively.

The total particle flux across the boundaries of Ai (the
interlayer flux) is in turn equal to minus the exchange rate in

the number of particles, J ðinterÞi ðtÞ ¼ �Ni
0 ðtÞ, inside Ai. Note

that the total number of particles is a conserved quantity, so

that
P
i

J ðinterÞi ¼ 0.

Fig. 3 Shapes of the confining square-like external potential (a) and of obstacles with rectangular (b), and circular (c) geometries.
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We define the saturation time as a time Tsat such that

Tsat ¼ t :
X
i

J ðinterÞi ðtÞ
��� ���o d; (4)

where d is a tolerance (to be defined below). The total interlayer
flux over the whole cell Acell = ,iAi and integrated over time is
defined as

J ðinterÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

tB

X
i

ðTsat

0

dt Ni
0 ðtÞ½ �2

s
; (5)

where tB = s2/D is the Brownian time, while the maximum value
of the interlayer fluxes over the whole cell and time is quanti-
fied through

MðinterÞ ¼ maxi;t Ni
0 ðtÞ

��� ���� 	
: (6)

The non-monotonicity of the interlayer fluxes is taken into
account by counting the total number of extrema of {Ni

0(t)} as
a function of time:

EðinterÞ ¼
X
i

#extrema Ni
0 ðtÞ

h i
; (7)

Another useful quantity, measuring the total flux in the cell
during the complete time evolution, is

J ðtotalÞ ¼ 1

tBs

ðTsat

0

dt

ð
Acell

dr Jxðr; tÞj j þ Jyðr; tÞ
�� ��
 �

; (8)

with Jx,y(r,t) the x and y components of J(r,t).
To characterize the equilibrium density profiles we use,

apart from the total number of layers, N layers, the value of the
highest density peak over the whole cell, rmax. Finally we define
the mean packing fraction of the layer i as

ZiðtÞ ¼ Ai
�1
ð
Ai

drrðr; tÞs2; (9)

Note that, as the areas Ai i ¼ 1; . . . ;N layers

� �
are in general

different, the average of the mean packing fractions per layer is
not a conserved quantity and it is different from the total mean
packing fraction Z0, which is constant.

III. Crystallization induced by
confinement

This section is devoted to the study of the dynamical relaxation
of the confined fluid to equilibrium from different initial condi-
tions. In Section III A we present the results obtained from the
constant-density initial conditions, while in Sections III B and C
initial conditions with columnar and crystal symmetries are
respectively chosen.

First we discuss an important issue on the terminology used
in the article to describe the dynamic evolution of the density
profile. We use sentences like ‘‘particles are expelled from the
walls’’ or ‘‘particles are highly localized/delocalized’’. With this
we mean that the structure of the density profile is strongly
changing with time: density peaks get smeared out or shar-
pened in space. One should always bear in mind that there is no
direct relation between a single density peak and a real particle,
since density profiles measure the probability density of finding
a particle at some particular position. The spatial integral of the
density profile over a region with the same particle dimensions
gives the probability to find the particle at this position and
obviously this can be less than one even for the crystal phase
due to the existence of vacancies. We decided to keep this
terminology for simplicity, avoiding the use of an excessively
elaborate language.

A. Dynamic evolution from a constant density profile

We use a simple iteration scheme to solve eqn (1): the density
profile at the nth time-step tn = nDt is calculated from the
previous one as

r� xi; yj ; nþ 1
� �

¼ r� xi; yj ; n
� �

þ Dtr � r� xi; yj ; n
� �

rdbF½r�
dr

����
xi ;yj ;n

 !
;

fi; jg ¼ ½0;M�; n � 0

(10)

where Dt = Dt/tB and Dt is the time-step. Also r* = rs2, and
the variables {xi,yj} are the x and y coordinates of a node on

the square grid used to discretize the cell, �h
2
;
h

2

� �
� �h

2
;
h

2

� �
(MDx = h, with Dx = Dy = s/40 the size of the spatial grid). The
spatial derivatives in (10) were calculated using a central finite-
difference method. As a first study, we have chosen the initial
local packing fraction r(xi,yj,0)s2 = Z0 = 0.6 8 {i,j}, i.e. the initial
density profile inside the cell is constant (and different
from the bulk value, as can be seen from Fig. 1 which shows
a stable columnar phase at Z0 = 0.6). Fig. 4 presents the
equilibrium density profiles after the convergence of eqn (10)
at Tsat = nsatDt for cells of dimensions (a) h/s = 5.1 and
(b) h/s = 5.8, respectively. The value of d used to define
convergence was d�tB = 10�5.

