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Beyond Dunbar circles: 
a continuous description of social 
relationships and resource 
allocation
Ignacio Tamarit1, Angel Sánchez 1,2 & José A. Cuesta 1,2*

We discuss the structure of human relationship patterns in terms of a new formalism that allows 
to study resource allocation problems where the cost of the resource may take continuous values. 
This is in contrast with the main focus of previous studies where relationships were classified in a 
few, discrete layers (known as Dunbar’s circles) with the cost being the same within each layer. We 
show that with our continuum approach we can identify a parameter η that is the equivalent of the 
ratio of relationships between adjacent circles in the discrete case, with a value η ∼ 6 . We confirm 
this prediction using three different datasets coming from phone records, face-to-face contacts, and 
interactions in Facebook. As the sample size increases, the distributions of estimated parameters 
smooth around the predicted value of η . The existence of a characteristic value of the parameter at the 
population level indicates that the model is capturing a seemingly universal feature on how humans 
manage relationships. Our analyses also confirm earlier results showing the existence of social 
signatures arising from having to allocate finite resources into different relationships, and that the 
structure of online personal networks mirrors those in the off-line world.

Human relationships show clear organizational patterns. Numerous studies reveal that we structure our per-
sonal relationships into groups (also known as circles) whose inclusive sizes follow an approximately geometric 
progression with a scale factor of  31–6: 5, 15, 50, and 150 (evidence for yet another circle of size approximately 
500 has been provided  recently7). These circles display marked differences regarding emotional closeness and 
time devoted to relationships, which correlate with one  another8–10. Of all the time we dedicate to our social life, 
approximately 40% is devoted to people in our most intimate circle (support clique), 20% to close relationships 
(sympathy group), and the remaining 40% to the rest of  relationships1—progressively devoting less to those 
more distant. In addition, maintaining social relationships is not only costly from the perspective of the time 
they require, but it is also costly in cognitive terms. Studies combining neuroimaging techniques and cognitively 
demanding tasks show that individual differences in the volume of the orbitofrontal cortex (a specific region of 
the neocortex) explained differences in mentalising skills, and those, in turn, were able to explain differences 
in network  size11.

The connection between the hierarchical structure of personal networks and the costs associated to maintain-
ing them has recently been formalized as a simple model of resource  allocation12. This model is based on two 
strong and robust empirical observations. Firstly, the number of relationships a person has, L , tends to be stable 
over  time13. Secondly, there are different costs to maintaining different types of  relationships8,14,15, and the total 
cognitive resources we apply to them, S , are limited. The maximum entropy  principle16 is then used to add that 
information to a multinomial prior, and the result is a posterior distribution that measures the likelihood of dif-
ferent allocations of resources to relationships characterised with different costs (see Ref.12 for details). Generally, 
this distribution agrees with the organization of relationships in circles as empirically observed. The comparison 
of the model introduced in Ref.12 to the available data on real social systems requires treating relationships as a 
set of r discrete categories (layers) that are defined based on their intensity. Circles are then defined as the union 
of layers up to a given intensity. This approach is particularly convenient when intensity is measured in Likert 
scales, as it is often the case when data is obtained via questionnaires.
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There are, however, alternative ways of measuring tie strength which do not rely on a discrete scale like the 
one used with the circles. Good examples are frequency of  contact9, time spent  together17, or number of messages 
(information)  exchanged4,13. Even though some of these quantities could be technically regarded as discrete, the 
fact that they consist of hugely many possibilities makes this viewpoint rather impractical. More importantly, 
these measures do not have clear upper and lower bounds (what is the shortest duration of a call to be considered 
a contact?) that play the role of first and last layers, respectively. This calls for a more general version of the model 
that would allow us to consider intensities of high granularity, possibly continuum. On the other hand, such a 
model would be conceptually very general in so far as many resource allocation problems are of a continuous 
or quasi-continuous nature.

