
1 © 2017 IOP Publishing Ltd  Printed in the UK

1.  Introduction

Narrow-gap semiconductors having conduction and valence 
bands of opposite parity, like Pb1−xSnxTe and Pb1−xSnxSe,  
or orbital character, as Hg1−xCdxTe, may undergo band 
inversion under compositional variation. It is feasible to 
grow heterojunctions (for instance, PbTe/Pb1−xSnxTe with 
x > 0.36, PbSe/Pb1−xSnxSe with x > 0.14 or HgTe/CdTe) 
where the fundamental gap, defined as the difference between 
the band-edge energy of the bands with a given orbital char-
acter or parity, has opposite sign on each semiconductor. Such 
band-inverted junctions received much attention because a 
treatment of the simplest two-band approximation predicted 
the occurrence of midgap subbands of electron-like and hole-
like interface states [1–4]. These midgap subbands were found 
to be gapless with linear dispersion, resembling a two-dimen-
sional Dirac cone.

Band inversion is an essential ingredient in topological 
insulators. Consequently, since the advent of the topological 
band theory there is a renewed interest in band-inverted junc-
tions made of II–VI and IV–VI compound semiconductors [5, 
6]. In 2006, Bernevig et al [7] studied theoretically the con-
fined states in HgTe/CdTe quantum wells. HgTe is an inverted-
band material and CdTe is a normal-band one, so interface 

states are expected at each junction. Additionally, varying 
the thickness of the HgTe layer leads to an inversion of the 
quantum-well hole-like and electron-like subbands. They pre-
dicted the occurrence of a topological phase transition at a 
critical value of the thickness of the quantum well, giving rise 
to the concept of topological insulator [8, 9]. Such prediction 
was experimentally confirmed shortly afterwards [10].

In this paper we study interface states in a band-inverted 
quantum well of IV–VI semiconductors using a two-band 
model when an external electric field is applied along the 
growth direction. We do not consider the quantum-well 
states confined in the middle layer; rather, we concen-
trate in the behavior of the interface states, which present 
a linear dispersion relation in single heterojunctions. Our 
main results can be summarized as follows: (i) in contrast 
to the single junction, the dispersion relation is quadratic in 
the interface momentum and a gap opens. (ii) Gap opening 
arises from the coupling between the Dirac cones of the two 
interfaces due to the finite width of the quantum well. Most 
importantly, (iii) the interface gap shrinks upon increasing 
the electric field, so that its magnitude can be substantially 
modified in experiments. Thus, the electric field can be con-
sidered as an external way to modify the coupling of the 
interface states.
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2. Theoretical model

The two-band model is a reliable approach to obtain the elec-
tron states near the band edges in narrow-gap IV–VI semicon-
ductors, for which the coupling to other bands is negligible 
[3, 11–13]. It can even be applied to certain III–V semicon-
ductors if such band coupling is small [14]. The electron 
wave function is written as a sum of products of band-edge 
Bloch functions with slowly varying envelope functions. The 
corresponding envelope function χ(r) is a four-component 
column vector composed by the two-component spinors 
χ+(r) and χ−(r) belonging to the two bands. Electron states 
near the band edges are determined from the Dirac-like equa-
tion Hχ(r) = Eχ(r) with [3, 4]

H = v⊥α⊥ · p⊥ + vzαzpz +
1
2

EG(z)β + VC(z),� (1)

where the Z axis is parallel to the growth direction [111]. It 
is understood that the subscript ⊥ in a vector indicates the 
nullification of its z-component. EG(z) denotes the position-
dependent gap and VC(z) gives the position of the gap center. 
α = (αx,αy,αz) and β denote the usual 4 × 4 dirac matrices

αi =

(
02 σi

σi 02

)
, β =

(
12 02

02 −12

)
, i = x, y, z,

σi being the Pauli matrices, and 1n and 0n are the n × n identity 
and null matrices, respectively. Here v⊥ and vz are interband 
matrix elements having dimensions of velocity. Although they 
may be different in general, we assume isotropic semiconduc-
tors and define v = v⊥ = vz hereafter.