Despite the fact that the columnar phase is stable at bulk,
the confining external potential localizes particles at the nodes
of a simple square lattice. The lattice parameter a and the cell

Fig. 4 Equilibrium density profiles req*(r) inside the square cells of
dimensions h/s = 5.1 (a) and 5.8 (b) starting from constant density profiles
corresponding to the packing fraction Z0 = 0.6. They are shown through
false color contour plot images with the colour scales correspondingly
shown. Green dashed lines represent the boundaries between different
layers [with a total amount of two (a) and three (b) layers].
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dimension h are approximately related by h ’ 2N layersa or

h ’ 2N layers � 1
� �

a when the number of layers, N layers, is an
even or an odd integer, respectively. For the latter case a central
peak is always found at the centre of the cell. For h/s = 5.8 the
density peaks are sharper and more localized than those
corresponding to h/s = 5.1, which are smeared out over space.
This is a consequence of the difference between the lattice
parameters of the confined system, a, and that of the meta-
stable crystal phase at bulk, aK. The columnar phase is stable
for packing fractions in the interval Z0 A [0.534,0.73]. However,
a metastable free-energy branch of the crystal phase also
bifurcates from the F branch at Z0 = 0.534, its free energy being
above the columnar branch until they cross at Z0 C 0.73. When
a/aK B 1 highly localized peaks are present in the cavity, as
shown in Fig. 4(b); otherwise the density profile is similar to
that of panel (a). When the commensuration between a and aK

is nearly perfect [as in (b)], the density profile develops bridges
between neighboring particles belonging to the same layer
(with boundaries indicated by green lines). This means that
particle fluctuations along these directions are so favoured that
the crystal phase can support a large fraction of vacancies.

Fig. 5 shows the dynamic evolution of the mean packing fraction
of layer i, Zi(t), as a function of scaled time t* = t/tB = nDt for
the two cells shown in Fig. 4, which contain two (h/s = 5.1) and
three (h/s = 5.8) layers, respectively. For the former, the first
stages of the dynamic evolution of Z1(t) present a small decrease,
then a minimum and an increase to its stationary value
Z1(N) o 0.6, which is reached at Tsat* � Tsat/tB C 500. In this
case the repulsive potential expels the excess of particles in
contact with the soft wall, creating a first layer with a lower
mean packing fraction. By contrast the inner layer, formed at
the end by four particles, increases its packing fraction, reaches
a maximum, and tends to its stationary value Z2(N) 4 0.6.
We can see that the dynamic evolution of the case h/s = 5.8 has
the opposite behavior: the packing fraction of the first layer
increases rapidly, reaches a maximum, and finally decreases to a
value Z1(N) o 0.6, while the second layer exhibits the opposite
evolution. Finally the third layer, enclosing at the end a single
particle, exhibits the deepest minimum and a final relaxation to
Z3(N) o 0.6. As we will promptly see, cells that are commen-
surate with the bulk lattice parameter, which exhibits highly
localized equilibrium density peaks [(b)], have intralayer fluxes

which dominate over the interlayer ones, while the opposite
occurs when the peaks are spatially smeared out, as in (a).
Therefore the dominant effect of the external potential on the
layers in (b) involves the motion of particles inside each layer to
their equilibrium highly localized positions and, in addition,
the flow of particles to or from the neighbouring layers to make
a regular square lattice. As a consequence of this complex
dynamics, the saturation time is usually longer [Tsat* C 3000
in (b), as compared with 500 in (a)]. In contrast, for poorly
commensurate cells [as in (a)], which give delocalized peaks,
interlayer fluxes are more important and the dominant effect of
the external potential on the first layer is to expel the excess of
particles to the interior of the cell. The other layers get restruc-
tured by particle interchange with the neighbouring layers. The
usual behavior in Z2(t) is always opposite to that of Z1(t) [see (a)
and (b)]. Finally the third layer in (b), which contains a single
particle, reaches an equilibrium packing fraction less than Z0.
Although these trends are generally true, there are exceptions
to these behaviours, which can be explained by the inhomo-
geneities of the lattice parameter a from the wall to the interior
of the cell.