The purpose of this paper is therefore to introduce a general model in which the allocated amount of resource 
can take any positive real number. After going through the description of the model and its mathematical study, 
we apply it to three different datasets in which the intensity of personal relationships is measured with continuous 
variables: face to face contact  time18, number of messages between Facebook  users19, and number of phone calls 
 exchanged13. Our analyses unveil the existence of a structure similar to that found when intensities are considered 
as discrete categories, thus showing that there is no need to exogenously categorize the data to understand its 
structure. More importantly, we prove the existence of a new universal scale parameter η , which replaces (and 
is consistent with) the scale factor ∼ 3 ubiquitously found in the discrete scenario with social relationships.

Model description
We introduce our model from a completely abstract viewpoint, by starting from an individual that must distribute 
a limited amount of some resource among an assortment of N different choices. We will denote by L the average 
number of different choices the individual makes and by S the average amount of resource invested in them 
(irrespective of which magnitude we use to measure it). In the particular example of the ego-networks that we 
will explore in more depth here, L represents links to alters and S the individual’s cognitive resources devoted 
to keep those links. At this point, however, we are not concerned by the precise nature of these two magnitudes, 
only with their existence and their limited values.

For the time being, let us assume that all possible choices can be classified within r different categories, 
each of them bearing a different cost (in terms of resource invested) smax = s1 > s2 > · · · > sr = smin . A maxi-
mum entropy analysis shows that the probability that an individual chooses ℓk elements within the category k 
( k = 1, . . . , r ) is given  by12

where B (L,L /N ,N) is the binomial distribution for the total number of choices, and

Here δ(x, y) = 1 if x = y and 0 otherwise, and the parameter µ̂ = µ̂(σ ) is determined by the equation

The cost is the only variable that distinguishes different choices, so in order to make discrete categories it is 
natural to split the whole range of costs uniformly. Thus,

with k = 1 ( k = r ) corresponding to the most (least) costly category, following the standard convention used in 
previous studies. Substituting this form for sk into the probability distribution (2) we obtain

with µ ≡ µ̂(smax − smin)/(r − 1).
This is nothing but the probability distribution of links in an ego-network that was obtained in Ref.12, but our 

goal is to describe a continuum of levels, not these discrete categories. To that purpose we need to take the limit 
r → ∞ appropriately: levels will now be described by a continuous index t ≡ (k − 1)/(r − 1) ∈ [0, 1] . Notice 
that t = 0 corresponds to smax and t = 1 to smin , so the parameter t can also be interpreted as a sort of ‘distance’ 
to the corresponding choice. As a matter of fact, it is possible to parameterize everything in terms of cost rather 
than distance, by introducing s = 1− t.

In the same limit of infinitely many categories, rℓk → ℓ(t) , so that ℓk gets transformed into a density of links 
ℓ(t) dt . Accordingly,
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where η ≡ µ(r − 1) = µ̂(smax − smin) . Furthermore, when the number of layers r is large, the probability that 
two individuals belong to the same category goes to zero, so ℓk should be either 0 or 1 for all k. This implies that (
L
ℓ

)
→ L!.

In order to proceed now with the distribution of links (5), it has to be realized that in this limit it becomes 
quite an unmanageable object—a path integral. There are two ways to circumvent this technical problem. The first 
one amounts to calculating the limit of averages. For the second one we should realise that, in the limit r → ∞ , 
the only dependence on ℓ(t) is through the moment L1 , so instead of dealing with a limit of (5) it is better to take 
the limit of the probability distribution

where W(L, L1) is a factor that only depends on L and L1 and whose specific form does not concern us at this 
point. The first approach will be useful to obtain the expected distribution of choices as a function of their costs; 
with the second one we will derive a Bayesian estimate of the parameter µ(σ) in the limit r → ∞.

A continuum version. Using the distribution (5) it is possible to calculate εk , the expected number of 
choices from category k, as well as χk , the expected number of choices with costs larger than or equal to that of 
category k. The latter is what in the literature of ego-networks is referred to as a social “circles”20. It is straight-
forward to obtain the  expression12

Taking the limit r → ∞ transforms these expected values into their continuous counterparts:

In particular, χ(t) is the fraction of links whose “distance” to the individual is not larger than t. Finally, we 
must find the relationship between the continuum parameter η and the discrete parameter σ . In order to do that, 
we start off from Eq. (3) which, after substituting (4), becomes

The continuum limit ( r → ∞ , µ → 0 with η = µ(r − 1) = constant ) of this expression yields

an implicit equation whose solution provides the sought for dependence η = η(σ ) . Notice that

and since g ′(η) > 0 for all η ∈ R , Eq. (11) has a unique solution for any 0 < t < 1 . As a matter of fact, η = 0 
for t = 1/2 , whereas η > 0 for t > 1/2 and η < 0 for t < 1/2—hence η′(t) > 0 (see the plot of g(η) in Fig. 1).