In order to keep the algebra as simple as possible, we 
restrict ourselves to the symmetric situation with same-sized 
and aligned gaps [VC(z) = 0]. This is not a serious limitation 
but the calculations are largely simplified. Thus, a single and 
abrupt interface presents the following profile for the magni-
tude of the gap

EG(z) = 2∆sgn(z),� (2)

where sgn(z) = θ(z)− θ(−z) is the sign function and θ(z) is  
the Heaviside step function. The envelope function decays expo-
nentially with distance at each side χ(r) = χ(z) exp

(
ir⊥ · k⊥

)
 

with [15]

χ(z) ∼ exp

(
−|z|

d

)
, d =

�v
∆

,� (3a)

and the dispersion is linear in the interface momentum (see 
e.g. [4])

E(k⊥) = ±�v|k⊥| .� (3b)

3.  Quantum well with band inversion

For completeness, in this section we present and discuss the 
salient features of a quantum well of width 2a with band-
inversion in the absence of an applied electric field. We intro-
duce an alternative derivation of the interface states, although 
the final results agree with those obtained in [2]. Assuming 

that the interface states spread over distances much larger 
than the interface region, we can consider an abrupt profile 
for the two band-inverted junctions forming the quantum well. 
Therefore, the gap profile is now given by

EG(z) = 2∆
[
1 − 2θ(z + a) + 2θ(z − a)

]
,� (4)

as depicted in figure 1, where we have taken the inverted semi-
conductor embedded in the non-inverted one.

Electronic states of the Hamiltonian (1) can be addressed 
with the aid of the Feynman–Gell–Mann ansatz as follows 
[16]

χ(z) =
[
�v
(
− iαz

d
dz

+α⊥ · k⊥
)
+

1
2

EG(z)β + E
]
ψ(z) .

� (5)
Defining the following dimensionless quantities κ = k⊥d, 

ξ = z/d , ξ0 = a/d, ε = E/∆, and applying the Hamiltonian 
(1) to (5), we obtain

[
− d2

dξ2 + U(ξ) + λ2
]
ψ(ξ) = 0,� (6a)

with

U(ξ) = 2iβαz

[
δ(ξ − ξ0)− δ(ξ + ξ0)

]
,� (6b)

and

λ2 = κ2 + 1 − ε2 .� (6c)

We have used the anticommutation relations of the Dirac 
matrices and dθ(ξ)/dξ = 2δ(ξ).

We can find exactly the electron energy by means of the 
Green’s function approach. To this end, we can treat the term 
U(ξ) in equation (6a) as a perturbation. The retarded Green’s 
function for the unperturbed problem satisfies

[
− ∂2

∂ξ2 + λ2
]
G+

0 (ξ, ξ′; ε) = δ(ξ − ξ′)14,� (7a)

which can be factorized as G+
0 (ξ, ξ′; ε) = G+

0 (ξ, ξ′; ε)14 and 
it is understood that Im(λ2) < 0. Since we are interested in 

Figure 1.  L+
6  and L−

6  band-edge profile of two band-inverted 
junctions with aligned and same-sized gaps, located at the XY plane. 
The distance between the junctions is 2a and the magnitude of the 
gap is 2∆.
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midgap states, we consider Re(λ2) > 0. The Green’s function 
for the free particle problem is known to be [17]

G+
0 (ξ, ξ′; ε) =

1
2λ

exp (−λ|ξ − ξ′|) .� (7b)

We can now apply Dyson’s equation to obtain the complete 
Green’s function G+(ξ, ξ′; ε) associated to equation  (6a) as 
follows:

G+(ξ, ξ′; ε) = G+
0 (ξ, ξ′; ε) +

∫
dξ′′G+

0 (ξ, ξ′′; ε)

× U(ξ′′)G+(ξ′′, ξ′; ε) .
�

(8)

Dyson’s equation  (8) can be exactly solved due to the 
simple expression of the potential term (6b). The retarded 
Green’s function G+(ξ, ξ′; ε) is analytic in the lower half 
plane Im(λ2) < 0. Thus, it may have simple poles when it 
is analytically continued to the upper half plane. After some 
straightforward algebra, the poles are obtained from the scalar 
Green’s function by solving the following equation

[
1 − 4G+

0 (ξ0, ξ0; ε)G+
0 (−ξ0,−ξ0; ε)

+ 4G+
0 (ξ0,−ξ0; ε)G+

0 (−ξ0, ξ0; ε)
]2

= 4
[
G+

0 (ξ0, ξ0; ε)− G+
0 (−ξ0,−ξ0; ε)

]2
.