The behaviour of the interlayer fluxes J ðinterÞi ðtÞ as a function
of time confirms the preceding discussion. These are shown in
Fig. 6 for the same cells and initial conditions. For h/s = 5.1 the
first cell becomes a source of particles, creating a positive flux
across its boundaries. This flux reaches a maximum, then
decays and reaches a minimum, and finally relaxes monotoni-
cally to the stationary state. Obviously the flux that crosses the

boundaries of the second layer, J ðinterÞ2 ðtÞ, is, by conservation of

the particles (
P
i

J ðinterÞi ¼ 0), the specular reflection of J ðinterÞ1 ðtÞ

in the entire t-axis. The behaviour of the fluxes for h/s = 5.8 and
t* 4 tc C 20 is opposite to the previous case: particles enter the

first layer from the neighboring layer, so that J ðinterÞ1 ðtÞ becomes
a negative, decreasing function down to a minimum, and then
increases, changes sign at a certain time (the layer becoming a
source of particles), reaches a maximum and finally relaxes to
zero at a time Tsat much longer than that in the previous case.
The third, innermost layer, has a positive flux which relaxes
to zero after reaching a small minimum, therefore becoming
a source of particles. The above behavior pertains to times
t* 4 tc. At very short times (t* o tc) the behavior is the opposite

Fig. 5 Mean packing fraction of layer i, Zi(t), as a function of time, for
square cells of dimensions h/s = 5.1 (a) and 5.8 (b). With solid, dashed and
dotted lines are shown Z1(t), Z2(t) and Z3(t) respectively. The initial condition
corresponds to a constant density profile with Z0 = 0.6.

Fig. 6 Interlayer fluxes, J ðinterÞi ðtÞ, as a function of time, for square cells of
dimensions h/s = 5.1 (a) and 5.8 (b). With solid, dashed and dotted lines are

shown J ðinterÞ1 ðtÞ, J ðinterÞ2 ðtÞ and J ðinterÞ3 ðtÞ respectively. The initial condition

corresponds to a constant density profile with Z0 = 0.6.
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for the first two layers, and the same for the third (see inset).
This latter fact confirms a scenario where the effect of the
external potential propagates from the walls to the inner layers
with a finite velocity. Although the extrema of the fluxes for
t* o tc and t* 4 tc are of the same order (see the inset), in the
former case they are reached in very short times and, as a
consequence, the mean packing fractions Zi have almost
unnoticeable changes [see Fig. 5(b)]. Another important feature
of the fluxes in highly commensurate cavities, compared to
noncommensurate ones, is the presence of a larger number of
extrema [cf. (a) and (b)]. This is due to the fact that, as the front
propagates from the wall to the inner layers, intralayer fluxes –
due to particle migration to their highly localized positions –
combined with outgoing and incoming fluxes from the neigh-
bouring layers, result in nonmonotonic fluxes as the final
equilibrium configuration is reached.

Now we describe in detail the correlations between the
different quantities (defined in Section II B) that characterize
the dynamics as the cell dimension h/s is varied. In Fig. 7(a) we
show the maximum of the equilibrium density profile at the
cell, rmax, the saturation time Tsat, and the maximum value of

the interlayer flux MðinterÞ, as a function of h/s. The saturation
times Tsat are longer for well commensurate cells containing
highly localized density peaks (maxima of rmax). By contrast,
the interlayer fluxes are less important: note how the minima

of MðinterÞ as a function of h/s are perfectly correlated with the
maxima of rmax. Therefore, (i) longer times are necessary to
reach equilibrium states with highly structured density profiles,
and (ii) particle localization is dominated by intralayer, as
opposed to interlayer, fluxes.