Connection with the theory of ego-networks. With the calculations above, we are now in a position to 
obtain a quantitative estimate of the parameter η that determines the distribution in the continuum, for the spe-
cific application to Dunbar’s social circles in this limit. Recall that in the social circles interpretation the choices 
are links to alters of an ego, cost means cognitive cost, and the categories describe layers of emotional closeness 
of the corresponding relationships.

For large values of µ , Eq. (8) behaves as

This shows, on the one hand, that in the ordinary regime ( µ > 0 ) the circles (quantified by χk ) satisfy an approxi-
mate scaling relation, and on the other hand, that in the so-called “inverse” regime ( µ < 0 ) the closest circle 
becomes overpopulated. Both behaviours have been properly documented in the  literature4,5,12,21,22.

The corresponding analysis for the continuum model requires that we determine the asymptotic behaviour, 
for large η , of the logarithmic derivative of χ(t) , namely
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As the discrete version of the left-hand side is (χk+1 − χk)/χk�t , a comparison between (13) and (14) in the 
ordinary regime leads to η�t ≈ eµ − 1 . Since �t ≈ (r − 1)−1 , we obtain the equivalence

Equation (14) reveals that η is the true underlying scaling factor of the circles. Therefore, the equivalence just 
derived implies that the value of µ in the discrete model must depend on the total number of circles r. This fact 
has been overlooked in previous analysis of the original circles model because of the implicitly assumption that 
there are r = 4 circles in the structure of ego-networks4. If we set r = 4 in (15) and input the empirical scaling 
observed in this model eµ ≈ 34, we conclude that the scaling to be expected in a continuous setting of social 
relationships must be η ≈ 6 . This is a concrete prediction of the continuum model that needs to be tested against 
actual data.

Data analysis
In this section we will explore how this continuous model compares to actual data. We will use three datasets for 
this comparison: phone  calls13, face-to-face  contacts18, and interactions between Facebook  users19. But before 
that we need to develop a formalism to make the fits and determine their confidence intervals.

Bayesian estimate of the scaling parameter. Starting from (7) and assuming a noninformative uni-
form prior for µ , it follows that, up to a normalising constant,

In the continuum limit and using the definitions (6),

where

The limiting distribution (17) allows us to obtain η for any dataset as the maximum-likelihood estimate. 
Differentiating

with respect to η leads to the equation
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ηeηt

eηt − 1
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η, η → ∞,
0, η → −∞.
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η
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Figure 1.  Plot of the function g(η) that determines the cost associated to a value of the scaling parameter η 
through Eq. (11).
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Comparing this equation to (11) provides the interpretation

As in the discrete case, Eq. (21) enables us to estimate the value of the parameter η given the total cost per 
item σ from a set of empirical data. There is an important difference though: we now need to set the scale of costs, 
namely the values of smax and smin , using additional information on the dataset—a problem that did not arise in 
the discrete case because the first and last categories were fixed. Remember that smax defines the largest possible 
cost that one can invest in one item, whereas smin defines the least possible such cost. Once these parameters are 
known, t is estimated as

where the si are the costs associated to each of the items i = 1, . . . , L̃ , measured in the same units as smax and smin.
For the confidence interval of the maximum-likelihood estimate of η we need to introduce the function

Then the 1− 2δ confidence interval for η , given L̃ and L̃1 , is obtained through the cumulative distribution

More precisely, the confidence interval [η−, η+] is determined by solving the equations Ŵ(η−|L̃, L̃1) = δ , and 
Ŵ(η+|L̃, L̃1) = 1− δ (see "Methods" for numerical details). In what follows we choose a 95% confidence interval 
using δ = 0.025.