�

(9)

Recalling equation  (7b), we get λ2 − 1 + exp(−4λξ0) = 0. 
For not too narrow quantum wells and reverting the change of 
variables we finally are arrive at

E(k⊥) = ±
√
�2v2k2

⊥ +∆2 exp (−4a/d) .� (10)

The dispersion is no longer linear and an interface gap of mag-
nitude 2∆w0 opens, where

∆w0 = ∆exp
(
−2

a
d

)
.� (11)

The subscript 0 refers to the absence of applied electric field. 
The gap is due to the coupling of the two interface states 
arising at the well boundaries. This finite-size effect turns the 
interface Dirac fermions massive [18, 19].

4.  Quantum well under bias

Now we turn to the interface states of a quantum well with 
band-inversion subjected to a uniform electric field F = −F ẑ , 
following the approach introduced in [20]. The Dirac equa-
tion  then reads 

(
H− eFz

)
χ(r) = Eχ(r), where H is given 

in (1). The Feynman–Gell–Mann ansatz (5) with the replace-
ment E → E + eFz renders the Dirac-like equation  into a 
Schrödinger-like equation
[
− d2

dξ2 + U(ξ)− f 2ξ2 − ifαz − 2εf ξ + λ2
]
ψ(ξ) = 0 .� (12)

where f = F/FC and FC = ∆/ed = ∆2/e�v. The term 
−f 2ξ2 is negligible under the assumption that F < FC because 

the envelope function is vanishingly small if ξ > 1. Note that 
this is the usual regime in experiments since typical values 
for IV–VI compounds are ∆ = 75meV and d = 4.5nm [2], 
yielding FC = 170kV/cm. Regarding the constant matrix term 
−ifαz, it is easily diagonalized by a unitary transformation. 
Nevertheless, we have checked that it has a small impact on 
the final results even at moderate fields [20]. Thus, we omit 
those two terms in what follows.

We can regard again the term U(ξ) in (12) as a perturbation 
and seek for the retarded Green’s function of the unperturbed 
problem G+

0 (ξ, ξ′; ε) = G+
0 (ξ, ξ′; ε)14, where the scalar 

Green’s function obeys the following equation
[
− ∂2

∂ξ2 − 2εf ξ + λ2
]

G+
0 (ξ, ξ′; ε) = δ(ξ − ξ′) .� (13)

Equation (13) is analogous to the problem of a non-rela-
tivistic particle in a tilted potential solved in [21, 22]. Let us 
define

µ = (2|ε| f )1/3, p(ξ) = −sεµ ξ +
λ2

µ2� (14)

with the shorthand notation sε = sgn [Re(ε)]. In terms of these 
parameters the retarded Green’s function is written as

G+
0 (ξ, ξ′; ε) = −πsε

µ

{
θ [(ξ′ − ξ)sε]Ai ( p(ξ))Ci+ ( p(ξ′))

+ θ [(ξ − ξ′)sε]Ai ( p(ξ′))Ci+ ( p(ξ))
}

,
�

(15)

where Ci+(z) = Bi(z) + iAi(z), Ai(z) and Bi(z) being the 
Airy functions [23]. It is worth mentioning that G+

0 (ξ, ξ′; ε) is 
continuous on the line ξ = ξ′ .

Once the retarded Green’s function for the unperturbed 
problem is known, we can get the energy levels from (9). 
In the presence of the electric field, poles are of the form 
E(κ⊥)− iΓ(κ⊥)/2 and correspond to resonant states. 
Therefore, electrons can tunnel into the continuum and escape 
from the quantum well. This is a common feature in the 
quantum-confined Stark effect [24]. Nonetheless, the level 
width is exponentially small in the low-field regime, namely, 
tunneling is only important at very high fields [20]. Thus, we 
omit the imaginary part hereafter.

5.  Low-field limit

We can simplify (15) in the low-field regime F < FC by 
noticing that |λ(ε,κ)| � µ(ε). In this limiting case we approx-
imate the Airy functions to their asymptotic expansions for 
large argument [23]. In this regime we take Ci+(z) � Bi(z) 
and

Ai(z) � 1
2
√
π

e−φ

z1/4 L(−φ), Bi(z) � 1√
π

eφ

z1/4 L(φ),� (16)

with φ = (2/3)z3/2 and L(φ) = 1 +
∑∞

�=1 u�φ−�, where 
u� = Γ(3�+ 1/2)/54� �! Γ(�+ 1/2), Γ(z) being the Γ func-
tion. We can now obtain an expression to the lowest order in 
the field as follows:

J. Phys.: Condens. Matter 29 (2017) 475301
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G+
0 (±ξ0,±ξ0; ε) = − 1

2λ

(
1 ± |ε|ξ0

λ2 f
)

,

G+
0 (±ξ0,∓ξ0; ε) = − 1

2λ
exp (−2λξ0) .