This scenario is clear from Fig. 7(b), where we can see that

the maxima of the total interlayer flux J ðinterÞ correspond to
poorly commensurate cells; equilibrium profiles with smeared
out peaks are obtained by strong interlayer fluxes where parti-
cles are exchanged between neighbouring layers. In contrast,
well commensurate cavities reach their equilibrium states with

much lower values of J ðinterÞ. As the total fluxes J ðtotalÞ are
higher for well commensurate cavities [see panel (b)], while the

interlayer ones are less important, we can draw the important
conclusion that intralayer fluxes are dominant during relaxa-
tion to well structured density profiles. The nonmonotonicity of
interlayer fluxes are well described by their total number of

extrema EðinterÞ, and these are higher for well commensurate
cells [see Fig. 7(c)]. The dynamic evolution from a constant
density to a crystal phase with highly localized density peaks is
more complex: particle migration to well localized positions
inside each layer with further restructuring through interlayer
fluxes results in a highly nonmonotonic relaxation dynamics.

Finally it is interesting to note that rapid changes in the total
number of layers N layers inside the cavity as h/s is changed take
place for poorly commensurate cells with delocalized fluid-like
density profiles [see Fig. 7(c)]. We have confirmed that the rapid
change in N layers with h/s, although related with the commen-
suration first-order transitions of a confined crystal phase inside
a cavity with hard boundaries,35 does not imply a phase transi-
tion. When hard walls are substituted by soft walls these transi-
tions are suppressed.

B. Dynamic evolution from a columnar density profile

In this section we report on the differences between the final
states when the initial conditions are changed. For a cell with
size h/s = 6.6, we choose initial profiles corresponding to the
uniform density, Fig. 8(b), and the bulk equilibrium columnar
phase, Fig. 8(c). In the first case, panel (b), the final state is
identical as before – a symmetric crystal phase with layers formed
by the same number of particles along the x and y directions. In
the second, an asymmetric density profile is obtained, as shown
in panel (c). Note that the number of particles in layers along
the y axis is one more than that along the x-axis. These asym-
metric density profiles are always obtained when h is very well
commensurate with the lattice parameter, aC, of the columnar
phase at bulk, i.e. when h/aC C k A N. At this packing fraction
the columnar phase is stable at bulk. If the cell size is such that an
integer number of layers can be accommodated, then the total free
energy will be lower than that of the symmetric density profile,
panel (b). However the main effect of the external potential,

Fig. 7 The maximum value of density peaks rmax* [circles in (a), (b), and (c)], the scaled saturation time Tsat* � 10�3 [squares in (a)], the scaled maximum
value of the interlayer fluxes, MðinterÞtB � 8� 102 [triangles in (a)], the scaled total interlayer flux J ðinterÞtB � 80 [triangles in (b)], the scaled total flux

J ðtotalÞtB � 0:025 [squares in (b)], the number of extrema of interlayer fluxes EðinterÞ [triangles in (c)], and the total number of layersN layers [squares in (c)] as a

function of the cell dimension h/s corresponding to the dynamic evolution from a constant density initial profile with Z0 = 0.6.
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as pointed out before, consists of the localization of particles at
the nodes of a regular lattice (of rectangular symmetry for
asymmetric density profiles). Therefore, starting from a columnar
density profile the system evolves by keeping the same number of
columnar layers along the x direction (and consequently by fixing
the lattice parameter along this direction to be aC), with a further
localization of particles by diffusion along y (parallel to the
columnar layers) to their final positions. These positions are such
that the lattice parameter is close to aK (that of the metastable
crystal phase at bulk) along the y axis.

Asymmetric density profiles, such as that in panel (c), are
obtained only for special cells that are commensurate with aC.
However, when this occurs, their free energies are lower than
that corresponding to the (metastable) crystalline symmetric
profile [panel (b)]. This is shown in panel (a), where the free-

energy difference bDF½r� � b F rðasymÞ

 �

� F rðsymÞ

 �� �

is plotted
as a function of h/s. The blue circles, corresponding to nonzero
values, pertain to asymmetric density profiles, while the green
triangles correspond to converged crystalline symmetric den-
sity profiles. Red squares indicate the values of the cavity size
h/s for which a long-time dynamical evolution occurs; they are
values with a similar commensuration of h/aC and h/aK, so that
the system, depending on the initial conditions, could be arrested
for a long time in metastable states. To illustrate this behaviour,
Fig. 9 shows the density profiles at four different times. Panel (a),