Mobile phones dataset. We have obtained the first dataset to analyse from Ref.13 (actually, data were 
originally collected for another  study23). This dataset contains the phone activity of 24 individuals during 18 
months. At the beginning of the study, all participants (12 males, 12 females, ages 17-19) were in their final year 
of secondary school, so that about six months later they transitioned into either university (18 of them) or labour 
market. The data from the phones (which were given for free to the participants along with 500 free monthly 
voice minutes and unlimited text messages) were complemented with three questionnaires, one at the beginning 
of the study, another one at the end of month 9, and a last one at the end of month 18. With this information, 
the authors were able to merge phone numbers that belonged to the same person, and, most importantly, to 
conclude that the number of calls was a reliable estimate of the emotional closeness of the relationships (see 
Ref.13 for details).

In the original study, the communication patterns of the participants were analysed by dividing the dataset 
into three time intervals ( T1 , T2 , and T3 ) of six months each. For each time interval, the number of calls from 
each ego to each alter were counted and the alters were subsequently ranked based on this number. Then, the 
curve representing the fraction of calls as a function of the alters’ ranks is used as a fingerprint of the ego’s com-
munication pattern. The main result of this study is that, even though the composition of personal networks 
varies considerably over time, these patterns are consistent across the different time windows. They named these 
patterns social signatures and conjectured that they were likely a consequence of a constraint on the available 
resources (time and cognitive skills) necessary to manage relationships.

In order to analyse these data we first aggregate them into the same time windows, so that we end up with 
a list (per time window) of pairs (ai , ni) for each ego, where ai is a given alter and ni is the total number of calls 
made to that alter. As we explained in “Bayesian estimate of the scaling parameter” section, prior to fitting the 
model we need to determine what smin and smax are for each participant (at each time window). To that end, we 
first select the minimum and the maximum number of calls each ego made every month to any alter. Then, smin 
(respectively smax ) for each time window is defined as the sum of the monthly minima (respectively maxima) 
along the six-month period. The rationale for these definitions is that these would have been the maximum and 
minimum number of calls to an alter, had this alter been the same all along the time window. Once smin and smax 
have been determined, we filter out any interaction below smin (alters receiving fewer calls do not qualify as true 
relationships) and fit the model as explained in “Bayesian estimate of the scaling parameter” section.

Figure 2 summarises our results. As we can see in panels A-D, the distributions of the parameter estimates 
are centred around values consistent with the predicted η ≈ 6 scaling (see “Connection with the theory of ego-
networks” section). Additionally, the model is able to capture individual’s nuances (panels a-d), and the fittings 
are, generally speaking, strikingly good (see Supplementary Information for a comprehensive set of figures, 
including fittings for every subject within every time window). Furthermore, we find a very high, significant 
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correlation between the estimated parameter for each ego and the number of alters in his or her network ( ̃L ). 
More precisely: ηT1 ∼ L̃T1 ( r = 0.84, p < 10−6 ), ηT2 ∼ L̃T2 ( r = 0.52, p < 10−3 ), ηT3 ∼ L̃T3 ( r = 0.81, p < 10−5 ) 
and ηT1∪T2∪T3 ∼ L̃T1∪T2∪T3 ( r = 0.83, p < 10−6)—Pearson’s r coefficients, 2-tailed tests. This fact further endorses 
the claim that the amount of resource available to form relationships is a seemingly fixed quantity that individuals 
spread according to the maximum entropy  principle12.

Lastly, we analyse if the parameter η may serve as a quantitative characterisation of the social signatures. 
In Ref.13, the authors used the Jensen-Shannon  divergence24 (JSD) to measure the shape difference (distance) 
between signatures. Sticking to the notation in that reference, we will denote dijab the JSD distance between the 
signature of ego i in time a and ego j in time b. This measure was used to compute the variation between the 
signatures of the same ego (i) in consecutive time windows as dii12 ≡ dself12 (i) and dii23 ≡ dself23 (i) . For comparison, 
the authors also computed the reference distances

and found that these reference distances were consistently higher than the ones between signatures of the same 
 ego13.