�

(17)

Finally, inserting (17) into (9) yields an approximate 
expression to obtain the energy of the interface states in the 
quantum well

ε2 = κ2 + exp (−4λξ0)−
2|ε|ξ0

λ
f .� (18)

In order to verify the accuracy of the result, we numerically 
tested (18) from the numerical solution of equation (9) using 
the exact Green’s function. Taking sε = 1 for concreteness, 
from (15) we get

G+
0 (±ξ0,±ξ0; ε) = −π

µ
Ai(z±)Ci+(z±),

G+
0 (±ξ0,∓ξ0; ε) = −π

µ
Ai(z−)Ci+(z+),

�
(19)

with z± = λ2/µ2 ∓ µξ0. Figure  2(a) shows the dispersion 
relation for two values of the applied field (F = 0.2FC and 
F = 0.8FC) and two widths of the quantum well (a = d/2 and 
a = d). Dashed lines show the approximate low-field limit 
(18). We conclude that the analytical result fits the numerics 
quite well except at high field (F = 0.8FC) and small width 
(a = d/2), as expected. From the dispersion relation we can 
obtain the gap of the interface states ∆w as the difference 
of the positive and negative energy solutions at |k⊥| → 0. 
Figure 2(b) shows that this gap shrinks upon increasing the 
electric field. Therefore, we come to the conclusion that the 
gap can be controlled to a large extent by the field.

It is worth mentioning that equation  (18) can be further 
simplified when the quantum well is not too narrow. In this 
case we can take λ � 1. Reverting the change of variables we 
get

E(k⊥) = ±
[√

(eFa)2 + �2v2k2
⊥ +∆2

w0 − eFa
]
,� (20)

where ∆w0 is given by (11). Notice that turning off the field 
we recover equation  (10). The gap of the interface states is 
then approximately given as 2∆w with

∆w =
√
(eFa)2 +∆2

w0 − eFa .� (21)

Equation (21) is very remarkable and it is our main result. 
Although being approximate, we have found that it is very 
accurate unless the field is high and the quantum well is 
narrow. It implies that applying an electric field perpendicular 
to the junction, the interface gap diminishes. Notice that there 
exist two different regimes. At low field, i.e. eFa < ∆w0, 
the gap decreases linearly as ∆w � ∆w0 − eFa. On the con-
trary, at high field the gap vanishes according to the power 
law ∆w � ∆2

w0/2eFa. Since the gap is a consequence of the 
hybridization of the interface states, the electric field can be 
viewed as an external means to control the coupling of these 
bands.

6.  Conclusions

In this work we have studied band-inverted quantum wells 
subjected to an electric field applied along the growth direc-
tion. We used a spinful two-band model that is equivalent to 
the Dirac model for relativistic electrons. The mass term is 
half the bandgap and changes its sign across the junction. 
In the case of a single band-inverted junction, the envelope 
function of the interface states is exponentially localized in 
the growth direction with decay length d = �v/∆. The corre
sponding interface dispersion is linear, as given by (3b), and 
is commonly called a Dirac cone. A second junction at a dis-
tance 2a not large compared to d yields the splitting of the 
Dirac cones into two massive subbands and an interface gap 
opens, as expressed by equation  (11). Therefore, finite-size 

Figure 2.  (a) Energy in units of ∆ = EG/2 as a function of the  
in-plane momentum for two values of the applied field (F = 0.2FC 
and F = 0.8FC) and two widths of the quantum well (a = d/2  
and a = d). Mirror images are obtained for negative energies.  
(b) Interface gap 2∆w in units of the fundamental gap 2∆ as a 
function of the electric field for two different widths. Dashed lines 
show the approximate solution given in (18).
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effects give mass to the Dirac fermions, transforming their 
linear dispersion into a parabola at small wave vectors. 
Remarkably, although the interface gap never closes, it can 
be dramatically reduced by the electric field. Under certain 
reasonable assumptions we have found a simple expression 
for the interface gap as a function of the field, as shown in 
(21). This expression predicts a linear reduction of the gap if 
the electric field is smaller than FC exp(−2a/d)d/a, while it 
decays as a power law at higher fields.
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