the initial condition, consists of a columnar density profile with
three layers inside a cavity of h/s = 4.3. Fig. 10(a) shows the
interlayer fluxes for the same system. As we can see from Fig. 9(b),
the system initially evolves by localizing four different crystalline
peaks along each of the columnar layers, changing the density
profile to an asymmetric crystal phase and selecting the distance
between peaks along the y direction to optimise the commensura-
tion with aK. This evolution occurs up to t*B 1000 [see Fig. 10(a)].
However the free energy of this asymmetric metastable state
is slightly above that corresponding to the 4 � 4 symmetric
crystal phase, and the system continues its evolution by further
delocalizing the crystalline peaks along x, creating four columnar
layers parallel to this direction [see Fig. 9(c)]. This process lasts
up to t* B 2000 [see Fig. 10(a)] from which takes place the last
dynamical path: the localization of four crystalline peaks within
each columnar layer to end in a 4 � 4 symmetric crystal profile
[see Fig. 9(d)]. Thus, we can conclude that, for some special
values of h/s, the system can dynamically be trapped in meta-
stable states (3 � 4 crystal profile for h/s = 4.3) over a long
period of time (B1000tB). For larger cavity sizes this effect is
more dramatic, as can be seen in Fig. 10(b), where we show the
interlayer fluxes corresponding to the dynamical evolution
from a columnar phase with 7 layers up to the final equilibrium
8 � 8 crystal profile inside a cavity of h/s = 9.1. We can see that
the system is arrested into a 7� 8 crystal profile over B30 000tB

Fig. 8 Free-energy differences [(a)] between asymmetric [(c)] and symmetric [(b)] finally converged density profiles. The latter are those corresponding
to h/s = 6.6 resulting from the dynamic evolution of the confined PHS with initial density profiles corresponding to the constant (b) and to bulk
equilibrium columnar (c) density profiles, both having a mean packing fraction Z0 = 0.57.

Fig. 9 Density profiles corresponding to the dynamical evolution from a columnar initial profile at t* = 0 (a), t* = 1000 (b), t* = 2200 (c) and t* -N (d) inside a
cavity of h/s = 4.3.
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after which the density profile is symmetrized through its
columnarization along x with a further localization of 8 crystal-
line peaks along the columns to end in the symmetric 8 � 8
density profile.

C. Dynamic evolution from a crystal density profile

In the preceding sections we described the dynamic evolution of
confined PHS from fluid-like or columnar-like nonequilibrium
initial conditions to their final states consisting of symmetric or
asymmetric crystal density profiles. Now we proceed to describe
the dynamics that follows our system departing from a non-
equilibrium confined crystal symmetric density profile com-
pressed enough that its total number of layers is one more than
that corresponding to the equilibrium situation. The initial
density profile was taken from the already converged density
profile corresponding to a wider cell and conveniently scaled
along the x and y directions to fit it into the boundaries of the
new cell. Also it is multiplied by a constant factor to fix to 0.6

the mean packing fraction over the cell. In Fig. 11 we present the
results corresponding to the cell of dimensions h/s = 5.1 and
taking an initial density profile corresponding to the equilibrium
one of a cavity with h/s = 5.8 properly scaled. The panels (a),
(b) and (c) correspond to the initial (t* = 0), intermediate (t* = 40),
and finally converged (t* -N) density profiles, while in the (d),
(e) and (f) panels we present the x-component of the local flux,
Jx(r,t), for the same times.

We have found the following evolution from a three-layer
density profile: (i) the density profile in the central square
chains is delocalized over space, creating a smeared-out density
profile along these directions, (ii) the rest of the peaks, even
those corresponding to the most external (layer in contact with
the soft wall), also delocalize along the x and y directions and
they move to the center of the cell creating an effective flux and
(iii) the density profile is then restructured from the fluid-like
density profile to the final one with only two, instead of three,
layers and without any peak at the centre of the cell. This scenario
is confirmed by the evolution of the fluxes: note in (e) how the
highest values of the fluxes are located in the neighborhood of
the central chains. As we have already discussed above the
identification of a peak as a particle could be misleading. The
density profiles shown in (a) and (c) have a total amount of 25
and 16 peaks. However the mean packing fraction is the same
(Z0 = 0.6) for both. This difference can be explained due to a
higher fraction of vacancies in the 4 � 4 density profile. Note
that if we approximately parameterize it as

rðrÞ ’ ð1� nÞ a
p

� 	3=2X
Rk2L

e�a r�Rkð Þ2 ; (11)

Fig. 10 Interlayer fluxes corresponding to a dynamical evolution from
columnar density profiles inside cavities of h/s = 4.3 (a) and 9.1 (b).