We perform a parallel analysis using the relative change between two different values of η as a measure of the 
“distance” between them. That is, using the same notation, self-distances are obtained as

whereas the reference distances are given by

(25)dref22 (i) =
1

Negos − 1

∑

j �=i

d
ij
22, d

ref
33 (i) =

1

Negos − 1

∑

j �=i

d
ij
33,

(26)dself12 (i) ≡
|ηi1 − ηi2|

|ηi1|
, dself23 (i) ≡

|ηi2 − ηi3|

|ηi2|
,

Figure 2.  Summary of the results for the mobile phones dataset. Upper panels show the distributions of the 
parameter estimates for the different time windows (see “Mobile phones dataset” section for details). The 
red, dashed lines mark the change from standard ( η > 0 ) to inverse ( η < 0 ) regimes. (A) Distribution of 
the parameter estimates for the first time window (months 1–6); mean = 7.52 , median = 5.32 , std = 5.07 . 
(B) Distribution of the parameter estimates for the second time window (months 6-12); mean = 8.32 , 
median = 8.00 , std = 3.31 . (C) Distribution of the parameter estimates for the second time window (months 
12-18); mean = 8.48 , median = 7.00 , std = 4.56 . (D) Distribution of the parameter estimates for the full time 
window (months 1-18); mean = 9.07 , median = 8.75 , std = 3.92 . Lower panels show the fittings for the same 
individual (ego “e12”) at each of the time windows. Solid dots represent experimental data, blue dashed lines 
represent the graph of χ(t) in Eq. (9) with the corresponding estimated parameter, and shaded regions show the 
95% confidence interval for that estimate (see “Bayesian estimate of the scaling parameter” section). a Example 
of fitting for an individual (“e12”) in the first time window. Estimated η = 3.55 , 95% confidence interval 
(1.82, 5.77), L̃ = 21 . (b) Example of fitting for an individual (“e12”) in the second time window. Estimated 
η = 7.38 , 95% confidence interval (5.18, 10.34), L̃ = 33 . (c) Example of fitting for an individual (“e12”) in the 
third time window. Estimated η = 11.79 , 95% confidence interval (7.87, 17.69), L̃ = 23 . (d) Example of fitting 
for an individual (“e12”) in the full time window. Estimated η = 9.77 , 95% confidence interval (6.83, 13.95), 
L̃ = 30 . A comprehensive set of figures, including fittings for every subject at all time windows, is available in 
the Supplementary Information.
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We then create a distribution of self-distances dself =
⋃Negos

i {dself12 (i), dself23 (i)} as well as another one of reference 
distances dref =

⋃Negos

i {dref22 (i), d
ref
33 (i)} (a total of 48 points per distribution). In Fig. 3 we show the resulting 

distributions of self- ( dself  ) and reference distances ( dref  ). The distribution dref  is again consistently higher than 
that of dself—which is confirmed by a Mann-Whitney U test yielding p < 10−3 (two-sided). Therefore, the differ-
ent egos tend to have a persistent value of η just like they have a persistent social signature. Given that the central 
premise of our model is that the resources available to create relationships are limited (see “Model description” 
section), this result reinforces the  conjecture13 that the existence of social signatures is a consequence of this 
very constraint.

Face-to-face contacts dataset. In this section we analyse data from face-to-face  interactions18 that took 
place during a scientific conference in Turin, Italy, in 2009 (see "Methods"). The data were collected using prox-
imity sensors that voluntary participants ( n = 111 , about 75% of the attendees) had embedded in their confer-
ence badges. The sensors recorded interactions over intervals of 20s when two or more participants were facing 
each other at less than about 1.5− 2m (see Refs.18,25–27 for technical details). With this information, we can build 
the network of interactions for each participants using the time spent together as a proxy of the intensity of the 
implied relationships.