Fig. 11 The initial (a), intermediate (b) and finally converged (c) density profiles both with Z0 = 0.6. The initial density profile was conveniently scaled to fit
it inside the cavity of h/s = 5.1. The fluxes Jx(r) are also plotted for times close to the initial (d), intermediate (e) and final (f) states. In (e) and (f) the fluxes
have been multiplied by factors of 3 and 40, respectively.
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where n is the fraction of vacancies, a is the Gaussian parameter
which takes into account the extent of particle fluctuations
around the positions Rk of the square lattice L, then the mean
packing fraction can be approximately calculated as

Z0 ’
Npeaks

Acell

ð
a0

drrðrÞs2 ’ Npeaksð1� nÞs2
Acell

: (12)

with a0 the unit cell containing at most one particle. Z0 being
the same for both density profiles with different numbers of
peaks, N(1)

peaks = 25 and N(2)
peaks = 16, allows us to obtain the

relation n(1) = (9 + 16n(2))/25 between the fraction of vacancies.
If we suppose that the density profile with 16 peaks has zero
vacancies (n(2) = 0) we obtain 36% (n(1) = 9/25) of vacancies for
the 25-peaks density profile.

The behavior of particle fluxes during the dynamics from
25 to 16 peaks can be seen in Fig. 11. Panel (d) shows the
x-component of the flux, Jx(r,t), at the instant t E 0. The other
y-component has, by symmetry, exactly the same behavior and
can be obtained from the x-component by a 901 rotation. We
can see how the layers close to the soft-walls move to the center
of the cell (the direction of fluxes of the left and right extremal
layers point to the right and to the left respectively). Moreover the
peaks belonging to the intermediate chain are asymmetrically
decomposed by diffusion to left and right creating an effective flux
to the centre of the cell. The same occurs with the central peak
which is symmetrically smeared out by diffusion. At further times

the density profile becomes fluid-like over the whole cell (except
for the external layer which keeps a certain structure) and then it
is reconstructed to get a total amount of 16 peaks. In panel (f) we
show the spatial inhomogeneities of Jx(r,t2) (for t2 E Tsat) close to
the equilibrium: during the last steps of peaks formation a set of
pairs of fluxes of much less magnitude coming from both, left and
right, directions converge to the 16 particle positions.

IV. Columnar/crystal nucleation
induced by the presence of obstacles

This section is different from the previous ones in one impor-
tant aspect: the kind of external potential used to promote the
heterogeneous nucleation of the crystal or columnar phases.
We have introduced a strong repulsive potential inside a spatial
region of circular, square, rectangular or triangular symmetries,
with the aim of mimicking a hard obstacle at the centre of the
box. The obstacle size was chosen to have a few lattice para-
meters, qs (q A Q,1 r q r 12), and periodic boundary condi-
tions were used. The size of the square box, h, inside which the
DDFT equation is numerically solved was selected to be large
enough to guarantee the correct relaxation of the density profiles
at long distances from the obstacle. Also, the specific value of h
was selected at a local minimum of the oscillatory free-energy
profile as a function of h. The main purpose here is to study the

Fig. 12 The sequence of three density profiles r*(r,t) following the dynamics from the DDFT. The profiles correspond to three different times (as labeled)
during the crystallization of PHS around a circular obstacle of diameter D = s (a)–(c) and a square obstacle of side length and D = 1.5s (d)–(f). The initial
density profile was taken to be uniform with packing fraction Z0 = 0.6 while periodic boundary conditions were used.
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dynamics of the heterogeneous nucleation promoted by the
presence of obstacles with different symmetries.

First, we use obstacles with different geometries but with the
property that they have at least fourfold rotational symmetry
(i.e. they are invariant under rotations of 901). These are the
circular and the square obstacles. In Fig. 12 we present a
sequence of three density profiles, r(r,ti) (t1 o t2 o t3 = Tsat),
following the dynamic evolution to equilibrium from a
constant-density initial condition (with Z0 = 0.6) and for the
external potentials of circular (a)–(c) and square symmetries
(d)–(f); these potentials mimic strong repulsive objects of sizes
D = s and 1.5s (corresponding to the values of the diameter and
side-length, respectively).

The first stages in the dynamics consist of the propagation
of four symmetric fronts of columnar ordering along two
perpendicular (x and y) directions. These fronts propagate with
finite velocity from the obstacle to the box boundaries (see
Fig. 12). Obviously the four fronts form a square wave and the
local maxima of the density profile are located, by interference
effects, at the corners of the square front. The heterogeneity of
the density profile along the front induces a secondary mecha-
nism which takes place at longer times: the localization of
particles by migration along the perimeter of the square front to
their final equilibrium locations at the nodes of a simple square
lattice of lattice parameter aK (corresponding to a metastable
crystal phase at bulk). Note that, for this density Z0, the stable

phase is columnar, but the obstacle stabilizes the crystal phase.
The dynamics of PHS around an obstacle with circular or
square symmetries are similar, as can be seen from the figure.
The relevant variable that determines the final structure of the
crystal phase is the diameter of the obstacle; for a circle with
D = s, panels (a)–(c), the values of the density peaks in contact
with the obstacle are higher than the rest. Also, a line joining
these peaks outlines the unit cell of the simple square lattice of
the metastable crystal phase. For a square obstacle of similar
size the structure (not shown) is identical: the highest density
peaks are located at the corners of the square obstacle. By
increasing the size of the obstacle up to D = 1.5s one obtains the
final structure shown in panel (f). Now the square outlined by
the density peaks in contact with the obstacle is larger than the
unit cell and rotated to 451 with respect to the x axis. The
presence of the obstacle generates a vacancy of just one particle
at its centre while for D = s the structure is defect-free. Again
the same density profile is generated for a circular obstacle of
diameter D = 1.5s.

The second study concerns the dynamics of the hetero-
geneous formation of columnar/crystal phases around an
obstacle without fourfold symmetry. We analyse two obstacles.
The first is a rectangle with a long side-length of L = 12s, and
short side-lengths of D = 3.15s and D = 1.65s. The other is an
equilateral triangle of side-length D = 3s. The sequence of density
profiles obtained during the dynamic evolution, taken at three

Fig. 13 The sequence of density profiles r*(r,t) corresponding to three different times (as labeled) during the columnarization of PHS around a
rectangular obstacle of width (D) and length (L) equal to (D,L) = (3.15,12)s (a)–(c) and (D,L) = (1.65,12)s (d)–(f). The initial density profiles were taken as
constant with Z0 = 0.6 (a)–(c) and Z0 = 0.75 (d)–(f).
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different times, is shown in Fig. 13(a)–(c) and (d)–(f) for
rectangular obstacles with D = 3.15s and D = 1.65s, respectively,
while the results for the triangular obstacle are not shown. As
can be seen, the rectangle stabilizes a columnar phase, with
columns parallel to the longest side of the rectangle. Interest-
ingly, after a time where a rectangular front of columnar sym-
metry is propagated from the obstacle, a further localization of
particles takes place. This localization proceeds by particle
migration along the perimeter of the front, similar to the cases
with obstacles of circular and square geometries, and extends up
to three layers from the obstacle for D = 3.15s and to the whole
area for D = 1.65s. There is however an important difference in
this case: after the second stage, the particles again delocalize,
restoring the columnar layers parallel to the long side-length.
Therefore the equilibrium profiles correspond to a defective
columnar phase with disrupted columns (three or one layer for
D = 3.15s and D = 1.65s, respectively, as shown in Fig. 13) formed
by particles with some degree of localization. The non-perfect
commensuration between the difference h � D (with h being the
width of the box) and the lattice parameter aC corresponding to
the stable columnar phase at bulk, as it occurs for D = 3.15s,
generates a deformation of columns around the obstacle [see
panel (c)].

The symmetry of the final equilibrium density profile that
grows from a rectangular obstacle, considering a constant
initial density profile with Z0 slightly above its bulk columnar-
crystal value, strongly depends on D. Selecting D well or not
well commensurated with aC we obtain t - N density profiles
with columnar or crystal symmetries respectively as shown in
Fig. 14.