The high temporal resolution of the data permits us to characterise the values of smin and smax in several 
ways. One natural option is to aggregate the data over one  day18, and use a similar rule to the one we applied 
in “Mobile phones dataset” section—that is, use the sum of the maximum time spent with any alter on each 
day as smax , and the sum of the minima as smin . However, during a conference, many different time restrictions 
may apply to the attendees, such as having an agenda of presentations to attend or deliver. As a consequence, 
the aforementioned heuristic may not apply here, since it is very likely the case that it was not entirely up to the 
participants with whom to spend their time at a given moment. Furthermore, we do not have any information 
on the interactions with the 25% of individuals who were at the venue but chose not to participate. These facts 
impose clear limitations to the conclusions we can draw from applying our model, and they are hardly avoidable. 
Therefore, we adopt a rather cautious position and do not aggregate the data on daily time windows. Instead, we 
simply take smax as the maximum time spent (and recorded) with one alter during the whole conference, and smin 
as the minimum one. Additionally, we exclude all participants who had fewer than five alters in their networks, 
ending up with a total of 95 valid cases.

Our results (Fig. 4a) show a long-tailed distribution for the parameter estimates with a clear peak close, once 
again, to the predicted η ≈ 6 , which suggests that the overall behaviour of the contact patterns seems to agree with 
our model. However, even though some fittings are quite good (see Fig. 4b), overall they are not as good as those 
of the mobile phones dataset (see Fig. S6 in the Supplementary Information). For comparison, we also carried out 
the analysis using the same approach as in “Mobile phones dataset” section to set smin and smax . Figure S5 in the 
Supplementary Information collects the corresponding results, showing individual fits that are slightly worse and 
distributions of the parameter estimates centred around a higher value ( η ≈ 14 ). It has to be taken into account 
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1

Negos − 1

∑
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2|

|ηi2|
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3|
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Figure 3.  Evidence of the persistence of η through time windows. The boxplot to the left (blue) shows the 
distribution of distances between the parameter estimates for the same individual at consecutive time intervals 
( dself ). The boxplot to the right (orange) shows the distribution of reference distances between the parameter 
estimate for each individual and the rest of the population ( dref ). In both cases, the solid dots represent the 
empirical points—jittered for a better visualisation. The distances in dref are consistently higher than those in 
dself , meaning that the individual’s η tends to be persistent across time intervals (see “Mobile phones dataset” 
section for details).
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that, as explained above, these data are inherently noisy and assessing the intensity of the relationships (or even 
merely of the interactions) based solely on time spent together during a conference can be misleading. Ideally, 
we would need this type of data but from individuals in their daily lives, so that the interactions recorded would 
better correspond to decisions of the individual. Nevertheless, even with the mentioned limitations, the model 
is still capable of capturing the patterns of face-to-face interactions to some extent.

Facebook dataset. If we compare the results from “Mobile phones dataset” and “Face-to-face contacts 
dataset” sections (Figs. 2a, 4a) we can appreciate how, as the sample size increases, the distribution of the param-
eter estimates seems to smooth around a well-defined central value η ≈ 6 . If that were the case, it would be a 
clear indication that the parameter of the model is indeed capturing a real feature of the way individuals man-
age relationships. To further explore this possibility, we analyse a larger dataset of interactions in  Facebook19. 
This dataset was obtained using a crawler on April 2008 and comprises data on roughly 3 million Facebook 
users and 23 million edges. Importantly, it also contains the number of interactions (photo comments or Wall 
posts) between users. The data is divided into four different time windows (referred to the time of the crawl): 
last month, last six months, last year and all—which contains all the interactions among the users since they 
established their  links19.

To analyse the structure of the personal networks in Facebook, the authors of that study filtered the data to 
retain only active, relevant users from which the relative frequency of contact with all his or her alters could be 
adequately assessed (see Ref.19 for details). The resulting dataset contains about 90, 000 users and 4.5 million 
links. Applying two different clustering techniques, k-means28 and  DBSCAN29, they found that the structure of 
personal networks of Facebook users consists of a set of 4 concentric, inclusive circles according to the intensity 
of their links, and that the sizes of these circles exhibited a more or less constant scaling ratio close to 3—thus, 
resembling what is found in offline social  networks4.