To confirm the above results, we have also performed
calculations with obstacles of different geometries such as an
equilateral triangle and a rhombus (a square obstacle rotated
451 with respect to the lattice vectors). We have found that a
stable columnar phase is induced when one of the triangle
sides is parallel to the x or y-Cartesian axes (same directions as
the lattice vectors), while a deformed crystal phase is found for
the rhombus. With respect to the dynamics, we again see the
initial propagation of fronts with the symmetry of the obstacle,
their further transformation to square-like fronts, a localization

of particles around the nodes of a square lattice at intermediate
times, and finally, for the triangular obstacle, a delocalization
of particles forming columnar layers.

V. Conclusions

We have used the DDFT, based on the fundamental measure
theory for a fluid of PHS, to study the dynamics of hetero-
geneous nucleation of the crystal phase when the fluid is
confined by soft-repulsive walls. The walls define a lattice of
periodically spaced square cells that confine the fluid. The study
is divided into three parts, each corresponding to a specific initial
condition: (i) constant density profile, (ii) density profile with
columnar symmetry and (iii) density profile with crystal symme-
try. We have characterized the dynamics using different quanti-
ties, such as saturation time, interlayer fluxes (in particular their
maximun values and the total number of extrema), and the total
(interlayer plus intralayer) fluxes. These quantities are analysed as
a function of cell size and correlated with some features of the
equilibrium density profile, such as absolute maximum over the
cell and total number of layers.

We found that, for poorly commensurate cells (i.e. with a
lattice parameter incommensurate with that of a metastable
crystal phase at bulk), the structure of the density profile consists
of smeared-out peaks with values lower than those for well-
commensurate cavities. In addition, the dynamics is dominated
by strong interlayer fluxes which expel particles from the walls to
the interior of the cavity. The equilibrium configuration is reached
by further interchange of particles between neighbouring layers,
resulting in moderately localized peaks. By contrast, in the case of
well-commensurate cells, intralayer fluxes are dominant, with
particles localising at the nodes of the simple square lattice.
Although interlayer fluxes are lower for well-commensurate
cavities, they exhibit a more complex behaviour: strong non-
monotonicity with the presence of a high number of extrema,
and damping oscillations which increase the saturation time
before equilibrium is reached. This highly non-linear behaviour
strongly correlates with longer saturation times, which drama-
tically increase with the number of layers. As a function of cell
size, this number exhibits a rapid increase for the most non-
commensurate cavities (those containing a fluid-like density
profile). However we have checked that this abrupt increase
does not imply a phase transition, which is discarded due to the
soft character of the external potential.

When the dynamics departs from a columnar density profile,
in most cases the final state is the usual symmetric crystal phase.
However, for some special cells, in particular those which are
commensurate with the columnar period at bulk, the equili-
brium state is an asymmetric crystal phase in which layers have a
different number of peaks along the x and y directions. When
this occurs, the free energy of the asymmetric profile is lower.
Finally, we also used previously converged symmetric crystal
density profiles scaled to the new cell as initial conditions. We
observed the delocalization of density peaks and the presence
of asymmetric fluxes of particles from the walls to the center,

Fig. 14 Equilibrium density profiles as obtained from the final converged
states of the dynamic evolution following the DDFT and considering a
constant density initial profile with Z0 = 0.75. The presence of a rectangular
obstacle of length L = 12s and width D = 1.65s (a) and 1.14s (b) are
imposed for t Z 0 through a corresponding external potential.
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with inner layers being the first to melt. Further reconstruction
of density peaks from a fluid-like profile gives rise to a lower
number of layers, but these are well commensurate with cell size.

A final study concerns the dynamics of heterogeneous
growth of columnar or crystal phases from an obstacle with
circular, square, triangular or rectangular symmetry. The crystal
phase grows from obstacles with circular or square symmetries,
since they have the same fourfold symmetry. By contrast, when
obstacles do not have fourfold symmetry and they are reason-
ably commensurate with the columnar-phase lattice parameter,
the final equilibrium state is generally a columnar phase, with
layers parallel to the long side length of the rectangle or to one
of the triangular sides. However, the dynamics in this case is far
from simple. Density waves of columnar symmetry propagate
from the obstacle with further localization of particles along
these fronts; these waves extend to a few layers or even to the
whole area. Finally, particles localize more strongly, until a
regular crystal square lattice is created (for circular and square
objects), or they delocalize again to recover the columnar phase,
which is the final equilibrium state (for rectangular and triangular
objects).
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