Since clustering algorithms find an optimal partition of personal networks into four circles with a scaling of 
approximately 3, our model should yield a distribution of parameters centred around η ≈ 6 . In this case, for each 
individual smax is simply given by his or her most intense interaction, and smin by the least intense one—with this 
decision, we can use the original dataset without any further pre-processing. Figure 5 confirms our hypothesis, 
showing a smooth distribution with mean = 8.25 , median = 7.17 , and mode = 5.48 . Interestingly, the size of 
this sample allows us to find, for the first time, individuals exhibiting an inverse regime ( η < 0 ). Specifically, 
we find 256 users, about 0.3% of the population, exhibiting this type of structure—to be precise, only for 7 of 
them ( 0.007% ) the 95% confidence interval does not include the zero. In Fig. 5b,c we show representative fits 
of individuals in the standard and the inverse regime, respectively. Let us remark that not only does our model 
capture the typical structure of personal  networks19, but it also unveils that the inverse  regime12 can also be found 
in digital communications—in spite that this is the last environment one would expect to find it because of the 
usual inflation of contacts it favours.

Discussion
In this paper we have presented an extension of the discrete model of costly allocation of resources introduced 
 elsewhere12, which treats the cost as a continuous variable. While our approach allows us to deal with any such 
problem of resource allocation, we have applied it to case of the structure of personal networks when the intensity 
of emotional links is given by a continuous magnitude (time spent with the alter, number of phone calls, mes-
sages exchanged, etc.) which cannot be naturally classified in categories or layers of intensity. We have found that 
the behaviour of this continuous model is qualitatively identical to that of its discrete counterpart. Remarkably, 
our experimental results show that the estimates of the new parameter characterising the distribution of links 

Figure 4.  Summary of the results for the face-to-face contacts dataset. (a) Distribution of the parameter 
estimates for the face-to-face contacts dataset ( n = 95 ). The red, dashed line marks the change of regime 
( η = 0 ); mean = 9.08 , median = 7.35 , mode = 5.54 , std = 5.86 . (b) Representative fitting for an individual in 
the face-to-face contacts dataset (chosen at random from those with a strictly positive 95% confidence interval). 
Solid dots represent experimental data, blue dashed lines represent the graph of Eq. (9) with the corresponding 
estimated parameter, and shaded regions show the 95% confidence interval for that estimate (see “Bayesian 
estimate of the scaling parameter” section). Estimated η = 11.12 , 95% confidence interval (6.74, 18.34), L̃ = 15 . 
See Fig. S6 in the Supplementary Information for a sample of 24 other fittings chosen randomly from the entire 
population.
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( η ≈ 6 ) are consistent with the scaling relation between circles typically observed in discrete settings ( µ ≈ 1 
or eµ ≈ 3 ). Consequently, one may wonder whether the organisation of personal networks has a discrete (as 
empirical evidence has suggested so far) or continuous nature.

Given the abundant empirical evidence for the existence of discrete layers, we are inclined to think that the 
discretisation might be real—if only because of the natural human tendency to classify and the inherent difficulty 
to deal with the continuum. However, this discretisation will hardly be perfect and may be subject to fluctuations. 
Moreover, even if the (psychological) organisation of the networks were perfectly discrete, it would be difficult 
for all people within the same layer to receive precisely the same attention (number of calls, contact time, and 
so on) at all times, which would cause continuous fluctuations. Let us emphasise that under no circumstances 
are both results incompatible, since our (continuous) model does not assume at any time that the distribution of 
intensities is continuous, but only that it can be so measured. The model we have developed simply allows us to 
manage this type of data without having to make ad hoc assumptions on the number of layers. Importantly, the 
principles underlying both types of structures are indeed the same, namely that relationships are costly in terms 
of (cognitive) resources and that the we have a limited amount of these resources to devote to them.

The use of the continuum approach we have introduced here has its own drawbacks. Dispensing with the 
layers/circles allowed us to find a parameter that characterises the scaling of the distribution of resources valid 
in any situation, but the price to pay is that the scale in which the intensity of the relations is measured (i.e., smin 
and smax ) has to be inferred from additional information on the problem. This creates a further challenge when 
fitting the data, and decisions have to be made based on plausible reasons—but there might be other possibili-
ties. This might well be one of the reasons why the individual fittings seem to be somewhat worse than the ones 
obtained with the discrete  model12, and it is an issue that deserves further attention.

On the other hand, it is important to realize that one of the assumptions of the model is that the effort 
devoted to relationships is a perfect indicator of their intensity. This must be compared with the different types 
of information with which we have measured these efforts (number of calls, face-to-face contact, and number 
of messages exchanged), which are nothing more than proxies for that effort. In particular, although contacts 
can be maintained using different means (phone calls, personal meetings, Facebook, etc.), in our analyses we 
are focusing only on one of them. Including all the data of contacts among people through any means should 
improve the results. Another relevant issue is that, more likely than not, all communications are not equally 
intense, even if their duration is the same, which is a significant source of noise for our model. In any case, given 
the simplicity of the model and the particularities of the data, the fits are remarkably good. Furthermore, the 
aggregate distribution of the parameter estimates (which might compensate for individual errors) exhibits a 
clear shape centred around the expected value of η ≈ 6 , a remarkable result in itself that makes it clear that our 
relationships exhibit the signature of a resource allocation problem.

Methods
All numerical analyses are carried out in Python with the packages scipy.optimize and scipy.inte-
grate. The documentation of these packages can be found in https:// docs. scipy. org/ doc/ scipy-0. 14.0/ refer ence/ 
gener ated/ scipy. optim ize. fsolve. html.

To compute the integrals in Eq. (24) for finite values of u we use the function quad (Python). For u → ∞ 
we evaluate them using a Gauss-Laguerre quadrature with 150 points. Overflows due to exponentiation are 

Figure 5.  Summary of the results for the Facebook dataset. (a) Distribution of the parameter estimates for 
the Facebook dataset ( n = 98, 258 ). The red, dashed line marks the change of regime η = 0 ; mean = 8.25 , 
median = 7.17 , mode = 5.48 , std = 4.91 (b) Representative fitting for an individual exhibiting the standard 
regime (chosen at random from those with a strictly positive 95% confidence interval). Solid dots represent 
experimental data, blue dashed lines represent the graph of Eq. (9) with the corresponding estimated parameter, 
and shaded regions show the 95% confidence interval for that estimate (see “Bayesian estimate of the scaling 
parameter” section). Estimated η = 11.64 , 95% confidence interval (7.62, 17.79), L̃ = 21 . (c) Example of 
fitting for an individual exhibiting the inverse regime (chosen at random from those with a strictly negative 
95% confidence interval). Solid dots, blue dashed lines, and shaded regions have the same interpretation as in 
(b). Estimated η = −1.34 , 95% confidence interval (−2.71,−0.08) , L̃ = 30 . See Fig. S7 in the Supplementary 
Information for a sample of 24 other fittings chosen randomly from the entire population.

https://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.optimize.fsolve.html
https://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.optimize.fsolve.html
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avoided by evaluating the logarithm of the integrand, and the singularity at η = 0 is avoided by Taylor expanding 
e−ηr and e−η up to third order. Likewise, the singularity at η = 0 of (20) is avoided by using the Taylor expansion 
χk ≈ k/r + (k/2r)(eη − 1)(k − r) for |eη − 1| ≤ 10−6 . The extremes of the confidence interval [η−, η+] and the 
Eq. (20) are solved using the function fsolve with tolerance 10−6 . The code used for these analyses is publicly 
 available30.

Data for the analysis of “Face-to-face contacts dataset” section has been downloaded from the SocioPatterns 
 webpage31 (last accessed 24 January 2019). They register face-to-face interactions that took place during the 
scientific conference “Hypertext 2009: 20th ACM Conference on Hypertext and Hypermedia” (http:// www. 
ht2009. org/), held in Turin, Italy, between June 29th and July 1st in 2009.

The Facebook dataset used to be available, upon request, at http:// curre nt. cs. ucsb. edu/ socia lnets/ under the 
name “Anonymous regional network A”. However, as of April 24, 2021, it seems that the web is no longer avail-
able. We obtained the data thanks to Prof. Ben Zhao’s kindness.

Code availability
Accession codes (where applicable).
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